CN107434046B - 先进环境控制系统的能量流动 - Google Patents

先进环境控制系统的能量流动 Download PDF

Info

Publication number
CN107434046B
CN107434046B CN201710411519.2A CN201710411519A CN107434046B CN 107434046 B CN107434046 B CN 107434046B CN 201710411519 A CN201710411519 A CN 201710411519A CN 107434046 B CN107434046 B CN 107434046B
Authority
CN
China
Prior art keywords
turbine
medium
energy
compressor
compression device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710411519.2A
Other languages
English (en)
Other versions
CN107434046A (zh
Inventor
D.E.霍尔
L.J.布鲁诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of CN107434046A publication Critical patent/CN107434046A/zh
Application granted granted Critical
Publication of CN107434046B publication Critical patent/CN107434046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/02Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/023Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines the working-fluid being divided into several separate flows ; several separate fluid flows being united in a single flow; the machine or engine having provision for two or more different possible fluid flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/02Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being an unheated pressurised gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • F04D25/045Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0644Environmental Control Systems including electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0648Environmental Control Systems with energy recovery means, e.g. using turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • F05D2220/62Application making use of surplus or waste energy with energy recovery turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/606Bypassing the fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供了一种飞机。所述飞机包括压缩装置。所述压缩装置包括具有第一入口和第二入口的涡轮机。所述涡轮机通过使介质膨胀来提供能量。所述第一入口被构造成接收所述介质中的第一介质。所述第二入口被构造成接收所述介质中的第二介质。所述压缩装置包括压缩机和马达。所述压缩机在所述压缩装置的第一模式期间接收由所述第一介质和所述第二介质跨越所述涡轮机膨胀而产生的第一能量,在所述压缩装置的第二模式期间接收由所述第一介质跨越所述涡轮机膨胀而产生的第二能量,并且根据所述第一模式或所述第二模式压缩所述第二介质。所述马达将补充能量提供到所述压缩机。

Description

先进环境控制系统的能量流动
背景技术
一般来说,在巡航时对当代空气调节系统供以约30 psig至35 psig的压力。现今,航空航天工业的趋势是朝向更高效率的系统迈进。提高飞机效率的一种方法是完全消除引出空气,并且使用电力来压缩外部空气。第二种方法是使用较低的发动机压力。第三种方法是使用引出空气中的能量来压缩外部空气并且将所述外部空气带入机舱内。
发明内容
根据一个或多个实施方案,提供一种压缩装置。所述压缩装置包括:涡轮机,所述涡轮机包括第一入口和第二入口,并且被构造成通过使一种或多种介质膨胀来提供能量,其中所述第一入口被构造成接收所述一种或多种介质中的第一介质,并且其中所述第二入口被构造成接收所述一种或多种介质中的第二介质;压缩机,所述压缩机被构造成:在所述压缩装置的第一模式期间接收由所述第一介质和所述第二介质跨越所述涡轮机膨胀而产生的第一能量,在所述压缩装置的第二模式期间接收由所述第一介质跨越所述涡轮机膨胀而产生的第二能量,并且根据所述第一模式或所述第二模式压缩所述第二介质。
根据一个或多个实施方案或以上压缩装置,所述压缩装置可以包括连接所述涡轮机、所述压缩机和所述马达的轴。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括风扇,所述风扇被构造成在所述第一模式期间接收所述第一能量,并且在所述第二模式期间接收所述第二能量。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件包括风扇、第二涡轮机和轴。
根据一个或多个实施方案或以上压缩装置中的任一者,所述风扇可以通过所述第一介质跨越所述第二涡轮机膨胀而经由所述轴来驱动。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件包括由第二马达驱动的风扇。
根据一个或多个实施方案或以上压缩装置中的任一者,所述第一介质与所述第二介质可以在所述第一模式期间在所述涡轮机处混合。
根据一个或多个实施方案或以上压缩装置中的任一者,所述第一介质与所述第二介质可以在所述第二模式期间在所述涡轮机下游处混合。
根据一个或多个实施方案或以上压缩装置,所述第一介质可以是引出空气,并且所述第二介质可以是新鲜空气。
根据一个或多个实施方案或以上压缩装置中的任一者,飞行器的环境控制系统可以包括压缩装置。
根据一个或多个实施方案,提供一种压缩装置。所述压缩装置包括:第一涡轮机,所述第一涡轮机被构造成通过使第一介质膨胀来提供第一能量;第二涡轮机,所述第二涡轮机被构造成通过使第二介质膨胀来提供第二能量;以及压缩机,所述压缩机被构造成:在所述压缩装置的第一模式期间接收所述第一能量和所述第二能量,在所述压缩装置的第二模式期间接收所述第一能量,并且根据所述第一模式或所述第二模式压缩所述第二介质;以及马达,所述马达被构造成将补充能量提供到所述压缩机。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括风扇,所述风扇被构造成:在所述第一模式期间接收所述第一能量和所述第二能量,并且在所述第二模式期间接收所述第一能量。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述第一涡轮机、所述第二涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件可以包括风扇、第三涡轮机和轴。
根据一个或多个实施方案或以上压缩装置中的任一者,所述风扇可以通过所述第一介质跨越所述第二涡轮机膨胀而经由所述轴来驱动。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述第一涡轮机、所述第二涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件可以包括由第二马达驱动的风扇。
根据一个或多个实施方案,提供一种压缩装置。所述压缩装置包括:涡轮机,所述涡轮机包括:第一入口,所述第一入口被构造成接收第一介质与第二介质的混合物;以及第二入口,所述第二入口被构造成接收所述第一介质,其中所述涡轮机被构造成通过使所述混合物膨胀来提供第一能量,并且通过使所述第一介质膨胀来提供第二能量;压缩机,所述压缩机被构造成:在所述压缩装置的第一模式期间从所述涡轮机接收所述第一能量,在所述压缩装置的第二模式期间从所述第一介质接收所述第一能量,并且根据所述第一模式或所述第二模式压缩所述第二介质;以及马达,所述马达被构造成将补充能量提供到所述压缩机。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括风扇,所述风扇被构造成在所述第一模式期间接收所述第一能量,并且在所述第二模式期间接收所述第二能量。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件可以包括风扇、第二涡轮机和轴。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括风扇,所述风扇通过所述第一介质跨越所述第二涡轮机膨胀而经由所述轴来驱动。
根据一个或多个实施方案或以上压缩装置中的任一者,所述压缩装置可以包括:第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及独立于所述第一部件的第二部件,所述第二部件可以包括由第二马达驱动的风扇。
根据一个或多个实施方案,提供一种压缩装置。所述压缩装置包括:第一涡轮机,所述第一涡轮机被构造成接收第一介质并且使所述第一介质膨胀;第二涡轮机,所述第二涡轮机被构造成接收第二介质并且使所述第二介质膨胀;以及压缩机,所述压缩机被构造成:接收由所述第一涡轮机使所述第一介质膨胀而产生的第一能量,并且以所述第一能量压缩所述第二介质;风扇,所述风扇被构造成接收由所述第二涡轮机使所述第二介质膨胀而产生的第二能量;以及马达,所述马达被构造成将补充能量提供到所述压缩机。
通过本文实施方案的技术实现了其他特征和优点。其他实施方案在本文中得以详细描述,并且被认为是权利要求的一部分。为了更好地理解具有这些优点和特征的实施方案,参阅说明书和附图。
附图说明
在本说明书的开头处,在权利要求书中特别指出并且清楚地要求了标的。从以下结合附图进行的详细描述中,前述和其他特征以及其优点是显而易见的,其中:
图1是根据一个实施方案的环境控制系统的示意图;
图2是根据另一实施方案的环境控制系统的示意图;
图3是根据另一实施方案的环境控制系统的示意图;
图4是根据另一实施方案的环境控制系统的示意图;
图5是根据另一实施方案的环境控制系统的示意图;
图6是根据另一实施方案的环境控制系统的示意图;
图7是根据另一实施方案的环境控制系统的示意图;
图8是根据另一实施方案的环境控制系统的示意图;
图9是根据另一实施方案的环境控制系统的示意图;以及
图10是根据另一实施方案的环境控制系统的示意图。
具体实施方式
本文通过举例而非限制的方式参考各图呈现对所公开的装置和方法的一个或多个实施方案的详细描述。
本文的实施方案提供了一种用于飞行器的环境控制系统,所述环境控制系统将来自不同来源的介质混合并且使用不同能量源来为环境控制系统提供动力并且以高燃料燃烧效率提供机舱加压和冷却。介质通常可以是空气,而其他示例包括气体、液体、流体化固体或浆体。
转到图1,根据非限制性实施方案(即,系统100)描绘环境控制系统的示意图,因为该系统100可以安装在飞行器上。所述飞行器示例并不意在是限制性的,因为可以考虑替代实施方案
如图1所示,系统100可以从入口101接收第一介质F1,并且提供第一介质F1的调节形式,如细实线箭头所指示,所述第一介质F1的调节形式最终是提供到体积102的混合介质(本文所述)的一部分。鉴于以上飞行器实施方案,第一介质F1可以是引出空气,所述引出空气是供应到飞行器的发动机或辅助动力单元或从所述发动机或辅助动力单元源起(“引出”)的加压空气。注意,引出空气的温度、湿度和压力可以取决于发动机的压缩机级和每分钟转数而广泛变化。通常,本文所述的引出空气是高压空气。体积102可以在飞行器机舱或组合式飞行驾驶台与飞行器机舱内保持加压空气。通常,本文所述的加压空气处于为飞行器上的人造成安全且舒适的环境的压力。
系统100可以从入口103接收第二介质F2,并且提供第二介质F2的调节形式,如点线箭头所示,所述第二介质F2的调节形式最终是提供到体积102的混合介质的一部分。第二介质F2可以是新鲜空气,所述新鲜空气可以是既定进入容积102的外部空气。外部空气可以由一个或多个舀取机构(例如冲击铲或冲洗铲)获得。因此,入口103可以认为是新鲜空气入口或外部入口。通常,本文所述的新鲜空气处于与高度相关的飞行器外部的环境压力。
系统100可以进一步从体积102接收第三介质F3,如点划线箭头所示。第三介质F3可以是机舱排放空气,所述机舱排放空气可以是离开体积102并且被排出/排放到舱外的空气。举例来说,机舱排放空气可以供应到例如出口104的目的地。出口104的示例可以包括但不限于冲压回路(排到舱外)和/或外流阀(排到舱外)。
根据非限制性实施方案,系统100可以从机舱排放空气执行或提取功。以此方式,体积的加压空气可以由系统100利用以实现在不同高度所需的某些操作。例如,系统100可以提供第三介质F3的调节形式作为提供到体积102和/或其他系统(例如,飞机机舱、组合式飞行驾驶台与飞行器机舱、机舱压力控制系统)的混合介质的一部分。在非限制性实施方案中,加压空气可以重新供应到体积102。此重新供应的加压空气可以被称为再循环空气(例如,在体积102内再循环的空气)。
因此,基于操作模式,系统100可以在系统100内的不同混合点处混合第一介质F1、第二介质F2和/或第三介质F3,以产生混合介质,如由粗实线箭头所指示。混合介质可以是满足航空组织设定的新鲜空气要求的混合空气。系统100示出了混合点M1和M2,所述混合点不是限制性的。
系统100可以包括冲压回路。冲压回路包括围封一个或多个换热器的壳105。壳105可以接收和引导介质(例如本文所述的冲压空气)穿过系统100。一个或多个换热器是实现从一种介质到另一种介质的有效传热所建的装置。换热器的示例包括双管式换热器、壳管式换热器、板式换热器、板壳式换热器、绝热轮式换热器、板翅式换热器、垫板式(pillowplate)换热器和流体换热器。
由壳105围封的一个或多个换热器可以称为柱塞式换热器。柱塞式换热器接收冲压空气,所述冲压空气可以是被迫穿过壳105的外部空气,作为散热器冷却引出空气(例如,第一介质F1)和/或新鲜空气(例如,第二介质F2)。如图1所示,壳105包括主换热器106和次换热器107。在非限制性实施方案中,机舱排放空气的排气可以通过冲压回路的壳105来释放,并结合或替代冲压空气而使用。
而且,如图1所示,系统可以包括外流式换热器108。在非限制性实施方案中,机舱排放空气的排气(例如,第三介质F3)可以通过外流阀(又名外流控制阀和推力恢复外流阀)而释放。举例来说,当来自外流式换热器108的第三介质F3联接到外流阀时,外流式换热器108增大第三介质F3中的能量,这增大外流阀恢复的推力。注意,在高高度处在舱外与入口101、体积102和入口103中的一个之间的压降可以使对应介质被拉动穿过系统100的部件。
系统100可以包括压缩装置109。压缩装置109可以包括压缩机112、涡轮机113、风扇116、马达117和轴118。
压缩装置109是包括用于对介质执行热力学功(例如,通过升高和/或降低压力及通过升高和/或降低温度来提取第一介质F1、第二介质F2和/或第三介质F3或对介质起作用)的部件的机械装置。压缩装置109的示例包括空气循环机、三轮空气循环机、四轮机空气循环机等。
压缩机112是升高介质的压力的机械装置,并且可以由另一机械装置(例如,马达或介质,经由涡轮机)来驱动。压缩机类型的示例包括离心式、对角流或混流式、轴流式、往复式、离子液体活塞式、旋转螺杆式、旋转叶片式、涡旋式、膜片式、气泡式等。如图1所示,压缩机112可以从入口103接收第二介质F2并且对所述第二介质F2进行加压。
涡轮机113是使介质膨胀并且从介质提取功(也称为提取能量)的机械装置。在压缩装置109中,涡轮机经由轴118驱动压缩机112和风扇116。涡轮机113可以是双流道涡轮机,其包括多个入口气体流动路径,例如内部流动路径和外部流动路径,以便能够在涡轮机的出口处混合交替介质流。内部流动路径可以是第一直径,并且外部流动路径可以是第二直径。在非限制性实施方案中,涡轮机113可以包括被构造成加速第一介质进入涡轮机叶轮的第一喷嘴,并且第二喷嘴被构造成加速第二介质进入涡轮机叶轮。涡轮机叶轮可以被构造成具有被构造成从第一喷嘴接收第一介质的第一气体路径和被构造成从第二喷嘴接收第二介质的第二气体路径。
风扇116 (例如,如图1所示的冲压空气风扇)是机械装置,其可以在换热器106和107的另一边在可变冷却下经由推拉法强迫介质(例如,冲压空气)穿过壳105以控制温度。
马达117可以向涡轮机113提供动力辅助,涡轮机113又基于系统的操作模式(如本文所述)将辅助能量提供到压缩机。马达317可以被构造成接收电力,所述电力使得马达能够经由轴118将辅助能量提供到压缩机112和/或风扇119。
系统100还包括脱水机151、冷凝器162和脱水机164。脱水机151和脱水机164是执行从介质将水取出的过程的机械装置。冷凝器160是特定类型的换热器(另一示例包括再热器)。在非限制性实施方案中,冷凝器和/或脱水机可以组合成高压水分离器,其在环境控制系统(例如,主换热器106的下游)内以最高压力去除湿气。低压水分离器在环境控制系统内以最低压力,例如在涡轮机排放压力下去除湿气(例如离开涡轮机113的混合空气)。
系统100的元件经由阀、管、管道等而连接。阀(例如,流量调节装置或质量流量阀)是通过打开、闭合或部分地阻塞在系统100的管、管道等内的各种通道来调节、导引和/或控制介质流的装置。可以由致动器来操作阀,使得可将系统100任何部分中的介质的流速调节到所期望的值。例如,阀V1控制来自次换热器107的第二介质F2流是否根据系统100的模式而绕过冷凝器162。注意,系统100的部件与元件的组合可以称为空气调节组件(pack)或组件。所述组件可以存在于入口101、体积102、入口103、体积104与壳105的排气之间。
现在将关于飞行器描述图1的系统100的操作实施方案。系统100可以被称为先进气动系统,其根据这些操作实施方案将新鲜空气(例如,第二介质F2)与引出空气(例如,第一介质F1)混合以产生混合空气(例如,混合介质)。(双流道)涡轮机113、压缩机112和风扇116可以从引出空气、机舱排放空气(例如,第三介质F3)和新鲜空气接收能量。操作实施方案可以被描述为模式或操作模式。可以用于地面和/或低空飞行条件(例如地面怠速、出租车、起飞和保持条件)的第一模式是飞行器的低空操作。可以用于高空飞行条件(例如高空巡航、爬升和下降飞行条件)的第二模式是飞行器的高空操作。
当系统100在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机113从引出空气接收能量以压缩新鲜空气。压缩新鲜空气的动作将能量添加到新鲜空气,并且所述能量也用于以自举效应驱动压缩机112和风扇116。
举例来说,在第一模式中,来自发动机或辅助动力单元(例如,入口101)的高压高温引出空气进入主换热器106。主换热器106将高压高温引出空气冷却到接近环境温度,以产生冷高压引出空气。冷高压引出空气进入冷凝器162,在那里冷却(并除湿)以产生冷高压引出空气。注意,由冷凝器162使用的散热器可以是从压缩装置109的涡轮机113排出的混合空气。冷高压引出空气流过脱水机164,在那里可以去除湿气以产生冷干高压引出空气。注意,冷凝器162与脱水机164的组合可以被认为是高压脱水机,因为由冷凝器162接收的引出空气处于系统100中的最高压力。冷干高压引出空气进入涡轮机113。冷干高压引出空气经由第一喷嘴进入涡轮机113,在那里它膨胀并且被进行功提取。
由涡轮机113提取的功驱动用于压缩新鲜空气的压缩机112并且驱动用于使冲压空气移动穿过冲压空气换热器(例如,主换热器106和次换热器107)的风扇116。压缩新鲜空气的动作加热(并且压缩)新鲜空气以产生处于中压的压缩新鲜空气(即中压新鲜空气)。中压新鲜空气进入外流式换热器108,并且由机舱排放空气冷却以产生冷却的中压新鲜空气。冷却的中压新鲜空气进入次换热器107,在那里将其进一步冷却到接近环境温度以产生冷加压新鲜空气。然后,冷加压新鲜空气进入脱水机151,在那里去除冷加压新鲜空气中的任何游离湿气,以产生干冷加压新鲜空气。然后,这种干冷加压新鲜空气被阀V1引导到涡轮机113。干冷加压新鲜空气经由第二喷嘴进入涡轮机113,在那里它膨胀并且被进行功提取。
两个空气流(即,来自脱水机151的新鲜空气和来自脱水机164的引出空气)在涡轮机113处(例如,如图所示在混合点M1处)混合以产生混合空气。混合空气离开涡轮机113并且进入冷凝器162 (以冷却离开冷凝器162中的主换热器106的冷高压引出空气)。然后,发送混合空气以调节体积102。
当系统100在第二模式(飞行器的高空操作)中操作时,系统100可以按与低空操作类似的方式操作。举例来说,压缩机112经由涡轮机113从引出空气接收能量以压缩新鲜空气。压缩新鲜空气的动作将能量添加到新鲜空气。然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还接收来自马达117的能量,所述能量用于增大在压缩机112中压缩的新鲜空气的量。另外,离开脱水机151的干冷加压新鲜空气也被阀V1引导到混合点M2,以使得新鲜空气在涡轮机113的下游(而不是在其处)混合。另外,在第二模式中,可以通过将引出空气与新鲜空气混合而满足新鲜空气要求,同时引出空气的量可以取决于高度而减少40%到75%。以此方式,系统100提供从40%到75%范围内的引出空气减少,以相对于发动机燃料燃烧提供比当代飞机空气系统更高的效率。
现在转到图2和3,根据非限制性实施方案,以上系统的变型被示出为系统200和300。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统200和300类似的部件,且不重新介绍这些部件。注意,在这些系统200和300中,压缩装置109划分成多个部件,以使得风扇116可以位于第二轴上并且由不同于涡轮机113的机构驱动。
现在转到图2,示出系统200。系统200的替代和/或额外部件包括压缩装置209,所述压缩装置包括部件210和部件216。部件210包括位于同一轴118上的压缩机112、涡轮机113和马达117。部件216包括涡轮机217、轴218和风扇219。部件216的涡轮机217被构造成从入口101接收第一介质F1.2流(例如,引出空气),以使得第一介质F1.2流的能量可以由涡轮机217提取,并且经由轴218驱动风扇219。
当系统200在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机113从第一介质F1的第一流接收能量以压缩第二介质F2 (例如,新鲜空气)。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇219从通过涡轮机217的第一介质F1.2的第二流接收能量。注意,在第一模式期间在入口101与涡轮机215的排气之间的压降可以使得第一介质F1.2的第二流被拉动穿过系统200的涡轮机。
当系统200在第二模式(飞行器的高空操作)下操作时,压缩机112经由涡轮机113从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2;然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还从马达117接收能量,所述能量用于增大在压缩机112中压缩的第二介质F2的量。
现在转到图3,示出系统300。系统300的替代和/或额外部件包括压缩装置309,所述压缩装置包括部件210和部件316。部件316包括马达317、轴318和风扇319。部件316的马达317可以被构造成接收电力,所述电力使得马达316能够经由轴318驱动风扇319。
当系统300在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机113从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇319由马达317驱动。
当系统300在第二模式(飞行器的高空操作)下操作时,压缩机112经由涡轮机113从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2;然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还经由马达117从第三介质F3接收能量,所述能量用于增大在压缩机112中压缩的第二介质F2的量。
现在转到图4、5和6,根据非限制性实施方案,以上系统的变型被示出为系统400、500和600。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统400、500和600类似的部件,且不重新介绍这些部件。
参考图4,示出系统400。系统400的替代和/或额外部件包括另外包括涡轮机413和415以及混合点M3的压缩装置409。双用途涡轮机413和415、压缩机112和风扇116可以从第一介质F1 (例如,引出空气)和第二介质F2 (例如,新鲜空气)接收能量。
当系统400在第一模式下操作(飞行器的低空操作)时,压缩机112和风扇116经由涡轮机415从引出空气接收能量,并且经由涡轮机413从新鲜空气接收能量。由压缩机112接收的能量用于压缩新鲜空气。压缩新鲜空气的动作将能量添加到新鲜空气,并且所述能量也用于以自举效应驱动压缩机112和风扇116。
举例来说,在第一模式中,来自发动机或辅助动力单元(例如,入口101)的高压高温引出空气进入主换热器106。主换热器106将高压高温引出空气冷却到接近环境温度,以产生冷高压引出空气。冷高压引出空气进入冷凝器162,在那里冷却(并除湿)以产生冷高压引出空气。注意,由冷凝器162使用的散热器可以是从压缩装置109排出的混合空气。冷高压引出空气流过脱水机164,在那里可以去除湿气以产生冷干高压引出空气。注意,冷凝器162与脱水机164的组合可以被认为是高压脱水机,因为由冷凝器162接收的引出空气处于系统100中的最高压力。冷干高压引出空气进入涡轮机415。冷干高压引出空气进入涡轮机415,在那里它膨胀并且被进行功提取。
由涡轮机415提取的功驱动用于压缩新鲜空气的压缩机112并且驱动用于使冲压空气移动穿过冲压空气换热器(例如,主换热器106和次换热器107)的风扇116。压缩新鲜空气的动作加热(并且压缩)新鲜空气以产生处于中压的压缩新鲜空气(即中压新鲜空气)。中压新鲜空气进入外流式换热器108,并且由机舱排放空气(例如,第三介质F3)冷却以产生冷却的中压新鲜空气。冷却的中压新鲜空气进入次换热器107,在那里将其进一步冷却到接近环境温度以产生冷加压新鲜空气。然后,冷加压新鲜空气进入脱水机151,在那里去除冷加压新鲜空气中的任何游离湿气,以产生干冷加压新鲜空气。然后,这种干冷加压新鲜空气被阀V1引导到涡轮机413。干冷加压新鲜空气进入涡轮机413,在那里它膨胀并且被进行功提取。
两个空气流(即,来自涡轮机413的新鲜空气和来自涡轮机415的引出空气)混合以产生混合空气。混合可以在涡轮机415处(例如,如图所示在混合点M3处)进行。混合空气进入冷凝器162 (以冷却离开冷凝器162中的主换热器106的冷高压引出空气)。然后,发送混合空气以调节体积102。
当系统400在第二模式下操作(飞行器的高空作业)时,系统400可以按与低空操作类似的方式操作,但是离开脱水器151的干冷加压新鲜空气由阀V1引导到混合点M2。即,新鲜空气在冷凝器162和/或涡轮机415的下游,而不是在其处混合。另外,在第二模式中,可以通过将引出空气与新鲜空气混合而满足新鲜空气要求,同时引出空气的量可以取决于高度而减少40%到75%。以此方式,系统100提供从40%到75%范围内的引出空气减少,以相对于发动机燃料燃烧提供比当代飞机空气系统更高的效率。注意,在第二模式中,压缩机112和风扇116从引出空气接收能量。压缩新鲜空气的动作将能量添加到新鲜空气。
现在转到图5和6,根据非限制性实施方案,以上系统的变型被示出为系统500和600。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统500和600类似的部件,且不重新介绍这些部件。注意,在这些系统500和600中,压缩装置409划分成多个部件,以使得风扇116可以位于第二轴上并且由不同于涡轮机415和413的机构驱动。
参考图5,示出系统500。系统500的替代和/或额外部件包括压缩装置509,所述压缩装置包括部件510和部件216。部件510包括位于同一轴118上的压缩机112、涡轮机413和涡轮机415。部件216包括涡轮机217、轴218和风扇219。部件216的涡轮机217被构造成从入口101接收第一介质F1.2流(例如,引出空气),以使得第一介质F1.2流的能量可以由涡轮机217提取,并且经由轴218驱动风扇219。
当系统500在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机415从第一介质F1的第一流接收能量,并且经由涡轮机413从第二介质F2 (例如,新鲜空气)接收能量。由压缩机112接收的能量用于压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇219从通过涡轮机217的第一介质F1.2的第二流接收能量。注意,在第一模式期间在入口101与涡轮机215的排气之间的压降可以使得第一介质F1.2的第二流被拉动穿过系统500的涡轮机。
当系统500在第二模式(飞行器的高空操作)下操作时,压缩机112经由涡轮机415从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2。
现在转到图6,示出系统600。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统600类似的部件,且不重新介绍这些部件。系统600的替代和/或额外部件包括压缩装置609,所述压缩装置包括部件510和部件316。部件510包括在同一轴118上的压缩机112、涡轮机413和涡轮机415。部件316包括马达317、轴318和风扇319。部件316的马达317可以被构造成接收电力,所述电力使得马达316能够经由轴318驱动风扇319。
当系统600在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机415从第一介质F1的第一流接收能量,并且经由涡轮机413从第二介质F2 (例如,新鲜空气)接收能量。由压缩机112接收的能量用于压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇319由马达317驱动。
当系统600在第二模式(飞行器的高空操作)下操作时,压缩机112经由涡轮机415从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2。
现在转到图7、8和9,根据非限制性实施方案,以上系统的变型被示出为系统700、800和900。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统700、800和900类似的部件,且不重新介绍这些部件。
关于图7的系统700,系统700的替代和/或额外部件包括压缩装置709,所述压缩装置包括涡轮机713以及混合点M7和阀V7。注意,混合点M7在换热器106和107的下游以及涡轮机713的上游。次换热器107的排气可以受阀V7控制,使得流可以被引导到体积102 (混合点M2)或涡轮机713 (经由混合点M7)。
当系统700在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机713从混合空气接收能量以压缩新鲜空气。压缩新鲜空气的动作将能量添加到新鲜空气,并且所述能量也用于以自举效应驱动压缩机112和风扇116。
举例来说,在第一模式中,来自发动机或辅助动力单元(例如,入口101)的高压高温引出空气进入主换热器106。主换热器106将高压高温引出空气冷却到接近环境温度,以产生冷高压引出空气。冷高压引出空气进入冷凝器162,在那里冷却(并除湿)以产生冷高压引出空气。注意,由冷凝器162使用的散热器可以是从压缩装置109的涡轮机713排出的混合空气。冷高压引出空气流过脱水机164,在那里可以去除湿气以产生冷干高压引出空气。注意,冷凝器162与脱水机164的组合可以被认为是高压脱水机,因为由冷凝器162接收的引出空气处于系统700中的最高压力。冷干高压引出空气与脱水机151的排气混合以产生混合空气。所述混合空气进入涡轮机713,在那里它膨胀并且被进行功提取。
由涡轮机713提取的功驱动用于压缩新鲜空气的压缩机112并且驱动用于使冲压空气移动穿过冲压空气换热器(例如,主换热器106和次换热器107)的风扇116。压缩新鲜空气的动作加热(并且压缩)新鲜空气以产生处于与引出气体接近相同的压力的压缩新鲜空气。加压新鲜空气进入外流式换热器108,并且由机舱排放空气冷却以产生冷却的加压新鲜空气。冷却的加压新鲜空气进入次换热器107,在那里将其进一步冷却到接近环境温度以产生冷加压新鲜空气。然后,冷加压新鲜空气被阀V7引导到脱水机151,在那里去除冷加压新鲜空气中的任何游离湿气,以产生干冷加压新鲜空气。此干冷加压新鲜空气与脱水机164的排气混合以产生混合空气。所述混合空气进入涡轮机713,在那里它膨胀并且被进行功提取。
两个空气流(即,来自脱水机151的新鲜空气和来自脱水机164的引出空气)在涡轮机713上游处(例如,如图所示在混合点M7处)混合以产生混合空气。混合空气离开涡轮机713并且进入冷凝器162 (以冷却离开冷凝器162中的主换热器106的冷高压引出空气)。然后,发送混合空气以调节体积102。
当系统700在第二模式(飞行器的高空操作)中操作时,系统700可以按与低空操作类似的方式操作。举例来说,压缩机112经由涡轮机713从引出空气接收能量以压缩新鲜空气。压缩新鲜空气的动作将能量添加到新鲜空气。然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还经由马达117接收能量,所述能量用于增大在压缩机112中压缩的新鲜空气的量。另外,离开脱水机151的干冷加压新鲜空气也被阀V7引导到混合点M2,以使得新鲜空气在涡轮机713的下游(而不是在其处)混合。另外,在第二模式中,可以通过将引出空气与新鲜空气混合而满足新鲜空气要求,同时引出空气的量可以取决于高度而减少40%到75%。以此方式,系统100提供从40%到75%范围内的引出空气减少,以相对于发动机燃料燃烧提供比当代飞机空气系统更高的效率。
现在转到图8和9,根据非限制性实施方案,以上系统的变型被示出为系统800和900。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统800和900类似的部件,且不重新介绍这些部件。注意,在这些系统800和900中,压缩装置809划分成多个部件,以使得风扇116可以位于第二轴上并且由不同于压缩机112的机构驱动。
现在转到图8,示出系统800。系统800的替代和/或额外部件包括压缩装置809,所述压缩装置包括部件810和部件216。部件810包括位于同一轴118上的压缩机112、涡轮机813和马达117。部件216包括涡轮机217、轴218和风扇219。部件216的涡轮机217被构造成从入口101接收第一介质F1.2流(例如,引出空气),以使得第一介质F1.2流的能量可以由涡轮机217提取,并且经由轴218驱动风扇219。
当系统800在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机813中的混合空气接收能量以压缩第二介质F2(例如,新鲜空气)。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇219从通过涡轮机217的第一介质F1.2的第二流接收能量。注意,在第一模式期间在入口101与涡轮机215的排气之间的压降可以使得第一介质F1.2的第二流被拉动穿过系统800的涡轮机。
当系统800在第二模式下操作(飞行器的高空操作)时,压缩机112经由涡轮机813从混合接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2;然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还从马达117接收能量,所述能量用于增大在压缩机112中压缩的第二介质F2的量。
现在转到图9,示出系统900。系统900的替代和/或额外部件包括压缩装置909,所述压缩装置包括部件810和部件316。部件810包括在同一轴118上的压缩机112、涡轮机813和马达117。部件316包括马达317、轴318和风扇319。部件316的马达317可以被构造成接收电力,所述电力使得马达316能够经由轴318驱动风扇319。
当系统900在第一模式下操作(飞行器的低空操作)时,压缩机112经由涡轮机813从混合接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量也用于以自举效应驱动压缩机112。风扇319由马达317驱动。
当系统900在第二模式(飞行器的高空操作)下操作时,压缩机112经由涡轮机813从第一介质F1的第一流接收能量以压缩第二介质F2。压缩第二介质F2的动作将能量添加到第二介质F2;然而,此能量不足以进一步驱动压缩机112。然后,压缩机112还经由马达117接收能量,所述能量用于增大在压缩机112中压缩的第二介质F2的量。
现在转到图10,根据非限制性实施方案,以上系统的变型被示出为系统1000。为便于解释,已通过使用相同识别符来重新使用以上系统的与系统1000类似的部件,且不重新介绍这些部件。系统1000的替代和/或额外部件包括压缩装置1009、部件210 (包括在同一轴118上的压缩机112、涡轮机113和马达117)和部件1016 (涡轮机1017、轴1018和风扇1019。通常,压缩机112可以经由涡轮机113和马达117从第一介质F1接收能量,并且风扇1019可以从第二介质F2接收能量。可以利用阀V10来根据模式绕过叶尖涡轮机1017。
在低空操作中,系统1000中的压缩机从第一介质F1接收能量。压缩第二介质F2的动作将能量添加到第二介质F2,并且所述能量用于驱动风扇。当系统1000在第一模式下操作(飞行器的低空操作)时,压缩机112从第一介质F1接收能量。涡轮机1017从第二介质F2提取能量,并且所述能量用于驱动风扇1019。
当系统1000在第二模式下操作(飞行器的高空操作)时,压缩机112从第一介质F1接收能量。压缩第二介质F2的动作将能量添加到第二介质F2,但不足以进一步驱动风扇1019。压缩机112还可以从马达117接收能量,所述能量用于增大在压缩机112中压缩的第二介质F2的量。
本文中参考根据实施方案的方法、设备和/或系统的流程图说明、示意图和/或框图描述了所述实施方案的多个方面。另外,已出于说明的目的呈现了各种实施方案的描述,但这些描述并不意在为详尽的或限于所公开的实施方案。在不背离所描述的实施方案的范围和精神的情况下,许多修改和变化将为本领域普通技术人员所显而易见。本文中所使用的术语被选择用于最好地解释实施方案的原理、实际应用或胜于市场上发现的技术的技术改进,或使得本领域其他普通技术人员能够理解本文中所公开的实施方案。
本文中所使用的术语是仅用于描述特定实施方案的目的且并不意在为限制性的。如本文中所使用,除非上下文另有明确指示,否则单数形式“一(a/an)”和“所述(the)”也意在包括复数形式。将进一步理解,当用于本说明书中时,术语“包括(comprises和/或comprising)”指定所陈述的特征、整数、步骤、操作、元件和/或部件的存在,但并不排除一个或多个其他特征、整数、步骤、操作、元件、部件和/或其群组的存在或添加。
本文中所描绘的流程图仅仅是一个示例。在不背离本文中的实施方案的精神的情况下,可存在本文中所描述的这个图式或步骤(或操作)的许多变化。例如,可按不同次序执行所述步骤,或可添加、删除或修改步骤。所有这些变化均被视为是权利要求书的一部分。
虽然已描述了优选实施方案,但应了解,本领域技术人员(包括现在还有未来)可做出在所附权利要求书的范围内的各种改进和增强。这些权利要求应解释为维持恰当的保护。

Claims (13)

1.一种压缩装置,所述压缩装置包括:
涡轮机,所述涡轮机包括第一入口和第二入口,并且被构造成通过使一种或多种介质膨胀来提供能量,
其中所述第一入口被构造成接收所述一种或多种介质中的第一介质,并且
其中所述第二入口被构造成接收所述一种或多种介质中的第二介质;
压缩机,所述压缩机被构造成:
在所述压缩装置的第一模式期间接收由所述第一介质和所述第二介质跨越所述涡轮机膨胀而产生的第一能量,
在所述压缩装置的第二模式期间接收由所述第一介质跨越所述涡轮机膨胀而产生的第二能量,并且
根据所述第一模式或所述第二模式压缩所述第二介质;以及
马达,所述马达被构造成将补充能量提供到所述压缩机,
所述压缩装置还包括:
第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及
独立于所述第一部件的第二部件,所述第二部件包括风扇、第二涡轮机和轴。
2.如权利要求1所述的压缩装置,所述压缩装置包括:
轴,所述轴连接所述涡轮机、所述压缩机与所述马达。
3.如权利要求1所述的压缩装置,所述压缩装置包括:
风扇,所述风扇被构造成在所述第一模式期间接收所述第一能量,并且在所述第二模式期间接收所述第二能量。
4.如权利要求1所述的压缩装置,其中所述风扇通过所述第一介质跨越所述第二涡轮机膨胀而经由所述轴来驱动。
5.如权利要求1所述的压缩装置,所述压缩装置包括:
第一部件,所述第一部件包括所述涡轮机和所述压缩机;以及
独立于所述第一部件的第二部件,所述第二部件包括由第二马达驱动的风扇。
6.如权利要求1所述的压缩装置,其中所述第一介质与所述第二介质在所述第一模式期间在所述涡轮机处混合。
7.如权利要求1所述的压缩装置,其中所述第一介质与所述第二介质在所述第二模式期间在所述涡轮机下游处混合。
8.如权利要求1所述的压缩装置,其中所述第一介质是引出空气,并且所述第二介质是新鲜空气。
9.一种用于飞行器的环境控制系统,所述环境控制系统包括如权利要求1所述的压缩装置。
10.一种压缩装置,所述压缩装置包括:
第一涡轮机,所述第一涡轮机被构造成通过使第一介质膨胀来提供第一能量;
第二涡轮机,所述第二涡轮机被构造成通过使第二介质膨胀来提供第二能量;以及
压缩机,所述压缩机被构造成:
在所述压缩装置的第一模式期间接收所述第一能量和所述第二能量,
在所述压缩装置的第二模式期间接收所述第一能量,并且
根据所述第一模式或所述第二模式压缩所述第二介质;以及
马达,所述马达被构造成将补充能量提供到所述压缩机,
所述压缩装置还包括:
第一部件,所述第一部件包括所述第一涡轮机、所述第二涡轮机和所述压缩机;以及
独立于所述第一部件的第二部件,所述第二部件包括风扇、第三涡轮机和轴。
11.如权利要求10所述的压缩装置,所述压缩装置包括:
风扇,所述风扇被构造成:
在所述第一模式期间接收所述第一能量和所述第二能量,并且
在所述第二模式期间接收所述第一能量。
12.如权利要求10所述的压缩装置,其中所述风扇通过所述第一介质跨越所述第二涡轮机膨胀而经由所述轴来驱动。
13.如权利要求10所述的压缩装置,所述压缩装置包括:
第一部件,所述第一部件包括所述第一涡轮机、所述第二涡轮机和所述压缩机;以及
独立于所述第一部件的第二部件,所述第二部件包括由第二马达驱动的风扇。
CN201710411519.2A 2016-05-26 2017-05-26 先进环境控制系统的能量流动 Active CN107434046B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662341955P 2016-05-26 2016-05-26
US62/341955 2016-05-26

Publications (2)

Publication Number Publication Date
CN107434046A CN107434046A (zh) 2017-12-05
CN107434046B true CN107434046B (zh) 2022-07-26

Family

ID=58800680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710411519.2A Active CN107434046B (zh) 2016-05-26 2017-05-26 先进环境控制系统的能量流动

Country Status (4)

Country Link
US (1) US10773807B2 (zh)
EP (1) EP3249195B1 (zh)
CN (1) CN107434046B (zh)
CA (1) CA2968767A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459110B2 (en) * 2016-04-22 2022-10-04 Hamilton Sunstrand Corporation Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist
US10731501B2 (en) * 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
EP3248880B1 (en) 2016-05-26 2022-03-16 Hamilton Sundstrand Corporation Mixing ram and bleed air in a dual entry turbine system
US10597162B2 (en) 2016-05-26 2020-03-24 Hamilton Sundstrand Corporation Mixing bleed and ram air at a turbine inlet
EP3825531B1 (en) 2016-05-26 2023-05-03 Hamilton Sundstrand Corporation An energy flow of an advanced environmental control system
US10137993B2 (en) 2016-05-26 2018-11-27 Hamilton Sundstrand Corporation Mixing bleed and ram air using an air cycle machine with two turbines
US11506121B2 (en) * 2016-05-26 2022-11-22 Hamilton Sundstrand Corporation Multiple nozzle configurations for a turbine of an environmental control system
US11047237B2 (en) 2016-05-26 2021-06-29 Hamilton Sunstrand Corporation Mixing ram and bleed air in a dual entry turbine system
US10773807B2 (en) 2016-05-26 2020-09-15 Hamilton Sunstrand Corporation Energy flow of an advanced environmental control system
EP3248878B1 (en) 2016-05-26 2020-05-06 Hamilton Sundstrand Corporation Mixing bleed and ram air using a dual use turbine system
US11780589B2 (en) * 2016-11-29 2023-10-10 Hamilton Sundstrand Corporation Environmental control system with optimized moisture removal
US20190283898A1 (en) * 2018-03-19 2019-09-19 Hamilton Sundstrand Corporation Cooled air source for catalytic inerting
US11084592B2 (en) * 2018-06-26 2021-08-10 Hamilton Sundstrand Corporation Aircraft environmental control system
US11104442B2 (en) 2019-03-19 2021-08-31 Hamilton Sundstrand Corporation Shoestring environmental control system for an aircraft
US10994848B2 (en) * 2019-03-19 2021-05-04 Hamilton Sunstrand Corporation Environmental control system for an aircraft
US11332252B2 (en) 2019-06-11 2022-05-17 Hamilton Sundstrand Corporation Using bleed air to supply outside air to a cabin
US11377217B2 (en) 2019-06-11 2022-07-05 Hamilton Sundstrand Corporation Using bleed air to supply outside air to a cabin
US11629870B2 (en) * 2020-03-17 2023-04-18 Hamilton Sundstrand Corporation ECS using cabin outflow air as an electricity source
CN112145456B (zh) * 2020-11-17 2021-12-07 江苏恒康机电有限公司 一种防止电机振动降低噪音的不锈钢风机
US20230408153A1 (en) * 2022-06-15 2023-12-21 Hamilton Sundstrand Corporation Ram air turbine powered cabin air compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967461A (en) * 1997-07-02 1999-10-19 Mcdonnell Douglas Corp. High efficiency environmental control systems and methods
CN103010466A (zh) * 2012-11-27 2013-04-03 北京航空航天大学 双级压缩空气循环制冷系统
CN104395583A (zh) * 2012-04-12 2015-03-04 诺沃皮尼奥内股份有限公司 压缩空气能量存储系统
CN104514636A (zh) * 2013-09-03 2015-04-15 哈米尔顿森德斯特兰德公司 操作多包环境控制系统的方法
CN105438481A (zh) * 2014-09-19 2016-03-30 空中客车作业有限公司 飞机空调系统和操作飞机空调系统的方法

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800002A (en) 1954-02-02 1957-07-23 Garrett Corp Cabin refrigeration system
GB994856A (en) 1963-04-10 1965-06-10 Normalair Ltd Improvements in or relating to air conditioning systems
US3428242A (en) 1967-06-02 1969-02-18 United Aircraft Corp Unitary simple/bootstrap air cycle system
US4021215A (en) 1976-05-03 1977-05-03 United Technologies Corporation Dual combined cycle air-conditioning system
US4261416A (en) 1979-02-23 1981-04-14 The Boeing Company Multimode cabin air conditioning system
US4374469A (en) 1980-12-24 1983-02-22 United Technologies Corporation Variable capacity air cycle refrigeration system
US4604028A (en) 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
US5299763A (en) 1991-12-23 1994-04-05 Allied-Signal Inc. Aircraft cabin air conditioning system with improved fresh air supply
US5473899A (en) 1993-06-10 1995-12-12 Viteri; Fermin Turbomachinery for Modified Ericsson engines and other power/refrigeration applications
US5461882A (en) 1994-07-22 1995-10-31 United Technologies Corporation Regenerative condensing cycle
US5911388A (en) 1997-01-15 1999-06-15 Sundstrand Corporation Environmental control system with energy recovery and bleed air assist
US5899085A (en) * 1997-08-01 1999-05-04 Mcdonnell Douglas Corporation Integrated air conditioning and power unit
US6199387B1 (en) 1999-07-30 2001-03-13 Liebherr-Aerospace Lindenberg Gmbh Air-conditioning system for airplane cabin
DE19963280C1 (de) 1999-12-27 2001-08-23 Liebherr Aerospace Gmbh Klimatisierungssystem für Flugzeugkabinen
US6427471B1 (en) 2000-02-29 2002-08-06 Shimadzu Corporation Air cycle machine and air conditioning system using the same
US6257003B1 (en) 2000-08-04 2001-07-10 Hamilton Sundstrand Corporation Environmental control system utilizing two air cycle machines
DE10047623C1 (de) 2000-09-26 2002-05-23 Liebherr Aerospace Gmbh Klimatisierungssystem für Flugzeuge
US6845630B2 (en) 2001-02-16 2005-01-25 Hamilton Sundstrand Corporation Electric power and cooling system for an aircraft
US6681592B1 (en) 2001-02-16 2004-01-27 Hamilton Sundstrand Corporation Electrically driven aircraft cabin ventilation and environmental control system
US6526775B1 (en) 2001-09-14 2003-03-04 The Boeing Company Electric air conditioning system for an aircraft
US6681591B2 (en) 2001-10-19 2004-01-27 Hamilton Sundstrand Cabin air temperature control with cooling of recirculated air
US6615606B2 (en) 2002-01-10 2003-09-09 Hamilton Sundstrand Dual turbine bootstrap cycle environmental control system
US6758742B2 (en) * 2002-07-16 2004-07-06 Delphi Technologies, Inc. Air partitioning device for air conditioning system
DE10234968A1 (de) 2002-07-31 2004-02-12 Liebherr-Aerospace Lindenberg Gmbh Flugzeugklimaanlage
US6804964B2 (en) 2002-09-19 2004-10-19 Siemens Westinghouse Power Corporation Water recovery from combustion turbine exhaust
US7210653B2 (en) 2002-10-22 2007-05-01 The Boeing Company Electric-based secondary power system architectures for aircraft
US6848261B2 (en) 2003-04-03 2005-02-01 Honeywell International Inc. Condensing cycle with energy recovery augmentation
US6776002B1 (en) 2003-04-25 2004-08-17 Northrop Grumman Corporation Magnetically coupled integrated power and cooling unit
GB0414341D0 (en) 2004-06-26 2004-07-28 Honeywell Normalair Garrett Closed loop air conditioning system
US7334423B2 (en) * 2004-09-22 2008-02-26 Hamilton Sundstrand Corporation Dual mode condensing cycle
US7322202B2 (en) * 2004-09-22 2008-01-29 Hamilton Sundstrand Corporation Electric motor driven supercharger with air cycle air conditioning system
DE102005037285A1 (de) * 2005-08-08 2007-02-15 Liebherr-Aerospace Lindenberg Gmbh Verfahren zum Betreiben einer Flugzeugklimaanlage
US7861536B2 (en) 2006-03-27 2011-01-04 Pratt & Whitney Canada Corp. Ejector controlled twin air source gas turbine pressurizing air system
US7624592B2 (en) 2006-05-17 2009-12-01 Northrop Grumman Corporation Flexible power and thermal architectures using a common machine
US7607318B2 (en) 2006-05-25 2009-10-27 Honeywell International Inc. Integrated environmental control and auxiliary power system for an aircraft
DE102006042584B4 (de) 2006-09-11 2008-11-20 Airbus Deutschland Gmbh Luftzufuhrsystem eines Flugzeuges sowie Verfahren zum Vermischen zweier Luftströme in einem Luftzufuhrsystem
WO2008065709A1 (en) 2006-11-28 2008-06-05 Shimadzu Corporation Method and system for supplying conditioned air in airplane
GB2447677B (en) 2007-03-21 2011-11-16 Honeywell Normalair Garrett Jet pump apparatus
DE102007032306A1 (de) 2007-07-11 2009-01-22 Airbus Deutschland Gmbh Klimatisierungssystem für Flugzeugkabinen
US8042354B1 (en) 2007-09-28 2011-10-25 Fairchild Controls Corporation Air conditioning apparatus
DE602007008583D1 (de) 2007-11-26 2010-09-30 Honeywell Aerospace Bv Flugzeugklimaanlage
JP5233436B2 (ja) 2008-06-23 2013-07-10 株式会社日立プラントテクノロジー 羽根無しディフューザを備えた遠心圧縮機および羽根無しディフューザ
JP4714779B2 (ja) 2009-04-10 2011-06-29 東光株式会社 表面実装インダクタの製造方法とその表面実装インダクタ
DE102009031880A1 (de) 2009-07-06 2011-01-20 Airbus Operations Gmbh Kühlkonzept für ein Brennstoffzellen-Notstromsystem
US8851835B2 (en) 2010-12-21 2014-10-07 Hamilton Sundstrand Corporation Air cycle machine compressor diffuser
JP5449219B2 (ja) 2011-01-27 2014-03-19 三菱重工業株式会社 ラジアルタービン
US9169024B2 (en) 2011-05-09 2015-10-27 Honeywell International Inc. Environmental control system with closed loop pressure cycle
US9481468B1 (en) 2011-07-22 2016-11-01 Peter Schiff Aircraft environmental control system
WO2013077924A2 (en) 2011-09-08 2013-05-30 Rolls-Royce North American Technologies Inc. Gas turbine engine system and supersonic exhaust nozzle
US9205925B2 (en) * 2011-11-11 2015-12-08 Hamilton Sundstrand Corporation Turbo air compressor
US9555893B2 (en) 2011-11-28 2017-01-31 Hamilton Sundstrand Corporation Blended flow air cycle system for environmental control
EP2602191B1 (en) 2011-12-05 2016-05-11 Hamilton Sundstrand Corporation Motor driven cabin air compressor with variable diffuser
US20140109603A1 (en) 2011-12-29 2014-04-24 Embraer S.A. Integrated environmental control systems and methods for controlling environmental temperature of an enclosed space
US9109514B2 (en) 2012-01-10 2015-08-18 Hamilton Sundstrand Corporation Air recovery system for precooler heat-exchanger
SE536255C2 (sv) 2012-02-06 2013-07-23 Bae Systems Bofors Ab Bromspanel för ett tändrör eller en projektil
JP5909163B2 (ja) 2012-08-27 2016-04-26 三菱重工業株式会社 二圧式ラジアルタービンの運用方法
US9669936B1 (en) 2012-10-24 2017-06-06 The Boeing Company Aircraft air conditioning systems and methods
US9033297B2 (en) 2013-06-04 2015-05-19 Hamilton Sundstrand Corporation Cabin air compressor support bracket
EP2821346B1 (en) 2013-07-04 2015-12-23 Airbus Operations GmbH Aircraft air conditioning system and method of operating an aircraft air conditioning system
US10745136B2 (en) 2013-08-29 2020-08-18 Hamilton Sunstrand Corporation Environmental control system including a compressing device
US9580180B2 (en) 2014-03-07 2017-02-28 Honeywell International Inc. Low-pressure bleed air aircraft environmental control system
US9656756B2 (en) 2014-03-10 2017-05-23 The Boeing Company Turbo-compressor system and method for extracting energy from an aircraft engine
WO2015148853A2 (en) 2014-03-26 2015-10-01 Energy Recovery, Inc. Hydraulic turbine system with auxiliary nozzles
DE102014206081A1 (de) 2014-03-31 2015-10-01 Lufthansa Technik Ag Filter
US9878794B2 (en) 2014-04-24 2018-01-30 Hamilton Sundstrand Corporation Environmental control system utilizing shoestring cycle to maximize efficiency
EP2947012B1 (en) 2014-05-19 2017-07-05 Airbus Operations GmbH Aircraft air conditioning system and method of its operation
EP3164576B1 (en) 2014-07-03 2020-07-29 General Electric Company Jet engine cold air cooling system and corresponding method
WO2016170141A1 (en) 2015-04-23 2016-10-27 Airbus Operations Gmbh Electrically driven aircraft air conditioning system and method for operating such an aircraft air conditioning system
DE102015222193A1 (de) 2015-11-11 2017-05-11 Airbus Operations Gmbh Flugzeugklimaanlage mit einer Kabinenabluftturbine
US10457401B2 (en) 2016-05-13 2019-10-29 United Technologies Corporation Dual-use air turbine system for a gas turbine engine
EP3248880B1 (en) 2016-05-26 2022-03-16 Hamilton Sundstrand Corporation Mixing ram and bleed air in a dual entry turbine system
US11047237B2 (en) 2016-05-26 2021-06-29 Hamilton Sunstrand Corporation Mixing ram and bleed air in a dual entry turbine system
EP3248876B1 (en) 2016-05-26 2023-04-26 Hamilton Sundstrand Corporation Mixing bleed and ram air at a turbine inlet of a compressing device
US11506121B2 (en) 2016-05-26 2022-11-22 Hamilton Sundstrand Corporation Multiple nozzle configurations for a turbine of an environmental control system
US10137993B2 (en) 2016-05-26 2018-11-27 Hamilton Sundstrand Corporation Mixing bleed and ram air using an air cycle machine with two turbines
EP3825531B1 (en) 2016-05-26 2023-05-03 Hamilton Sundstrand Corporation An energy flow of an advanced environmental control system
US10773807B2 (en) 2016-05-26 2020-09-15 Hamilton Sunstrand Corporation Energy flow of an advanced environmental control system
US10597162B2 (en) 2016-05-26 2020-03-24 Hamilton Sundstrand Corporation Mixing bleed and ram air at a turbine inlet
EP3269645A3 (en) 2016-05-26 2018-03-07 Hamilton Sundstrand Corporation Mixing bleed and ram air using a two turbine architecture with an outflow heat exchanger
EP3254970B1 (en) 2016-05-26 2020-04-29 Hamilton Sundstrand Corporation An environmental control system with an outflow heat exchanger
EP3248878B1 (en) 2016-05-26 2020-05-06 Hamilton Sundstrand Corporation Mixing bleed and ram air using a dual use turbine system
US10295284B2 (en) 2016-08-18 2019-05-21 The Boeing Company Model-based method and system to detect heat exchanger fouling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967461A (en) * 1997-07-02 1999-10-19 Mcdonnell Douglas Corp. High efficiency environmental control systems and methods
CN104395583A (zh) * 2012-04-12 2015-03-04 诺沃皮尼奥内股份有限公司 压缩空气能量存储系统
CN103010466A (zh) * 2012-11-27 2013-04-03 北京航空航天大学 双级压缩空气循环制冷系统
CN104514636A (zh) * 2013-09-03 2015-04-15 哈米尔顿森德斯特兰德公司 操作多包环境控制系统的方法
CN105438481A (zh) * 2014-09-19 2016-03-30 空中客车作业有限公司 飞机空调系统和操作飞机空调系统的方法

Also Published As

Publication number Publication date
US20170341760A1 (en) 2017-11-30
CN107434046A (zh) 2017-12-05
BR102017010903A2 (pt) 2017-12-12
CA2968767A1 (en) 2017-11-26
US10773807B2 (en) 2020-09-15
EP3249195A1 (en) 2017-11-29
EP3249195B1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
CN107434046B (zh) 先进环境控制系统的能量流动
CN107434044B (zh) 先进环境控制系统的能量流动
CN107434045B (zh) 飞机
CN107444658B (zh) 使用双用涡轮机系统来混合排气和冲压空气
CN107444657B (zh) 在压缩装置的涡轮机进口处混合排气和冲压空气
EP3354573B1 (en) Environmental control system in an integrated pack arrangement with one bleed/outflow heat exchanger
CN107444655B (zh) 使用具有两个涡轮的空气循环机混合放出空气和冲压空气
CN107444654B (zh) 具有外流热交换器的环境控制系统
US10597162B2 (en) Mixing bleed and ram air at a turbine inlet
CN107434047B (zh) 用于环境控制系统的涡轮机的多喷嘴构造
CN108725800B (zh) 新鲜空气和再循环空气混合优化
EP3354574B1 (en) Environmental control system in an integrated pack arrangement with two bleed/outflow heat exchangers
EP3354576B1 (en) Advanced environmental control system in an integrated split pack arrangement with one bleed/outflow heat exchanger
EP3326915B1 (en) An environmental control system with optimized moisture removal
EP3492381A1 (en) Mixing bleed and ram air using a two turbine architecture with an outflow heat exchanger

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant