CN107441514A - 一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法 - Google Patents

一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法 Download PDF

Info

Publication number
CN107441514A
CN107441514A CN201710600033.3A CN201710600033A CN107441514A CN 107441514 A CN107441514 A CN 107441514A CN 201710600033 A CN201710600033 A CN 201710600033A CN 107441514 A CN107441514 A CN 107441514A
Authority
CN
China
Prior art keywords
metal ion
mnps
preparation
nonmagnetic metal
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710600033.3A
Other languages
English (en)
Inventor
郇伟伟
李洁
王俊龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN201710600033.3A priority Critical patent/CN107441514A/zh
Publication of CN107441514A publication Critical patent/CN107441514A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/025Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus inorganic Tc complexes or compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,以非磁性离子掺杂,制备掺杂纳米Fe3O4,以含肼甲酸盐作为非金属离子的掺杂源,采用固固掺杂法,以TMAH共沉淀法制备的纳米Fe3O4与非磁性金属离子的含肼甲酸盐复合物作为前驱体,固固反应,制备了非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒,依次氨基化、接枝,制备具有螯合功能的MNPs@SiO2‑NH‑DTPAA待标记物,再进行直接标记Tcm。本发明提出的制备方法,铁氧体的净磁化率高,掺杂后饱和磁化量增加幅度大,掺杂后的磁性纳米颗粒大小均匀,分散性良好,且制备的非磁性金属离子+掺杂MNPs可应用于磁靶向治疗。

Description

一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法
技术领域
本发明属于纳米Fe3O4制备技术领域,特别涉及一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法。
背景技术
纳米Fe3O4因优良的磁性能,在医学领域有着很好的应用前景,常被用作抗癌药物的载体,可以设计成磁性靶向给药系统;利用纳米Fe3O4在外加交变磁场的作用下能产生热量的特性,也可以配合靶向给药系统的同时进行热疗,从而多方面杀死癌细胞,达到治疗肿瘤的目的。
磁性是纳米磁性复合材料最基本特性。为了提高纳米Fe3O4的磁性能,一些科研工作者选择了在合成Fe3O4的过程中掺杂磁性过渡金属离子和稀土离子,以期能够进入晶胞间隙,达到预期目的。但由于目前制备的磁性基核,常常受到结晶性差的磁性核影响,掺杂后,晶体结构因掺杂离子半径和Fe3+半径很难匹配,使Fe3O4结晶度遭到破坏,易发生团聚,结果导致了磁粒的性能难以改善。S Chakrabartil提出用Co2+离子掺杂γ-Fe2O3至5%以内时,饱和磁化强度明显提高( Nanotec- hnology 2005, 16, 506-511.)。Teruoki Tago以氨水为沉淀剂,合成了SiO2包覆Fe3O4以及Co x Fe3-x O4(J.Am.Ceram.Soc., 2002, 85(9) 2188-94),并研究了Co/Fe比例对纳米磁粒的结晶性和磁性的影响,得出:当Co离子含量增加时,磁性能也增加;当Co/Fe比例为0.3和0.4时,磁性能达到最大。Weiwei Huan(J.Nanosci.Nanotech., 2012, 12(6), 4621-4634.)和Liang Xiaojuan(Nano, 2010, 5(4), 203-214)分别研究了稀土磁性离子和磁性钴离子对纳米Fe3O4的掺杂,发现,掺杂磁性离子导致了尖晶石结构膨胀,晶胞参数增加,使Fe3O4晶格缺陷增加,立方形结构减少;其最佳掺杂后饱和磁化量增加幅度仅为5%左右。
目前,对纳米Fe3O4的掺杂,很少考虑到用非磁性离子进行掺杂。在非磁性金属离子掺杂方面,仅Harrison等利用复合氢氧化物中介导方法制备了Al3+掺杂的纳米Fe3O4粒子,但合成的掺杂磁性纳米颗粒粒径较大,为100 nm。
基于此,我们提出一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法。
一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,包括以下步骤:
S1、纳米Fe3O4颗粒的制备:分别取氯化铁和氯化亚铁,超声溶于去离子水中,在通氮气、30℃和磁力搅拌条件下,均匀滴入盛有浓度为10%的TMAH溶液的三颈瓶中,持续反应2~4h后停止搅拌,升温至70~90℃陈化0.5~1.5h,然后冷却至室温进行强磁分离,并用去离子水洗涤产物3~4次,再经真空干燥、煅烧即得到纳米Fe3O4颗粒;
S2、含肼甲酸盐对纳米Fe3O4的固固掺杂:按照对Fe3O4纳米粒子掺杂量称取对应量的含肼甲酸盐,并保持金属离子的总量不变,在室温、N2保护下与S1步骤中制备的纳米Fe3O4颗粒在研钵中固固研磨反应2~4h,反应结束后,在N2保护下煅烧,煅烧后的产物即为非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒,完成固固掺杂;
S3、MNPs-NH-DTPAA的制备:称取非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒置于双极性表面活性剂水溶液中,超声至分散均匀后,将混合液转移到反应瓶中,在磁力搅拌下加入无水乙醇和氨水,并用恒压漏斗将无水乙醇和TEOS的混合液缓慢地滴加到反应瓶中,滴加完毕后,在30℃下反应10~14h,产物用去离子水洗涤,再经强磁分离、干燥即得掺杂Fe3O4@SiO2复合粒子,将掺杂Fe3O4@SiO2复合粒子,置于含有甲苯的三颈瓶中,超声30min,磁搅拌作用下,向三颈瓶中加入APTES,然后将三颈瓶置于油浴中,加热至123 ℃,搅拌回流反应10~14h,自然冷却至室温,用无水乙醇超声洗涤,再经强磁分离、真空干燥,即得MNPs-NH-DTPAA;
S4、MNPs@SiO2-NH-DTPAA待标记物的制备:将MNPs-NH-DTPAA分散到无水DMSO中,超声30min,然后加入DTPAA,室温下搅拌24h,强磁分离,并用无水乙醇和去离子水洗涤,再用无水乙醇润洗,然后真空干燥即得MNPs@SiO2-NH-DTPAA待标记物;
S5、MNPs@SiO2-NH-DTPAA待标记物对Tcm的标记:将的MNPs@SiO2- NH-DTPAA待标记物分散于含有生理盐水的西林瓶中,加入SnCl2稀释液和Na99TcmO4,振荡均匀,室温放置半小时,强磁分离,吸取上清液,再加入生理盐水,振荡均匀,强磁分离,反复加生理盐水、振荡、强磁分离操作3次,即得Tcm标记的非磁性金属离子掺杂纳米Fe3O4
优选的,所述S1步骤中氯化铁和氯化亚铁的物质的量比为2:1。
优选的,所述含肼甲酸盐为含肼甲酸镁和含肼甲酸铝中的任意一种。
优选的,所述含肼甲酸盐的制备包括以下步骤:称取Al2O3于烧杯中,加入HCl溶液,搅拌至溶解,然后浓缩使大部分HCl挥发,在加热条件下,依次滴加甲酸溶液和水合肼溶液,冷却至室温后,加入无水乙醇,过滤,滤渣用无水乙醇反复洗涤,再进行真空干燥,即得含肼甲酸盐。
优选的,所述HCl溶液中HCl和水的体积比为1:1,所述甲酸溶液和水合肼溶液的体积比为6:4,且甲酸溶液的体积百分比浓度为95%,水合肼溶液的体积百分比浓度为85%。
优选的,所述S2步骤中煅烧的温度为320~380℃,煅烧时间为3h,且升温时间控制为1~2h。
优选的,所述S5步骤中SnCl2稀释液的制备包括以下步骤:分别配制50 mg/mL HCl的SnCl2溶液、1 mg/mL的Vc水溶液,并取5μL SnCl2溶液用5mL Vc水溶液稀释,即得SnCl2稀释液,所述 HCl的浓度为1 mol/L。
本发明提出的制备方法中,以非磁性离子掺杂,制备掺杂纳米Fe3O4,提高铁氧体的净磁化率,以含肼甲酸盐作为非金属离子的掺杂源,采用固固掺杂法,以TMAH共沉淀法制备的纳米Fe3O4与非磁性金属离子的含肼甲酸盐复合物作为前驱体,固固反应,制备了非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒,且掺杂后饱和磁化量增加幅度大,可以达到82.3emu/g,掺杂后的磁性纳米颗粒的粒径小,且颗粒大小均匀,分散性良好,再利用非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒依次进行氨基化、接枝,制备具有螯合功能的MNPs@SiO2-NH- DTPAA待标记物,直接标记Tcm,标记率可达93.2%,且Tcm标记的非磁性金属离子掺杂纳米Fe3O4对VX2肿瘤的靶向实验结果显示本发明制备的非磁性金属离子+掺杂MNPs可应用于磁靶向治疗。
附图说明
图1为包覆前后的纳米Fe3O4室温下的磁滞回线;
图2为TMAH共沉淀法制备的纳米Fe3O4的TEM图;
图3为Al3+掺入Fe3O4的TEM图;
图4为Mg2+掺入Fe3O4的TEM图;
图5为制备纳米Fe3O4 经过固固掺杂后双表面活性剂处理后进行二氧化硅包覆的纳米粒子;
图6为左侧腿部荷VX2肿瘤的新西兰兔,耳缘静脉注射37 MBq标记化合物Al3+-MNPs@SiO2-DTPA-99Tcm后,1小时、2小时和第3小时始,磁靶向干预1小时后的SPECT分布图。
其中,a为Al-SS-dop-MNPs、b为Al-SS-dop-MNPs-NH2复合颗粒、c为TMAH共沉淀法MNPs@SiO2-NH2、d为溶剂热法MNPs@SiO2-NH2、E为Fe3O4@SiO2 @mSiO2-C16、f为Fe3O4@SiO2@mSiO2-C18
具体实施方式
下面结合具体实施例对本发明作进一步解说。
实施例一
本发明提出的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,具体为一种Tcm标记的Al3+掺杂纳米Fe3O4的制备方法,包括以下步骤:
S1:纳米Fe3O4颗粒的制备:分别取0.54 g FeCl3·H2O和0.20g FeCl2·4H2O,超声溶于10 mL煮沸的去离子水中,在通氮气、30℃和磁力搅拌条件下,均匀滴入盛有8 mL浓度为10%的TMAH溶液的三颈瓶中,持续反应3小时后停止搅拌,升温至80℃陈化1小时,然后,冷却至室温,强磁分离,用去离子水洗涤产物3~4次,然后60℃真空干燥3小时,再在氮气气氛、350℃下煅烧3小时,即得到纳米Fe3O4颗粒;
S2、含肼甲酸铝的制备:称取2.0g Al2O3于烧杯中,加入12 mL体积比为1:1的HCl,搅拌至溶解,然后浓缩使大部分HCl挥发,在加热条件下,依次滴加6 mL 含量为95 %的甲酸溶液,4 mL含量为85 %的水合肼溶液,冷却至室温后,加入无水乙醇,生成沉淀,并用无水乙醇反复洗涤沉淀3~4次,然后40℃真空干燥3小时,即得含肼甲酸铝;
S3、含肼甲酸铝对纳米Fe3O4的固固掺杂:按照对Fe3O4纳米粒子掺杂量称取对应量的含肼甲酸铝,并保持金属离子的总量不变,在室温、N2保护下与S1步骤中制备的纳米Fe3O4颗粒在研钵中固固研磨反应3h,反应结束后,在N2保护下350℃煅烧3h,且升温时间控制在1.5h,煅烧后的产物即为Al3+掺杂的强磁性Fe3O4纳米颗粒(Al-SS-dop-MNPs);
S4:MNPs-NH-DTPAA的制备:称取0.1 gS3步骤中制备的Al3+掺杂的强磁性Fe3O4纳米颗粒置于45 mL 25 g/L 双极性表面活性剂水溶液中,超声至Al3+掺杂的强磁性Fe3O4纳米颗粒分散均匀后,将混合液转移到250 mL圆底烧瓶中,在磁力搅拌下加入90 mL无水乙醇和5.1mL氨水,并用恒压漏斗将30 mL无水乙醇和0.3 mL TEOS的混合液缓慢地滴加到圆底烧瓶中,滴加完毕后,在30℃下反应12 h,产物用去离子水洗涤,强磁分离后在60℃下干燥3h,得Al3+掺杂的强磁性Fe3O4@SiO2复合粒子(Al-SS-dop-MNPs-NH2),称取0.10 gAl3+掺杂的强磁性Fe3O4@SiO2复合粒子,置于含有50 mL甲苯的三颈瓶中,超声30 min。磁搅拌作用下,向三颈瓶中加入1.00 mL APTES,然后将反应瓶置于油浴中,加热至123℃,搅拌回流反应12h后,自然冷却至室温,用无水乙醇超声洗涤4次,强磁分离后,产物在60℃条件下真空干燥,即得MNPs-NH-DTPAA;
S5:MNPs@SiO2-NH-DTPAA待标记物的制备,将50mgMNPs-NH- DTPAA,分散到15ml的无水DMSO中,超声30min,然后加入10mg的DTPAA,室温下搅拌反应24h,进行强磁分离,无水乙醇和去离子水洗涤各3次,再用无水乙醇润洗,放入真空干燥箱内12h,得MNPs@SiO2 -NH-DTPAA待标记物;
S6:MNPs@SiO2-NH-DTPAA待标记物对Tcm的标记,分别配制50 mg/mL HCl的SnCl2溶液、1mg /1 mL 的Vc水溶液,并取5μL SnCl2用5mL Vc溶液稀释得SnCl2稀释液,称取20 mg MNPs@SiO2- NH-DTPAA待标记物分散于含有2 mL生理盐水的西林瓶中,加入400 μLSnCl2稀释液,并加入100 μL Na99TcmO4后,振荡均匀,室温放置半小时,强磁分离,用注射器吸取上清液,再加入生理盐水,振荡均匀,强磁分离,反复加生理盐水、振荡、强磁分离操作3次,即得Tcm标记的非磁性金属离子掺杂纳米Fe3O4(Al3+-MNPs@SiO2-NH-DTPA-99Tcm)。
实施例二
本发明提出的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,具体为一种Tcm标记的Mg2+掺杂纳米Fe3O4的制备方法,包括以下步骤:其中S1、S5和S6步骤均同实施例一,不同的为S2、S3和S4步骤,
其中S2步骤的具体操作为:称取2.0g MgO于烧杯中,加入12 mL体积比为1:1的HCl,搅拌至溶解,然后浓缩使大部分HCl挥发,在加热条件下,依次滴加6 mL 含量为95 %的甲酸溶液,4 mL含量为85 %的水合肼溶液,冷却至室温后,加入无水乙醇,生成沉淀,并用无水乙醇反复洗涤沉淀3~4次,然后40℃真空干燥3小时,即得含肼甲酸镁;
S3步骤的具体操作为:按照对Fe3O4纳米粒子掺杂量称取对应量的含肼甲酸镁,并保持金属离子的总量不变,在室温、N2保护下与S1步骤中制备的纳米Fe3O4颗粒在研钵中固固研磨反应3h,反应结束后,在N2保护下350℃煅烧3h,且升温时间控制在1.5 h,煅烧后的产物即为Mg2+掺杂的强磁性Fe3O4纳米颗粒;
S4步骤的具体操作为:称取0.1 gS3步骤中制备的Mg2+掺杂的强磁性Fe3O4纳米颗粒置于45 mL 25 g/L 双极性表面活性剂水溶液中,超声至Mg2+掺杂的强磁性Fe3O4纳米颗粒分散均匀后,将混合液转移到250 mL圆底烧瓶中,在磁力搅拌下加入90 mL无水乙醇和5.1mL氨水,并用恒压漏斗将30 mL无水乙醇和0.3 mL TEOS的混合液缓慢地滴加到圆底烧瓶中,滴加完毕后,在30℃下反应12 h,产物用去离子水洗涤,强磁分离后在60℃下干燥3 h,得Mg2+掺杂的强磁性Fe3O4 @SiO2复合粒子,称取0.10 g Mg2+掺杂的强磁性Fe3O4@SiO2复合粒子,置于含有50 mL甲苯的三颈瓶中,超声30 min。磁搅拌作用下,向三颈瓶中加入1.00 mLAPTES,然后将反应瓶置于油浴中,加热至123℃,搅拌回流反应12 h后,自然冷却至室温,用无水乙醇超声洗涤4次,强磁分离后,产物在60℃条件下真空干燥,MNPs-NH-DTPAA。
(1)考察标记率
分别采用溶剂热法,TMAH共沉淀法和回流法制备了MNPs,然后分别采用Stöber法包覆SiO2,氨基化,进一步采用实施例一S5步骤制备相应的MNPs-DTPA纳米待标记物,分别得到Sol-MNPs-DTPAA、TMAH-MNPs-DTPAA、Fe3O4@SiO2@mSiO2-C18- DTPAA、Fe3O4@SiO2@mSiO2-C16-DTPAA,同时带有孔结构的HMNPs-C18、HMNPs-C16直接通过吸附标记9Tcm,命名为HMNPs-C18-Adsoption和HMNPs-C16-Adsoption;分别将上述标记化合物以及实施例一和实施例二标记的化合物配制成浓度为20 mg/ 2.5 mL的纳米分散液,用CAPINTEC CRC-15R型医用放射性核素活度计(美国CAPINTEC.INC)测定Na99TcmO4起始活度,针筒残留活度、上清液活度和用于洗涤的医用生理盐水活度,计算待标记化合物(MNPs-NH -DTPAA)对99Tcm的标记率,结果如下:
结果显示:实施例一对99Tcm标记率最高,为93.2%;其次分别为实施例一(90.2%)和TMAH-MNPs-DTPAA(83.9%)。
(2)参照图1,对上述待标记物磁性能分析,检测上述待标记化合物包覆前后的纳米Fe3O4室温下的磁滞回线,实验结果显示:Al-SS-dop-MNPs和Al-SS-dop-MNPs-NH2复合颗粒的饱和磁化强度分别为82.3 emu/g和65.7 emu/g,显然,Al2.79%-SS-dop-MNPs经过SiO2包覆、氨基化改性后,仍然具有较高的饱和磁化强度;TMAH共沉淀法和溶剂热法制备的MNPs,并经过SiO2包覆、氨基化改性后的饱和磁化强度分别为38.74和51.29 emu/g,均低于由Al3+掺杂MNPs所形成Al-SS-dop-MNPs-NH2复合颗粒的饱和磁化强度,回流法制备的HMNPs-C18磁性颗粒的磁滞回线,其饱和磁化强度为45.30 emu/g,也低于由Al3+掺杂MNPs所形成Al-SS-dop-MNPs-NH2复合颗粒的饱和磁化强度。
(3)参照图2-5,对制备过程中产生的纳米Fe3O4进行透射电镜分析,结果如下:共沉淀法制备的纳米Fe3O4粒径在20 nm左右,颗粒大小均匀,分散性良好;Al3+掺入后纳米Fe3O4的粒径增大至40~50 nm;Mg2+掺入后纳米Fe3O4颗粒呈立方形,粒径为30~80 nm;Al掺杂的纳米Fe3O4粒径二氧化硅包覆为100 nm左右,颗粒大小均匀,分散性良好。
(4)将实施例一制备的Tcm标记的非磁性金属离子掺杂纳米Fe3O4对VX2肿瘤的进行靶向实验:
A)对MNPs-NH-DTPA-99Tcm在生物体内自然分布:分别将37 MBq/10~20 mg 标记化合物Al3+-MNPs@SiO2-NH-DTPA-99Tcm经耳缘静脉注射两只健康雄性新西兰兔1~2小时,观察自然分布,用SPECT静态显像,并进行半定量区域分析计算。观察99Tcm标记的MNPs在动物体内的自然分布以及肾,肝,肺,膀胱对99Tcm标记的MNPs摄取,测定不同组织摄取99Tcm的放射性计数比。(注射MNPs-NH-DTPA-99Tcm后,给予新西兰实验兔注射3 %戊巴比妥1 mL,然后再注射0.5 mL肝素钠,0.5 mL生理盐水冲洗留置针,防止凝血)。
结果显示:耳缘静脉注射2h后肺内仅有少量的放射性浓聚,肝脏放射显影明显浓聚,脾脏显影,双肾及膀胱显影清晰。表明Al3+-MNPs@SiO2-DTPA-99Tcm纳米颗粒成功突破了肺部血液循环,主要通过泌尿系统排出体外,一部分放射性纳米颗粒标记物被肺肝脾等网状内皮系统(RES)吞噬。
B)MNPs-NH-DTPA-99Tcm对VX2肿瘤靶向实验及SPECT显像:取新鲜VX2肿瘤鱼肉样瘤块大小约1mm3大小移植于健康新西兰种兔左下肢,2-3周后生长成约1-2cm大小,用于磁靶向实验。将99Tcm标记的MNPs(37MBq/10mg)经兔耳缘静脉注射后1小时和2小时,分别进行SPECT静息显像;
实验结果显示:磁靶向干预下新西兰兔肝脏部位摄取磁性纳米颗粒的能力是非磁靶向的2.69倍。表明YC-11医用脉冲磁靶向仪器成功滞留了部分进入血液循环的Al3+-MNPs@SiO2-DTPA-99Tcm,磁靶向干预效果明显。
C)参照图6,用YMC-11医用脉冲磁场发生器在新西兰兔左下肢VX2肿瘤患处磁靶向干预一小时后(磁靶向参数:工作电压500 V;脉冲频率1.5Hz;磁强度683 mT),用SPECT进行静态显像,使用感兴趣区(ROI)技术进行半定量计算,观察肾,肝,肺,膀胱对99Tcm标记的MNPs摄取,计算左腿T(target)VX2肿瘤和右腿N(non-target)正常软组织处的放射性计数比例,评估靶向实验效果。
实验结果显示:左侧的肿瘤部位可见,MNPs纳米颗粒放射性浓聚。自然分布,第一小时T/N=2.2、第二小时T/N=1.6,也即T/N≥1.6,荷瘤部位放射性计数为未荷瘤部位放射性计数的1.6倍以上。表明VX2肿瘤组织能够主动摄取Al3+-MNPs@SiO2-DTPA-99Tcm;磁靶向干预1小时后,T/N=2.42,相比于未磁靶向干预的T/N值要高,表明,Al3+掺杂MNPs在磁靶向作用下,能够在荷瘤部位聚集,明显具有“磁聚焦”作用,表明强磁性Al3+掺杂MNPs可应用于磁靶向治疗中。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,包括以下步骤:
S1、纳米Fe3O4颗粒的制备:取氯化铁和氯化亚铁溶于去离子水中,均匀滴入盛有浓度为10%的TMAH溶液的三颈瓶中,反应2~4h,升温至70~90℃陈化0.5~1.5h,然后冷却至室温进行强磁分离,并用去离子水洗涤产物,再经真空干燥、煅烧即得到纳米Fe3O4颗粒;
S2、含肼甲酸盐对纳米Fe3O4的固固掺杂:在室温、N2保护下将含肼甲酸盐与S1步骤中制备的纳米Fe3O4颗粒在研钵中固固研磨反应2~4h,反应结束后,在N2保护下煅烧,即得非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒,完成固固掺杂;
S3、MNPs-NH-DTPAA的制备:称取非磁性金属离子掺杂的强磁性Fe3O4纳米颗粒置于双极性表面活性剂水溶液中,再将混合液转移到反应瓶中,在磁力搅拌下加入无水乙醇和氨水,并将无水乙醇和TEOS的混合液滴加到反应瓶中,滴加完毕后,在30℃反应10~14h,产物用去离子水洗涤,再经强磁分离、干燥即得掺杂Fe3O4@SiO2复合粒子,将掺杂Fe3O4@SiO2复合粒子置于含有甲苯的三颈瓶中,加入APTES并在123℃条件下搅拌回流10~14h,冷却至室温再用无水乙醇洗涤,再经强磁分离、真空干燥即得MNPs-NH-DTPAA;
S4、MNPs@SiO2-NH-DTPAA待标记物的制备:将MNPs-NH-DTPAA分散到无水DMSO中,再加入DTPAA,室温下搅拌24h,强磁分离,并用无水乙醇、去离子水洗涤,再用无水乙醇润洗,然后真空干燥即得MNPs@SiO2-NH-DTPAA待标记物;
S5、MNPs@SiO2-NH-DTPAA待标记物对Tcm的标记:将MNPs@SiO2- NH-DTPAA待标记物分散于含有生理盐水的西林瓶中,加入SnCl2稀释液和Na99TcmO4,振荡均匀,室温放置半小时,强磁分离,吸取上清液,再加入生理盐水,振荡均匀,强磁分离,反复加生理盐水、振荡、强磁分离操作3次,即得Tcm标记的非磁性金属离子掺杂纳米Fe3O4
2.根据权利要求1所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述S1步骤中氯化铁和氯化亚铁的物质的量比为2:1。
3.根据权利要求1所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述含肼甲酸盐为含肼甲酸镁和含肼甲酸铝中的任意一种。
4.根据权利要求1所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述含肼甲酸盐的制备包括以下步骤:称取Al2O3于烧杯中,加入HCl溶液,搅拌至溶解,然后浓缩使大部分HCl挥发,在加热条件下,依次滴加甲酸溶液和水合肼溶液,冷却至室温后,加入无水乙醇,过滤,滤渣用无水乙醇反复洗涤,再进行真空干燥,即得含肼甲酸盐。
5.根据权利要求3所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述HCl溶液中HCl和水的体积比为1:1,所述甲酸溶液和水合肼溶液的体积比为6:4,且甲酸溶液的体积百分比浓度为95%,水合肼溶液的体积百分比浓度为85%。
6.根据权利要求1所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述S2步骤中煅烧的温度为320~380℃,煅烧时间为3h,且升温时间控制为1~2h。
7.根据权利要求1所述的一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法,其特征在于,所述S5步骤中SnCl2稀释液的制备包括以下步骤:分别配制50 mg/mL HCl的SnCl2溶液、1 mg/mL的Vc水溶液,并取5μL SnCl2溶液用5mL Vc水溶液稀释,即得SnCl2稀释液,所述 HCl的浓度为1 mol/L。
CN201710600033.3A 2017-07-21 2017-07-21 一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法 Pending CN107441514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710600033.3A CN107441514A (zh) 2017-07-21 2017-07-21 一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710600033.3A CN107441514A (zh) 2017-07-21 2017-07-21 一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法

Publications (1)

Publication Number Publication Date
CN107441514A true CN107441514A (zh) 2017-12-08

Family

ID=60487919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710600033.3A Pending CN107441514A (zh) 2017-07-21 2017-07-21 一种Tcm标记的非磁性金属离子掺杂纳米Fe3O4的制备方法

Country Status (1)

Country Link
CN (1) CN107441514A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697303A (zh) * 2009-10-16 2010-04-21 上海师范大学 氨基功能化的水溶性四氧化三铁纳米磁性粒子的制备方法
CN101991866A (zh) * 2010-10-19 2011-03-30 东南大学 纳米γ-Fe2O3弛豫率标准物质及其制备方法
CN102747439A (zh) * 2011-04-21 2012-10-24 中国科学院合肥物质科学研究院 分散性纳米复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697303A (zh) * 2009-10-16 2010-04-21 上海师范大学 氨基功能化的水溶性四氧化三铁纳米磁性粒子的制备方法
CN101991866A (zh) * 2010-10-19 2011-03-30 东南大学 纳米γ-Fe2O3弛豫率标准物质及其制备方法
CN102747439A (zh) * 2011-04-21 2012-10-24 中国科学院合肥物质科学研究院 分散性纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郇伟伟: ""掺杂纳米Fe_3O_4标记~(99)Tc~m生物显像及负载丝裂霉素C的研究", 《中国博士学位论文全文数据库-工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Wei et al. Synthesis of Fe3O4 nanoparticles and their magnetic properties
Liu et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors
Chen et al. Multifunctional graphene oxide‐based triple stimuli‐responsive nanotheranostics
Zhang et al. Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging
Liu et al. Long-circulating Gd2O3: Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging
Wang et al. Fe3O4@ PVP@ DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers
Zhou et al. Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1-and T2-weighted MRI/CT/phosphorescence multimodality imaging
Shaterabadi et al. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles
Céspedes et al. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications
Liu et al. Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods
Liu et al. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes
Xia et al. Enhanced dual contrast agent, Co2+-doped NaYF4: Yb3+, Tm3+ nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging
Zhang et al. Magnetic nanoparticles with low Curie temperature and high heating efficiency for self-regulating temperature hyperthermia
Liu et al. Mn-complex modified NaDyF 4: Yb@ NaLuF 4: Yb, Er@ polydopamine core–shell nanocomposites for multifunctional imaging-guided photothermal therapy
Li et al. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging
Gao et al. Ellipsoidal magnetite nanoparticles: a new member of the magnetic-vortex nanoparticles family for efficient magnetic hyperthermia
CN102657881B (zh) 一种Fe3O4纳米磁共振造影剂材料的制备方法
JP2011126876A (ja) 磁性酸化鉄微粒子粉末、磁性粒子含有水分散体およびその製造方法
Wei et al. Iron-oxide-based twin nanoplates with strong T 2 relaxation shortening for contrast-enhanced magnetic resonance imaging
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
Chen et al. Multifunctional PVP-Ba2GdF7: Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy
WO2019018004A1 (en) Iron oxide nanoparticles doped with alkali metals or alkaline earth metals
CN103611172B (zh) 载纳米雄黄磁性白蛋白纳米球及制备方法
Vedernikova Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy
Zhu et al. Formation of iron oxide nanoparticle-loaded γ-polyglutamic acid nanogels for MR imaging of tumors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208