CN107430096A - 用于检查管道的装置和方法 - Google Patents

用于检查管道的装置和方法 Download PDF

Info

Publication number
CN107430096A
CN107430096A CN201680011901.8A CN201680011901A CN107430096A CN 107430096 A CN107430096 A CN 107430096A CN 201680011901 A CN201680011901 A CN 201680011901A CN 107430096 A CN107430096 A CN 107430096A
Authority
CN
China
Prior art keywords
wall
transducer
signal
pipeline
acoustical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680011901.8A
Other languages
English (en)
Other versions
CN107430096B (zh
Inventor
P.诺里
W.弗莱里
P.道斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Det Norske Veritas AS
Original Assignee
Det Norske Veritas AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Det Norske Veritas AS filed Critical Det Norske Veritas AS
Publication of CN107430096A publication Critical patent/CN107430096A/zh
Application granted granted Critical
Publication of CN107430096B publication Critical patent/CN107430096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/103Number of transducers one emitter, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

描述了一种用于检查管道的装置,所述装置包括:适于在所述管道内运送的圆柱形主体(15),安装在所述圆柱形主体(15)的表面中的声换能器(Tx,y)的阵列,所述声换能器在围绕所述圆柱形主体的带中以列和行组织,其特征在于,所述装置包括控制器,所述控制器适于发起从第一换能器发射声信号以及从围绕所述第一换能器的所述阵列中的其他换能器接收所述声信号,所述控制器还适于从所接收的声信号确定所述管道的壁中的缺陷。

Description

用于检查管道的装置和方法
技术领域
本发明涉及非破坏性测试的领域,并且更具体地涉及一种用于使用声换能器(transducer)来测试油气管道的完整性的管道检查工具。
背景技术
在油气行业中,存在对管道的高效测试的需要。这样的管道通常难以进入,例如,可能部分掩埋并且形成延伸的结构的海底管道。管道经受由于腐蚀性流体和沙子的耗损以及由于海床中的运动的变形。所述管道也容易出现破裂,特别是在焊缝中。由于焊接过程所引起的钢结构的改变,焊缝是固有的弱点。破裂可能由于温度循环和海床中的运动所引起的应力而出现。
管道的结构完整性可以使用测量管壁状况的在管道内行进的检查器具(inspection pig)来测试。已经设计了若干种用于测量管壁状况的方法。此处,我们将提到使用磁通泄漏和超声测试的方法。使用磁通泄漏的方法主要仅针对检测由腐蚀引起的金属损失(管道壁的变薄)有效。超声测试方法被用于检测管道壁中的腐蚀和破裂,即使在这些技术之间存在一些重叠。使用常规压电换能器的超声测试仅限于测试用液体填充的管道,因为需要液体将超声能量传导到管道壁中。空气/天然气和钢之间的声阻抗的极大差异将很大地减少在“干”管道中被传导到管道壁中的声能的量。已经提出使用电磁声换能器(EMAT)技术来测试天然气管道;这种类型的换能器生成将剪切水平(SH)波模超声波直接引入到管道壁中的电磁场。然而,这样的换能器是大的,具有有限的带宽,并且必须定位成非常靠近管壁,优选地离壁表面小于1mm。
从US 8 677 823,已知一种装置,其中承载声换能器(以绕线轴(spool)的中央窄部分的阵列)的线轴被发送通过包含加压天然气的管道。声信号从每个换能器发射,通过天然气介质到管壁的内表面。它们被壁反射回并由相同的换能器或者由线轴中的预先选择的(多个)换能器接收。该设备被用于测量管道的直径以标识针对壁的变形。然而,由于空气和钢之间的高阻抗差,该装置不适于测试壁自身中的材料。
欧洲专利申请EP 2 887 060 A1公开了一种用于检查管道的装置。该申请于2013年12月20日提交,并于2015年6月24日公布。管壁通过从换能器阵列发出的声脉冲来检查,换能器定位在绕装置主体的单个环或行中,参见图1。测量是脉冲回波测量,其中脉冲由相同的换能器发射和接收。
从US 9852033已知一种用于记录油气井的装置。该装置包括具有三个声换能器的旋转换能器头。当装置沿着井竖直地移位时,换能器头旋转。以这种方式,井可以通过沿着螺旋路径覆盖壁的一系列单独测量来覆盖。
发明内容
本发明的目的是提供克服上述问题的用于管道的声测试的设备和方法。
这在如所附权利要求中限定的设备和方法中实现。
附图说明
当结合附图阅读时,本发明的其他方面将从以下详细描述中显现,其中:
图1是本发明的设备和设备的电子电路的示意图示,
图2是图示所述本发明的设备中的发射和接收换能器之间的声波的传播路径的示意视图,以及
图3是所述传播路径的平面视图。
具体实施方式
根据本发明,提供了一种被设计为承载声换能器的多元件阵列的线轴的设备,所述声换能器中的任何一个可以被用于在任何特定的指定时间发射或接收声能,该设备适于被运送通过管道的内部,同时测试管壁。这样的设备也称为器具。
图1示出了本发明的设备11的实施例,以及位于该设备内部的电子模块16、18、19。该设备被设计为具有由圆柱形主体15联接的两个圆形端板13、14的线轴,该主体具有比端板更小的直径。在主体15的壁中安装有许多换能器Tx,y。换能器以覆盖绕圆柱形主体15的带的(圆形)列和行(在图中示出仅一列)来组织。如果需要,每个换能器可以由若干个元件组成,以便获得足够的信号强度和窄的波束。
在主体15内部存在用于激发(excit)换能器的电子电路,接收来自换能器的响应信号,并存储所接收的信号。电子电路可以以如所示的若干个单独模块来组织。模拟模块16承载换能器Tx,y和为整个设备供电的许多电池17。模拟模块16连接到数字模块18。数字模块18包括用于控制换能器Tx,y的电路、AD和DA转换器、数据存储单元和用于系统配置和数据通信的主机接口。此外,设备11包括将位置信息供应到数字模块18的位置模块19。位置模块19可以包括与管壁接触的里程表110。此处,使用绕工具的圆周均匀分布的三个里程表,以确保它们中的至少一个与壁接触。当工具沿着管道行进时,里程表将输出脉冲,每个脉冲指示已经覆盖一定距离。脉冲将被用于控制发射器的激励(fire)。压力传感器111被用于告知电子器件工具已经被冲入管道中,于是将发起测量过程。还包括有感应单元112,所谓的器具追踪器,其将发出可以从管道外部追踪的低频磁波。
设备可以以两种模式操作:在“连接模式”下,设备连接到计算机113以用于系统配置和检索所收集的数据,而在“自主模式”下,设备在管道内部靠其自身操作,而不接入到计算机。在这种模式下,所收集的测量数据必须存储在船上(on board)。
该设备旨在被运送通过管道,其由跨设备的压差推动,而一些换能器(尤其是列之一中的换能器,诸如换能器Tx,2,X为1-n)被激励,同时其他换能器监听。然而,应注意的是,所有换能器可以充当发射器和接收器,并且它们的角色被任意选择。
如上所述,本发明的目的是使用诸如压电换能器之类的声换能器来研究管道壁的特性,以避免EMAT的缺陷。然而,这创建了如何在壁中获得足够强度的声信号的问题。另一个问题是如何决定在壁中发现的破裂或不均匀结构的正确位置。第三个问题是当工具沿着管道行进时如何获得足够的采样点密度,即,当工具以全速移动时如何足够快地测量。当将声能发射到管道中时,初始地将接收到相当干净的信号,但是后来信号将被色散效应等所创建的噪声掩蔽。这意味着每个发射之间一定存在时间延迟的“空闲”时段。第一个和最后一个问题通过被用于激发管道壁的特定声脉冲来解答,而第二个问题通过工具中使用的换能器的特定布局以及它们如何被操作来解决,如下面将解释的。
图2示出了从发射换能器21到接收换能器22的信号所遵循的传播路径。为了克服管道中的天然气与壁之间的阻抗障碍(barrier),发射换能器以低频率发射突发脉冲23。频率可以在200 - 1400 kHz的范围内。这是在卡尺测量工具中使用的超声换能器中的约十分之一。在天然气中的损失随着频率急剧增加。在这些低频处,已经发现有利的是将发射频率调谐到壁的厚度共振(resonance)。这将增加测量的灵敏度,增加定位破裂的能力并降低数据处理负载。假设在正常入射处的平面波,在其中板厚度为半波长的整数的频率处发现共振峰。厚度共振的频率f被定义为f = nc/2D,c是壁材料的声速,D是其厚度,并且n表示谐波。
脉冲将激发在壁中行进的信号24。该信号在撞击接收换能器22之前在钢/天然气界面处被转换回为压缩波。由于换能器的几何设置,在接收换能器中检测到的第一个到达将是在轨迹的部分中作为剪切模式信号行进的波。后来,作为兰姆波行进的信号将到达。兰姆波将具有比剪切波大得多的振幅,并且该事实可以被用于在波型之间进行区分,所述波型都在接收器处作为压缩波达到。
图3图示了可以如何由换能器T1,1、T1,2、T1,3、T1,4、T2,1、T2,3、T3,1和T3,2检测来自换能器T2,2的信号。信号路径用箭头指示。因此,来自发射换能器的在所有方向上行进的信号将被检测。如果在壁中存在破裂,则位于破裂后方的“阴影”中的换能器将接收具有显著降低的振幅的信号。这是针对换能器T3,3、T3,4和T2,4的情况,因为在发射器和接收器之间的路径中存在破裂,这将使信号衰减。来自发射器的信号也将被破裂反射并到达破裂前方的换能器。然而,信号将在反射中反向,并且这可以被用于标识反射信号。这在发射器T2,2和破裂之间用双头箭头指示。在激励后,换能器然后必须监听反向反射。可以通过比较由换能器接收的信号来找到针对破裂的距离和方向、或其位置。
如上所述,换能器发射适于激发管壁的厚度共振的信号。管壁的激发可以以若干种方式执行。
一种方法是使用两阶段过程,其中换能器首先发送覆盖壁的可能厚度共振频率的扫频信号(例如线性调频脉冲)。壁的厚度可能稍微不同,并且因此厚度共振频率也可能是可变的,因为其由机械厚度确定。当确切的共振频率已经通过分析所接收的信号确定时,将固定的共振频率上的第二信号发射到管壁中。
该方法可以通过使扫描覆盖基波(fundamental)共振的一个或多个谐波来扩展。与通过直接计数基波共振相比,可以通过测量两个频率(谐波)之间的频率的差异来更准确地确定共振的确切频率。
此外,为了加速测量过程,可以同时激发若干个发射器,每个在不同的谐波频率上。每个接收器可以接收来自若干个发射器的信号,但可以通过与发射信号的互相关来解析“谁是谁”。以这种方式,可以同时研究管壁上的若干个位置。
另一种方法是用来自发射器的sinc脉冲激发管壁。因此,sinc脉冲的频率跨度应覆盖厚度共振的所选择谐波,其中具有针对厚度差异的一些容差(allowance)。此外,在这种情况下,可以在共振频率的不同谐波上同时激励若干个发射器。
又另一种方法是使用扩频信号来激发壁。这提供了对许多发射器不同编码的可能性,即,它们可以同时发射,并且信号可以在接收器中被解析。每个信号也可以被调整以覆盖围绕壁的厚度共振的所选谐波的小范围的频率,即使该频率范围将不如前两个实施例中那样窄且均匀覆盖。存在可以被用于该目的的扩频技术的许多变型,但是特别地,使用二进制相移键控(BPSK)调制的直接序列扩频(DSSS)技术已经被发现是可行的。

Claims (7)

1.一种用于检查管道的装置,所述装置包括:
适于在所述管道内运送的圆柱形主体(15),
安装在所述圆柱形主体(15)的表面中的声换能器(Tx,y)的阵列,所述声换能器在绕所述圆柱形主体的带中以列和行组织,
其特征在于,所述装置包括控制器,所述控制器适于发起从第一换能器发射声信号以及从围绕所述第一换能器的所述阵列中的其他换能器接收所述声信号,所述控制器还适于从所接收的声信号确定针对所述管道的壁中的缺陷的方向。
2.根据权利要求1所述的装置,其中所述控制器适于发起离开管道壁的厚度模式的信号的发射。
3.一种用于测试管道的壁的方法,所述方法包括以下步骤:
从面向所述壁并且定位在离所述壁一定距离中的第一发射换能器发射声信号,所述信号激发所述壁的所选厚度共振频率,
在许多接收换能器中接收从所述壁返回的声信号,所述许多接收换能器也在离所述壁一定距离处面向所述壁,所述接收换能器围绕所述发射换能器,
处理所返回的声信号以确定针对壁中的缺陷的方向。
4.根据权利要求3所述的方法,其中,通过首先针对所述壁发射扫频信号、观察所接收的信号中的任何共振、然后从所选换能器在所述壁的所选共振频率上针对所述壁发射单个频率突发信号来激发所述壁。
5.根据权利要求3所述的方法,其中通过针对所述壁发射sinc信号来激发所述壁,所述sinc信号跨越覆盖共振频率的所选择谐波的频率的范围。
6.根据权利要求3所述的方法,其中通过同时从若干个换能器发射声信号来激发所述壁,每个换能器在所述共振频率的不同谐波上发射。
7.根据权利要求3所述的方法,其中,通过针对所述壁发射扩频信号来激发所述壁,信号从许多发射换能器同时发射,其中每个发射换能器被不同地编码。
CN201680011901.8A 2015-02-24 2016-02-24 用于检查管道的装置和方法 Active CN107430096B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20150256A NO346618B1 (en) 2015-02-24 2015-02-24 An apparatus and method for inspecting a pipeline
NO20150256 2015-02-24
PCT/NO2016/050033 WO2016137335A1 (en) 2015-02-24 2016-02-24 An apparatus and method for inspecting a pipeline

Publications (2)

Publication Number Publication Date
CN107430096A true CN107430096A (zh) 2017-12-01
CN107430096B CN107430096B (zh) 2020-09-22

Family

ID=55752675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011901.8A Active CN107430096B (zh) 2015-02-24 2016-02-24 用于检查管道的装置和方法

Country Status (13)

Country Link
US (1) US10527590B2 (zh)
CN (1) CN107430096B (zh)
AU (1) AU2016224101B2 (zh)
BR (1) BR112017018094B1 (zh)
CA (1) CA2977449C (zh)
CH (1) CH712357B1 (zh)
DE (1) DE112016000885T5 (zh)
GB (1) GB2553215B (zh)
HK (1) HK1247665A1 (zh)
NO (1) NO346618B1 (zh)
NZ (1) NZ734897A (zh)
SA (1) SA517382142B1 (zh)
WO (1) WO2016137335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109595474A (zh) * 2019-01-25 2019-04-09 安徽理工大学 一种基于波束形成的埋地输气管道泄漏交叉定位方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429176B2 (en) * 2017-06-08 2019-10-01 General Electric Company Pipeline deep crack detection
DE102018208824B4 (de) * 2018-06-05 2020-08-27 ACS-Solutions GmbH Verfahren zur zerstörungsfreien Untersuchung eines Prüfkörpers mittels Ultraschall
NO20190133A1 (en) * 2019-01-31 2020-08-03 Halfwave As Fremgangsmåte for inspeksjon av rør
EP4086620A1 (en) 2021-05-05 2022-11-09 NDT Global Corporate Ltd. Ireland Method and device for checking the wall of a pipeline for flaws

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916699A (en) * 1972-11-24 1975-11-04 Resource Sciences Corp Method and system for vibration testing of objects
US5460046A (en) * 1994-05-25 1995-10-24 Tdw Delaware, Inc. Method and apparatus for ultrasonic pipeline inspection
WO1996013720A1 (en) * 1994-10-28 1996-05-09 United States Of America, Represented By The Secre Gas pipeline wall thickness and flaw detection
WO2009038456A1 (en) * 2007-09-18 2009-03-26 Röntgen Technische Dienst B.V. Inspection device and method for inspection
CN102226783A (zh) * 2011-03-25 2011-10-26 北京工业大学 一种基于振动声调制技术的管道闭合裂纹检测装置及方法
CN103969337A (zh) * 2014-05-07 2014-08-06 北京工业大学 一种基于矢量全聚焦成像的超声阵列裂纹类缺陷方向识别方法
US20140278193A1 (en) * 2013-03-15 2014-09-18 Electric Power Research Institute System and method for focusing guided waves beyond curves in test structures
CN104135938A (zh) * 2012-02-23 2014-11-05 日立阿洛卡医疗株式会社 超声波诊断装置和超声波探头

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US985203A (en) 1910-08-22 1911-02-28 Raymond C Penfield System and apparatus for hacking bricks.
US4237723A (en) * 1976-11-01 1980-12-09 Wean United, Inc. Control means for a pipe tester
US4289019A (en) * 1979-10-30 1981-09-15 The United States Of America As Represented By The United States Department Of Energy Method and means of passive detection of leaks in buried pipes
AU7574698A (en) * 1997-05-14 1998-12-08 Gas Research Institute Apparatus, system and method for processing acoustic signals to image behind reflective layers
GB2332274B (en) * 1997-12-12 2001-11-21 Mecon Ltd Monitoring pipes
US6588267B1 (en) * 2002-03-12 2003-07-08 Titan Specialties, Ltd. Isolator bar for acoustic instruments used in downhole formations
NL1032186C2 (nl) * 2006-07-17 2008-01-18 Roentgen Tech Dienst Bv Systeem voor het meten aan een wand van een pijpleiding met phased array.
NO330292B1 (no) 2007-09-12 2011-03-21 Det Norske Veritas As Akustiske tykkelsesmalinger ved bruk av gass som et koblingsmedium
US7997139B2 (en) * 2007-12-03 2011-08-16 Fbs, Inc. Guided wave pipeline inspection system and method with enhanced natural focusing techniques
GB0800475D0 (en) * 2008-01-11 2008-02-20 Stats Uk Ltd Pipeline tool
GB2494170A (en) * 2011-09-01 2013-03-06 Sonar Pipeline Inspection Systems Ltd Acoustic pipeline inspection
EP2887060A1 (en) * 2013-12-20 2015-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Ultrasonic pipeline inspection system and method
US20180196005A1 (en) * 2017-01-06 2018-07-12 Baker Hughes, A Ge Company, Llc Pipe inspection tool using colocated sensors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916699A (en) * 1972-11-24 1975-11-04 Resource Sciences Corp Method and system for vibration testing of objects
US5460046A (en) * 1994-05-25 1995-10-24 Tdw Delaware, Inc. Method and apparatus for ultrasonic pipeline inspection
WO1996013720A1 (en) * 1994-10-28 1996-05-09 United States Of America, Represented By The Secre Gas pipeline wall thickness and flaw detection
WO2009038456A1 (en) * 2007-09-18 2009-03-26 Röntgen Technische Dienst B.V. Inspection device and method for inspection
CN102226783A (zh) * 2011-03-25 2011-10-26 北京工业大学 一种基于振动声调制技术的管道闭合裂纹检测装置及方法
CN104135938A (zh) * 2012-02-23 2014-11-05 日立阿洛卡医疗株式会社 超声波诊断装置和超声波探头
US20140278193A1 (en) * 2013-03-15 2014-09-18 Electric Power Research Institute System and method for focusing guided waves beyond curves in test structures
CN103969337A (zh) * 2014-05-07 2014-08-06 北京工业大学 一种基于矢量全聚焦成像的超声阵列裂纹类缺陷方向识别方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109595474A (zh) * 2019-01-25 2019-04-09 安徽理工大学 一种基于波束形成的埋地输气管道泄漏交叉定位方法

Also Published As

Publication number Publication date
HK1247665A1 (zh) 2018-09-28
CA2977449A1 (en) 2016-09-01
NO20150256A1 (en) 2016-08-25
BR112017018094B1 (pt) 2021-06-29
WO2016137335A1 (en) 2016-09-01
NZ734897A (en) 2019-02-22
GB2553215B (en) 2021-02-24
GB201713162D0 (en) 2017-09-27
NO346618B1 (en) 2022-10-31
CH712357B1 (de) 2018-02-15
CN107430096B (zh) 2020-09-22
AU2016224101A1 (en) 2017-09-14
DE112016000885T5 (de) 2017-11-30
CA2977449C (en) 2021-10-26
SA517382142B1 (ar) 2020-08-18
GB2553215A (en) 2018-02-28
US20180017533A1 (en) 2018-01-18
AU2016224101B2 (en) 2018-10-04
US10527590B2 (en) 2020-01-07
BR112017018094A2 (pt) 2018-06-26

Similar Documents

Publication Publication Date Title
EP2232123B1 (en) Pipeline inspection apparatus and method using two different ultrasound wavemodes
US6363788B1 (en) Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
CN107430096A (zh) 用于检查管道的装置和方法
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
US9915632B2 (en) Long-range magnetostrictive ultrasonic guided wave scanner system and method
JP2005502046A (ja) パイプライン点検装置
KR20010110672A (ko) 판상의 강자성체 구조의 원거리 범위 검사 방법 및 장치
CN113874721B (zh) 一种用于板材的无损测试的方法和设备
RU187205U1 (ru) Устройство для ультразвукового контроля трубопровода
KR101826917B1 (ko) 다중 채널 초음파를 이용한 장거리 배관 진단 방법
JP3714934B2 (ja) 流体搬送パイプの検査装置
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
EP4086620A1 (en) Method and device for checking the wall of a pipeline for flaws
US20230049260A1 (en) Acoustic Detection of Defects in a Pipeline
Nguyen Dinh et al. Precise Measurements of Steel Pipe Thicknesses Using Ultrasound Waves

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1247665

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant