CN107446086A - 一种六价铬印迹材料的制备方法 - Google Patents
一种六价铬印迹材料的制备方法 Download PDFInfo
- Publication number
- CN107446086A CN107446086A CN201710794833.3A CN201710794833A CN107446086A CN 107446086 A CN107446086 A CN 107446086A CN 201710794833 A CN201710794833 A CN 201710794833A CN 107446086 A CN107446086 A CN 107446086A
- Authority
- CN
- China
- Prior art keywords
- imprinted material
- preparation
- cmc
- material according
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F251/00—Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
- C08F251/02—Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/24—Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
- B01J2220/4825—Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/044—Elimination of an inorganic solid phase
- C08J2201/0442—Elimination of an inorganic solid phase the inorganic phase being a metal, its oxide or hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/02—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明提供一种六价铬印迹材料的制备方法,该方法基质工艺简单、可重复利用、成本低、经济实用。制备的印迹材料能够用于环境样品和消费品中六价铬的分析测试过程中,对目标物六价铬进行选择性分离和富集,并且去除复杂的基质严重干扰。解决在实际检测工作中由于重金属元素含量太低,仪器达不到其灵敏度的要求。适用于企业生产的质量控制、流通领域的质量把关以及相关产品安全的监管控制。
Description
技术领域
本发明涉及环境化学和分析检测技术领域,具体是一种六价铬印迹材料的制备方法。
背景技术
铬在制造工业上有大量使用,含铬的合金可以增加金属的机械性能,如增加抗拉及坚硬度等,还可以改善金属的化学特性,如耐磨及耐腐蚀性等。此外,多种六价铬化合物广泛应用于制革、纺织品生产、印染、颜料以及镀铬等行业中,其他排放铬的途径包括燃油和燃煤、不锈钢焊接、制钢、水泥厂、工业油漆和涂料制造以及冷却塔等。
铬的化合物主要有三价铬和六价铬。Cr(III)的化合物较稳定,毒性较小,溶解度相对较弱。六价铬具有致突变性和致癌性,对皮肤有强烈的损伤作用。德国食品和消费品法要求流通市场中与人体皮肤接触的皮革制品不得含有六价铬,相应的检测方法检出限量为3 mg/kg。欧盟对于干燥、粉末状或柔软的玩具材料中六价铬限量低至0.02 mg/kg,液态的或粘性材料中六价铬限量为0.005 mg/kg,三价铬限量为9.4 mg/kg。
由于消费品、环境样品中六价铬含量较低,目前常用的检测方法有紫外-可见分光光度法、离子色谱法、液相色谱-电感耦合等离子发射-质谱法。常用的光谱和色谱法均需采用一定的前处理。传统的前处理技术如液液萃取和固液萃取等前处理技术,操作繁琐、耗时长、试剂需要量大、基质干扰大。本发明提供一种在检测六价铬时,将目标物高效快速分离富集的方法,解决在实际检测工作中由于重金属元素含量太低,仪器达不到其灵敏度的要求。适用于企业生产的质量控制、流通领域的质量把关以及相关产品安全的监管控制。
本研究以六价铬为分子模板,合成一种六价铬印迹材料,在分析测定六价铬前处理时对目标物进行选择性分离和富集,并且去除复杂基质的严重干扰。解决在实际检测工作中由于重金属元素含量太低,仪器达不到其灵敏度的要求。
发明内容
本发明的目的在于提供一种六价铬印迹材料的制备方法,该方法基质工艺简单、可重复利用、成本低、经济实用。制备的印迹材料能够用于环境样品和消费品中六价铬的分析测试过程中,对目标物六价铬进行选择性分离和富集,并且去除复杂的基质严重干扰。解决在实际检测工作中由于重金属元素含量太低,仪器达不到其灵敏度的要求。适用于企业生产的质量控制、流通领域的质量把关以及相关产品安全的监管控制。
本发明是通过以下技术方案解决上述技术问题的,一种六价铬印迹材料制备方法,其具体包括如下操作步骤:
(1)在醇类的水溶液(醇与水体积比为0.5: 1-1:1)中将0.01-0.05mol羧甲基纤维素钠(CMC)在超声作用下溶解,加入0.02-0.05mol 六价铬溶液,在室温下反应1.0h,形成CMC-Cr(VI)络合物。
(2)加入0.01-0.1mol含有N元素和乙烯基的化合物,然后通入氮气,滴加引发剂,在40℃下反应2.0h,形成CMC-Cr(VI)-N-乙烯基络合物。
(3)经步骤(2)反应后,反应体系在氮气氛围下,30℃-70℃中平衡2.0h。
(4)将合成的CMC-Cr(VI)-N-乙烯基络合物用去离子水洗涤数次,然后用酸化尿素(在0.5M盐酸中0.5%尿素)或酸化硫脲(在0.5M盐酸中0.5%硫脲)在磁力搅拌作用下洗涤24h,去除模板Cr(VI)离子。
(5)将去除模板Cr(VI)离子后的聚合物在30-70℃下真空干燥5-10h,得到所述六价铬印迹材料CMC- N-乙烯基聚合物,冷却后储存于4℃冰箱待用。使用前用研钵研磨,过分子筛,使用75-150µm聚合物。
步骤(1)的醇类为甲醇、乙醇、丁醇、异丙醇中的一种。
步骤(1)中的六价铬为市售六价铬标准溶液,浓度为1000ug/mL,使用前可根据需要进行逐级稀释。
步骤(2)中含有N元素和乙烯基的化合物为1-乙烯基咪唑、1-丙烯基咪唑、4-乙烯基咪唑、4-乙烯基吡啶中的一种或几种。引发剂二苯甲酮、苯甲酰甲酸甲酯、1-羟基环己基苯基甲酮、偶氮二异丁腈、偶氮二异庚腈、过硫酸钾、过硫酸铵中的一种。
步骤(4)中的酸化尿素的制备为0.5g尿素加入100g 0.5 M盐酸中;酸化硫脲的制备为0.5g硫脲加入100g 0.5 M盐酸中。
本发明的显著优点:
制备的印迹材料对目标离子Cr(VI)具有高度的选择性。当模板离子与聚合物单体接触时,两者通过共价键或非共价键的方式相结合形成多重作用位点,再加入交联剂通过聚合过程将这种作用记忆下来。反应完成后将模板离子洗脱出来,聚合物中就形成了与模板离子空间构型、结合位点完全匹配的三维空穴,这种特征空穴能专一地或高选择地识别模板离子。因为印迹聚合物对印迹离子具有“记忆”功能,所以对其具有高度的选择性。
附图说明
图1为实施例1制备的印迹材料在5000倍电镜扫描图;
图2为实施例2制备的印迹材料在5000倍电镜扫描图;
图3为实施例3制备的印迹材料在5000倍电镜扫描图;
图4为实施例1制备的印迹材料在洗脱模板离子Cr(VI)前(a)洗脱后(b)电子衍射X射线光谱图;
图5 为实施例1制备的印迹材料吸附Cr(VI)之后的电子衍射X射线光谱图。
具体实施方式
为了更好地对本发明进行阐述说明,本申请举了如下几个实施例。
实施例1:
(1)在乙醇水溶液(乙醇和水体积比为0.5: 1)中将0.02mol羧甲基纤维素钠(CMC)在超声作用下溶解,加入0.02mol 六价铬溶液(市售六价铬标准溶液,浓度为1000ug/mL),在室温下反应1.0h,形成CMC-Cr(VI)络合物。
(2)加入0.01mol 4-乙烯基吡啶,然后通入氮气,滴加引发剂偶氮二异庚腈。在40℃下反应2.0h,形成4-乙基吡啶-CMC-Cr(VI)络合物。
(3)反应后,在40℃中平衡2.0h,继续通氮气。
(4)将合成的4-乙基吡啶-CMC-Cr(VI)络合物用去离子水洗涤数次,然后用酸化硫脲(在0.5M盐酸中0.5%硫脲)在磁力搅拌作用下洗涤24h,去除模板Cr(VI)离子。
(5)将去除模板Cr(VI)离子后的聚合物在50℃下真空干燥10h,得到所述六价铬印迹材料4-乙基吡啶-CMC聚合物,冷却后储存于4℃冰箱待用。使用前用研钵研磨,过分子筛,使用75-150µm聚合物。
其中,酸化硫脲的制备为0.5g硫脲加入100g 0.5 M盐酸中。
所制备的印迹材料在5000倍电镜扫描图如图1所示。
实施例2:
(1)在丁醇水溶液(丁醇和水体积比为0.5: 1)中将0.04mol羧甲基纤维素钠(CMC)在超声作用下溶解,加入0.03mol 六价铬溶液(市售六价铬标准溶液,浓度为1000ug/mL),在室温下反应1.0h,形成CMC-Cr(VI)络合物。
(2)加入0.02mol 1-乙烯基咪唑,然后通入氮气,滴加引发剂偶氮二异庚腈。在40℃下反应2.0h,形成1-乙基咪唑-CMC-Cr(VI)络合物。
(3)反应后,在40℃中平衡2h,继续通氮气。
(4)将合成的1-乙基咪唑-CMC-Cr(VI)络合物用去离子水洗涤数次,然后用酸化硫脲(在0.5M盐酸中0.5%硫脲)在磁力搅拌作用下洗涤24h,去除模板Cr(VI)离子。
(5)将去除模板Cr(VI)离子后的聚合物在50℃下真空干燥10h,得到所述六价铬印迹材料1-乙基咪唑-CMC聚合物,冷却后储存于4℃冰箱待用。使用前用研钵研磨,过分子筛,使用75-150µm聚合物。
其中,酸化硫脲的制备为0.5g硫脲加入100g 0.5 M盐酸中。
所制备的印迹材料在5000倍电镜扫描图如图2所示。
实施例3:
(1)在异丙醇水溶液(异丙醇和水体积比为0.5: 1)中将0.03mol羧甲基纤维素钠(CMC)在超声作用下溶解,加入0.05mol 六价铬溶液(市售六价铬标准溶液,浓度为1000ug/mL),在室温下反应1.0h,形成CMC-Cr(VI)络合物。
(2)加入0.015mol 4-乙烯基咪唑,然后通入氮气,滴加引发剂偶氮二异丁腈。在40℃下反应2.0h,形成4-乙基咪唑-CMC-Cr(VI)络合物。
(3)反应后,在40℃中平衡2.0,继续通氮气。
(4)将合成的4-乙基咪唑-CMC-Cr(VI)络合物用去离子水洗涤数次,然后用酸化尿素(在0.5M盐酸中0.5%尿素)在磁力搅拌作用下洗涤24h,去除模板Cr(VI)离子。
(5)将去除模板Cr(VI)离子后的聚合物在40℃下真空干燥10h,得到所述六价铬印迹材料4-乙基咪唑-CMC聚合物,冷却后储存于4℃冰箱待用。使用前用研钵研磨,过分子筛,使用75-150µm聚合物。
其中,酸化尿素的制备为0.5g尿素加入100g 0.5 M盐酸中
所制备的印迹材料在5000倍电镜扫描图如图3所示。
图4为实施例1制备的印迹材料在洗脱模板离子Cr(VI)前后电子衍射X射线光谱图。
印迹材料的使用方法:将实施例1制备的印迹材料100mg加入到100mL200ug/mL Cr(VI)标准溶液中,并且用磁力搅拌器搅拌50min。采用二苯卡巴肼显色,紫外-可见分光光度计法在540nm测定吸附后六价铬溶液中六价铬含量。印迹材料吸附六价铬最大吸附量为16.8mg/g。在200mg/L六价铬标准溶液中加入50mg/LCr(III)和Ni(II)离子,吸附后,采用二苯卡巴肼显色,紫外-可见分光光度计法在540nm测定吸附后六价铬溶液中六价铬含量,采用电感耦合等离子法测定其中总铬和Ni含量。结果表明印迹材料吸附Cr(VI)的能力分别是Cr(III )和Ni(II)的12.7和10.9倍。
图5 为实施例1制备的印迹材料吸附Cr(VI)之后的电子衍射X射线光谱图。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (6)
1.一种六价铬印迹材料的制备方法,其特征在于,具体包括如下操作步骤:
(1)在醇类的水溶液中加入0.01-0.05mol羧甲基纤维素钠,并在超声作用下溶解,加入0.02-0.1mol 六价铬溶液,在室温下反应1.0h,形成CMC-Cr(VI)络合物;
(2)加入0.01-0.1mol含有N元素和乙烯基的化合物,然后通入氮气,滴加引发剂,在40℃下反应2.0h,形成CMC-Cr(VI)-N-乙烯基络合物;
(3)经步骤(2)反应后,反应体系在氮气氛围下,30℃-70℃中平衡2.0h;
(4)将合成的CMC-Cr(VI)-N-乙烯基络合物用去离子水洗涤数次,然后用酸化尿素或酸化硫脲在磁力搅拌作用下洗涤24h,去除模板Cr(VI)离子;
(5)将去除模板Cr(VI)离子后的聚合物在30-70℃下真空干燥5-10h,得到所述六价铬印迹材料,冷却后储存于4℃冰箱待用。
2.根据权利要求1所述的一种六价铬印迹材料的制备方法,其特征在于,步骤(1)中的醇类为甲醇、乙醇、丁醇、异丙醇中的一种。
3.根据权利要求1所述的一种六价铬印迹材料的制备方法,其特征在于,步骤(1)所述的醇类的水溶液中,醇类与水的体积比为0.5: 1-1:1。
4.根据权利要求1所述的一种六价铬印迹材料的制备方法,其特征在于,步骤(2)中含有N元素和乙烯基的化合物为1-乙烯基咪唑、1-丙烯基咪唑、4-乙烯基咪唑、4-乙烯基吡啶中的一种或几种。
5.根据权利要求1所述的一种六价铬印迹材料的制备方法,其特征在于,步骤(2)中引发剂为二苯甲酮、苯甲酰甲酸甲酯、1-羟基环己基苯基甲酮、偶氮二异丁腈、偶氮二异庚腈、过硫酸钾、过硫酸铵中的一种。
6.根据权利要求1所述的一种六价铬印迹材料的制备方法,其特征在于,步骤(4)中的酸化尿素的制备为0.5g尿素加入100g 0.5 M盐酸中;酸化硫脲的制备为0.5g硫脲加入100g0.5 M盐酸中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710794833.3A CN107446086B (zh) | 2017-09-06 | 2017-09-06 | 一种六价铬印迹材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710794833.3A CN107446086B (zh) | 2017-09-06 | 2017-09-06 | 一种六价铬印迹材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107446086A true CN107446086A (zh) | 2017-12-08 |
CN107446086B CN107446086B (zh) | 2020-05-08 |
Family
ID=60494990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710794833.3A Active CN107446086B (zh) | 2017-09-06 | 2017-09-06 | 一种六价铬印迹材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107446086B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109317121A (zh) * | 2018-10-31 | 2019-02-12 | 天津工业大学 | 一种定向萃取富集六价铬离子的离子印迹纤维及其制备方法 |
CN109351348A (zh) * | 2018-09-28 | 2019-02-19 | 昆明理工大学 | 一种以4-乙烯基吡啶为功能单体的六价铬离子印迹复合膜的制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050065282A1 (en) * | 2001-11-26 | 2005-03-24 | Henrik Ihre | Post-modification of a porous support |
US20080237133A1 (en) * | 2007-03-26 | 2008-10-02 | The Purolite Company | Macroporous copolymers with large pores |
CN103214500A (zh) * | 2013-03-18 | 2013-07-24 | 淮海工学院 | 用于制备重金属离子印迹聚合物的功能单体和制备方法 |
CN104945580A (zh) * | 2015-07-16 | 2015-09-30 | 江苏大学 | 一种Cr(VI)阴离子印迹材料的制备方法及其用途 |
CN105536743A (zh) * | 2016-02-29 | 2016-05-04 | 太原理工大学 | 一种反相乳液重金属离子印迹材料的制备及其应用 |
-
2017
- 2017-09-06 CN CN201710794833.3A patent/CN107446086B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050065282A1 (en) * | 2001-11-26 | 2005-03-24 | Henrik Ihre | Post-modification of a porous support |
US20080237133A1 (en) * | 2007-03-26 | 2008-10-02 | The Purolite Company | Macroporous copolymers with large pores |
CN103214500A (zh) * | 2013-03-18 | 2013-07-24 | 淮海工学院 | 用于制备重金属离子印迹聚合物的功能单体和制备方法 |
CN104945580A (zh) * | 2015-07-16 | 2015-09-30 | 江苏大学 | 一种Cr(VI)阴离子印迹材料的制备方法及其用途 |
CN105536743A (zh) * | 2016-02-29 | 2016-05-04 | 太原理工大学 | 一种反相乳液重金属离子印迹材料的制备及其应用 |
Non-Patent Citations (3)
Title |
---|
傅骏青等: "重金属离子印迹技术", 《化学进展》 * |
李积升等: "C(rⅥ)-离子印迹聚合物的合成研究", 《化学工程师》 * |
黄丹丹等: "铬(Ⅵ)离子印迹聚合物的研究进展", 《天津化工》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109351348A (zh) * | 2018-09-28 | 2019-02-19 | 昆明理工大学 | 一种以4-乙烯基吡啶为功能单体的六价铬离子印迹复合膜的制备方法及应用 |
CN109317121A (zh) * | 2018-10-31 | 2019-02-12 | 天津工业大学 | 一种定向萃取富集六价铬离子的离子印迹纤维及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107446086B (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ogden et al. | Application of chelating weak base resin Dowex M4195 to the recovery of uranium from mixed sulfate/chloride media | |
Çekiç et al. | Use of an o-aminobenzoic acid-functionalized XAD-4 copolymer resin for the separation and preconcentration of heavy metal (II) ions | |
Li et al. | Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel | |
Metilda et al. | Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI) | |
Zainol et al. | Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748 | |
Sadeghi et al. | Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of uranyl ions | |
Praveen et al. | Solid phase extractive preconcentration of uranium (VI) using quinoline-8-ol anchored chloromethylated polymeric resin beads | |
Tobiasz et al. | Improvement of copper FAAS determination conditions via preconcentration procedure with the use of salicylaldoxime complex trapped in polymer matrix | |
CN102716718B (zh) | 一种改性淀粉磁性纳米复合物及其制备方法和应用 | |
Venkatesh et al. | 2-{[1-(3, 4-Dihydroxyphenyl) methylidene] amino} benzoic acid immobilized Amberlite XAD-16 as metal extractant | |
CN107446086A (zh) | 一种六价铬印迹材料的制备方法 | |
Meesri et al. | Extraction and preconcentration of toxic metal ions from aqueous solution using benzothiazole-based chelating resins | |
Saçmaci et al. | Determination of Cr (III), Fe (III), Ni (II), Pb (II) and Zn (II) ions by FAAS in environmental samples after separation and preconcentration by solvent extraction using a triketone reagent | |
Tokalıoğlu et al. | Indirect speciation of Cr (III) and Cr (VI) in water samples by selective separation and preconcentration on a newly synthesized chelating resin | |
Hassanien et al. | A novel method for speciation of Cr (III) and Cr (VI) and individual determination using Duolite C20 modified with active hydrazone | |
Lee et al. | A chelating resin containing 1-(2-thiazolylazo)-2-naphthol as the functional group; synthesis and sorption behavior for trace metal ions | |
Tokalıoğlu et al. | Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples | |
Chuen-Ying et al. | Complexation reactions in a heterogeneous system | |
Islam et al. | A newly developed salicylanilide functionalized Amberlite XAD-16 chelating resin for use in preconcentration and determination of trace metal ions from environmental and biological samples | |
Wang et al. | Selective solid-phase extraction of trace copper ions in aqueous solution with a Cu (II)-imprinted interpenetrating polymer network gel prepared by ionic imprinted polymer (IIP) technique | |
Saxena et al. | Chromium speciation using flow-injection preconcentration on xylenol orange functionalized Amberlite XAD-16 and determination in industrial water samples by flame atomic absorption spectrometry | |
Sahana et al. | Pyridine appended l-methionine: A novel chelating resin for pH dependent Cr speciation with scanning electron microscopic evidence and monitoring of yeast mediated green bio-reduction of Cr (VI) to Cr (III) in environmental samples | |
Michalski et al. | Ion chromatography—An advantageous technique in soil analysis | |
Villaescusa et al. | Copper (II) and nickel (II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study | |
López et al. | Characterization of MIPA and DIPA aqueous solutions in relation to absorption, speciation and degradation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |