CN107428628A - 氧化烃转化的分区方法 - Google Patents

氧化烃转化的分区方法 Download PDF

Info

Publication number
CN107428628A
CN107428628A CN201580078399.8A CN201580078399A CN107428628A CN 107428628 A CN107428628 A CN 107428628A CN 201580078399 A CN201580078399 A CN 201580078399A CN 107428628 A CN107428628 A CN 107428628A
Authority
CN
China
Prior art keywords
catalyst
mixture
reactor
area
aromatic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580078399.8A
Other languages
English (en)
Other versions
CN107428628B (zh
Inventor
N·索尔塔尼迪斯
M·谢卡尔
J·S·阿比先达尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN107428628A publication Critical patent/CN107428628A/zh
Application granted granted Critical
Publication of CN107428628B publication Critical patent/CN107428628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

提供了将氧化烃(比如甲醇和/或甲醚)转化为芳族物质(比如对二甲苯)和烯烃(比如乙烯和丙烯)的方法。该方法包括利用具有多个反应区的反应器,其中每个区被准备以促进期望反应。

Description

氧化烃转化的分区方法
优先权
本申请要求于2015年3月31日提交的USSN 62/140,566的优先权,其公开内容通过引用整体并入本文。
发明领域
本发明涉及用于将氧化烃,比如甲醇,转化成芳族烃和烯烃的方法。
发明背景
氧化烃,比如甲醇,转化烯烃和其它不饱和的化合物是用于化学品生产的常用反应方案。常规方法可以包括将氧化烃进料暴露于分子筛,比如ZSM-5。除了形成烯烃,还可以形成一些期望的芳族化合物,比如对二甲苯。
美国专利No.4,049,573和4,088,706披露了通过以下方式将甲醇转化成富含C2-C3烯烃和单核芳族物质、尤其是对二甲苯的烃混合物:使甲醇在温度250-700℃和压力0.2-30个大气压与结晶硅铝酸盐沸石催化剂接触,该催化剂的约束指数为1-12并且已通过单独或组合地添加硼或镁的氧化物或再组合地添加磷的氧化物来改性。上述公开内容通过引用并入本申请。
采用甲醇变汽油(“MTG”)工艺,甲醇可以转化成汽油。MTG工艺披露于专利现有技术,包括,例如,美国专利No.3,894,103;3,894,104;3,894,107;4,035,430和4,058,576。美国专利No.3,894,102披露了合成气转化成汽油。MTG工艺提供了将合成气转化成优质汽油的简单手段。所使用的ZSM-5催化剂在甲醇转化条件下对汽油有高度的选择性,并已知不产生馏分范围的燃料,因为期望馏分的C10+烯烃前体经在甲醇转化条件下由氢转移快速地转化成重质多甲基芳族物质和C4-C8异构链烷烃。上述公开内容通过引用并入本申请。
中国公布CN 101602648,CN 101602643,CN 101607864和CN 101780417描述了使用选择脱活化催化剂用于将甲醇转化成对二甲苯。在这些公布中,沸石催化剂用硅酸盐化合物,比如四乙基偏硅酸盐处理,以提供对由甲醇进料形成烯烃和对二甲苯的改进的选择性。然而,硅处理引入若干不期望的效果,其减少了每轮的芳族收率,并且促进焦炭沉积,这限制了催化剂循环长度。特别是对于金属促进的沸石,硅处理可以促进金属迁移和烧结,导致较短的催化剂寿命。
甲醇到对二甲苯和烯烃工艺(“M2PXO”)是一种新技术,其以高收率从氧化烃进料比如甲醇产生烯烃和芳族物质。临时美国专利公布No.2015/0175498,通过引用全文并入本申请,描述了方法采用包含至少一种分子筛和至少一种选自元素周期表第2-12族的元素的催化剂。美国专利公布No.2015/0175499,通过引用全文并入本申请,描述了通过制备分子筛(沸石)催化剂并结合有效的转化条件得到改进的芳族物质和烯烃收率。制备包括用过渡金属改性催化剂,汽蒸催化剂,和/或用磷改性催化剂。
尽管有这些优点,由具有竞争性动力学的多种反应的M2PXO工艺包括不期望的反应,比如甲醇分解成水和一氧化碳,芳族物质被甲醇烷基化从而产生具有9或更多个碳原子的不期望的芳族物质,以及产生焦炭、甲烷、一氧化碳和二氧化碳的其它不期望的反应。当由氧化烃进料产生时,这些竞争性动力学和不期望的反应为进一步最大化芳族物质选择性带来了障碍。仍然存在对提供改进的由含氧化的进料生产芳族物质的方法的需求。
发明概述
本发明通过提供利用具有多个区的反应器来改进由氧化烃进料(例如,甲醇)的转化芳族物质收率的方法而解决了这样的需求。已发现,通过准备每个区,从而以令人惊奇的有利的顺序相对于一种反应来说促进另一种,来实施转化工艺中包括的各种反应的竞争性动力学。这样做带来了芳族物质和烯烃总体的改进的收率;期望芳族物质和烯烃,比如对二甲苯、乙烯和/或丙烯的改进的收率;降低的较不期望的副产物,比如甲烷、CO、CO2、C9+芳族物质和/或焦炭的产生;或它们的组合。
这样的氧化烃转化工艺包含若干步骤。第一,使氧化烃进料与第一催化剂在反应器的第一区反应以产生包含烯烃、链烷烃和芳族物质的第一混合物。第二,使第一混合物与第二催化剂在反应器的第二区反应以将至少一部分第一混合物的烯烃转化为芳族物质并产生包含烯烃、链烷烃和芳族物质的第二混合物。第二混合物中芳族物质的重量浓度大于第一混合物中芳族物质的重量浓度。第一和第二催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的过渡金属元素。最后,将第二混合物作为反应器流出物导走。
氧化烃转化工艺还可包含以下步骤。第一,使反应氧化烃进料与第一催化剂在反应器的第一区以产生包含烯烃、链烷烃和芳族物质的第一混合物。第二,使第一混合物与第二催化剂在反应器的第二区反应以将至少一部分第一混合物的烯烃转化为芳族物质并产生包含烯烃、链烷烃和芳族物质的第二混合物。第二混合物中芳族物质的重量浓度大于第一混合物中芳族物质的重量浓度。第一和第二催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的过渡金属元素。第三,使第二混合物与第三催化剂在反应器的第三区反应以将至少一部分第二混合物的链烷烃转化为不饱和的烃并产生包含烯烃、链烷烃和芳族物质的第三混合物。第三催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的元素。最后,将第三混合物作为反应器流出物导走。
附图简述
图1描绘了具有N个区的反应器的总体配置。
图2展示了分区的氧化烃转化工艺。
图3描述了作为分区的氧化烃转化工艺的一步法的进一步分离。
图4、5和6为展示氧化烃转化方法的产物分布的表。
具体说明
本发明提供了利用具有多个区的反应器来改进由氧化烃进料,例如甲醇的转化的芳族物质的收率的方法。为了本申请的目的,术语“区”是指反应器内的进行期望反应的位置。例如,“链烷烃脱氢区”是反应器内用于进行链烷烃脱氢反应的位置。
在氧化烃进料转化成芳族物质和烯烃期间发生的主反应为a)烃池机理,b)烯烃脱氢环化,c)链烷烃脱氢,d)甲醇分解和e)芳族物质通过甲醇烷基化。烃池反应由氧化烃比如甲醇脱氢为相应的醚(甲醚对甲醇)等其它初始物质来最先开始。这些初始物质催化剂孔内积累以形成烃池。烃池内的物质与另外的氧化烃进料(或相应的醚)继续反应以形成烯烃、链烷烃、一些芳族物质和不期望的焦炭。烯烃脱氢环化包括非环状烃的脱氢和环化以产生具有至少一个环状结构的烃。该环状结构可以是饱和的或不饱和的,其中不饱和的结构包括芳族结构。链烷烃脱氢是指从链烷烃除去氢以形成不饱和的烃,例如烯烃。甲醇分解是甲醇变水和一氧化碳的不期望的转化。通过甲醇的芳族烷基化是指将烷基比如甲基醇(或甲醇)加入芳族环分子。虽然苯和甲苯到二甲苯的烷基化是期望的,但二甲苯和更高C9+芳族物质的烷基化不是。因此,当二甲苯或C9+芳族物质存在时,芳族烷基化反应是不期望的。C9+芳族物质为含有9或更多个碳原子的包含苯环的分子。
这些反应可的竞争性动力学通过采用具有多个区的反应器的方法来实施,其中每个区被设计成相对于一种反应来说更促进另一种反应。在依次区中相对于一种反应来说更有利于另一种或多种期望的氧化烃转化成芳族物质的反应,可以带来芳族物质和烯烃总体上的改进的收率;期望芳族物质和烯烃,比如对二甲苯、乙烯和/或丙烯的改进的收率;减少产生较不期望的副产物,比如甲烷、CO、CO2、C9+芳族物质和/或焦炭;或它们的组合。
已发现,在具有至少促进MTG反应的第一区和促进烯烃脱氢环化反应的第二区的反应器中反应氧化烃的方法,提高芳族和烯烃收率并降低不期望的副产物。不受任何理论束缚,据信,在第一区中有利于MTG反应,消耗了甲醇和减少了甲醇分解的量,甲醇分解当甲醇存在于该反应区中时会发生,这促进了烯烃脱氢环化。再据信,通过避免甲醇分解,更多的甲醇(或其它氧化烃进料)可用于到芳族物质和烯烃的转化。另外,据信,在第一区中有利于由甲醇产生烃池反应产物,减少了用于芳族烷基化的后续区中可用的形成不期望的C9+芳族物质的甲醇的量。
因此,合适的反应器可以具有至少2个,至少3个,或至少4个区。通常,图1展示了具有N个区的反应器。反应器可以具有分别至少烃池区和烯烃脱氢环化区。反应器可具有促进氧化烃、比如甲醇转化成烯烃、芳族物质和链烷烃,并最小化甲醇分解成一氧化碳的烃池区。另外,该反应器可具有烯烃脱氢环化区以促进烃池区产生的烯烃转化成芳族物质。任选地,该反应器可以具有链烷烃脱氢区以促进未反应的链烷烃转化成不饱和的烃。例如,反应器可以分别具有至少烃池区、烯烃脱氢环化区和链烷烃脱氢区。
与在相似条件下操作的单区反应器相比,具有至少烃池区然后是烯烃脱氢环化区的反应器在反应器的烃流出物中可以具有多了≥3wt%,例如≥5wt%,≥7wt%,或≥10wt%的芳族物质。具有至少烃池区然后是烯烃脱氢环化区的反应器在反应器流出物中可以具有≥50wt%,例如≥53wt%,≥55wt%,或≥60wt%芳族物质,基于该流出物的重量计。与在相似条件下条件的单区反应器相比,具有至少烃池区然后是烯烃脱氢环化区的反应器可以具有少了≥5wt%,例如≥10wt%,≥15wt%,或≥20wt%的产生的焦炭。与在相似条件下条件的单区反应器相比,具有至少烃池区然后是烯烃脱氢环化区的反应器可以具有少了≥3wt%,例如≥5wt%,≥7wt%,或≥10wt%的在反应器的烃流出物中的甲烷、一氧化碳或二氧化碳。与在相似条件下条件的单区反应器相比,具有至少烃池区然后是烯烃脱氢环化区的反应器可以具有多了i)≥3wt%,例如≥5wt%,≥7wt%,或≥10wt%的在反应器流出物中的苯、甲苯和/或二甲苯芳族物质,以及i i)少了≥1wt%,例如≥3wt%,≥5wt%,或≥7wt%的在反应器流出物中的C9+芳族物质。
促进每个区中的特定反应可通过调节每个区中的条件来完成,所述条件比如温度、催化剂、催化剂制备或其任何组合。调节催化剂可以包括为每个区选择不同的已知促进期望的反应的沸石。催化剂制备可以包括用过渡金属,比如Zn、Ga或Ag改性催化剂。催化剂制备还可以包括汽蒸催化剂。在一些方面中,催化剂制备可以进一步包括用磷改性催化剂。
催化剂制备可包括用过渡金属,比如Zn、Ga或Ag改性分子筛或沸石催化剂。另外,催化剂制备可包括改变主族过渡金属和副族过渡金属的量和/或比例。已发现,用过渡金属,比如Zn、Ga或Ag改性分子筛或沸石催化剂,可以提高产生芳族物质。不受任何理论束缚,据信,用过渡金属改性催化剂促进了烯烃脱氢环化反应,因为引入脱氢功能去除了H2形式的氢。已进一步发现用过渡金属改性催化剂也促进了不期望的甲醇分解反应。
用过渡金属改性的分子筛或沸石催化剂可以在有效的汽蒸条件下进行汽蒸。催化剂的汽蒸可以对催化剂具有各种影响。汽蒸催化剂具有类似于使催化剂老化的影响,从而可以使加工轮次期间早期发生的催化剂活性改变降低或最小化。这包括降低或最小化催化剂的初始裂解活性。不受任何特定理论束缚,据信,汽蒸金属改性的转化催化剂可以改进改性金属在催化剂上的分散。另外,当转化催化剂是新和成的或“新鲜的”,该催化剂由于在催化剂上存在额外的酸性位点而可能具有相对来说高裂解活性。在转化反应前汽蒸催化剂一段时间,可以减少酸性位点的数量。这样的改进的分散和降低的酸性有利于烃池反应并减少了形成副产物,比如碳氧化物或焦炭的氧化烃进料的损失。
制备催化剂可进一步包括用磷改性经汽蒸的、金属改性的催化剂。在一些方面中,除了提供芳族物质的改进的收率,用磷改性催化剂还可以改进在加工轮次期间的长期催化剂的稳定性。
因此,反应器可包含至少具有第一催化剂的第一区(烃池区)和具有第二催化剂的第二区(烯烃脱氢环化区)。优选地,第一催化剂包含汽蒸的、金属改性的含磷催化剂,以及第二催化剂包含新鲜的或未经汽蒸的催化剂。更优选地,第一催化剂包含经汽蒸的、金属改性的含磷催化剂,以及第二催化剂包含新鲜的或未经汽蒸的金属改性的催化剂。
备选地或除了以上制备,反应器可具有在有利于特定反应的不同的温度下操作的多个区。较高的温度相信能提高芳族物质的收率,但也提高了不期望的副产物,比如碳氧化物或焦炭的收率和降低催化剂稳定性。不受任何理论束缚,相信不期望的副产物部分地通过甲醇分解反应形成。因此,反应器可包含至少在300℃-450℃的温度操作的第一区和在400℃-550℃的温度操作的第二区。任选地,反应器可进一步包含在大于500℃的温度操作以促进进一步不饱和的烃产生反应的第三区。
反应器可以具有以上条件的组合以促进每个区中的特定反应和改进烯烃和芳族物质收率。反应器可包含至少具有第一催化剂在300℃-450℃的温度操作的第一区和具有第二催化剂在400℃-550℃的温度操作的第二区,其中所述第一催化剂包含经汽蒸的、金属改性的含磷催化剂和第二催化剂包含新鲜的或未经汽蒸的催化剂。
已进一步发现,提高用于改性第二区催化剂的过渡金属的量进一步增加了芳族产生,同时保持由分区反应器方式提供的降低的甲烷、焦炭、CO、CO2和C9+芳族物质产生的益处。与在相似条件下操作的在催化剂中具有相同量的过渡金属的第一和第二区相比,反应器在第二区催化剂中具有与第一区催化剂相比浓度高至少>1wt%的过渡金属,可以在反应器流出物中具有多≥3wt%,例如≥5wt%,≥7wt%,或≥10wt%的芳族物质。据信,这些催化剂的金属组分既促进不期望的甲醇分解又促进期望的烯烃脱氢环化。有利地,甲醇经由第一区的烃池反应转化,减少了可用于第二区中的甲醇分解的甲醇的量。第一区用比第二或更靠后的区更少量的过渡金属改性。此外,在第二区催化剂中使用较高量的过渡金属,在甲醇已转化成期望的中间烃池产物后,能够提高经由脱氢环化反应的芳族形成。
因此,反应器可包含至少具有第一催化剂的第一区(烃池区)和具有第二催化剂的第二区(烯烃脱氢环化区)。第一催化剂可用0-5wt%过渡金属改性。第二催化剂可用1-20wt%改性。优选地,第一催化剂包含经汽蒸的、金属改性的含磷催化剂和第二催化剂包含新鲜的(未经汽蒸的)金属改性的含磷催化剂,其中所述第二催化剂与第一催化剂相比具有多了≥2wt%,例如≥4wt%,≥6wt%,≥10wt%,≥15wt%,或至多20wt%的过渡金属。任选地,第二催化剂包含经汽蒸的、金属改性的含磷催化剂,其中所述第二催化剂与第一催化剂相比具有多了≥2wt%,例如≥4wt%,≥6wt%,≥10wt%,≥15wt%,或至多20wt%的过渡金属。
以上说明不意图排除提供了相对于形成碳氧化物和焦炭更促进由氧化烃产生烯烃和芳族的至少第一区和促进脱氢环化以形成甚至更多芳族物质的至少第二区的其它条件、催化剂和/或催化剂制备的组合。
催化剂
这里使用的催化剂包含分子筛和第2-14族元素,优选第8-14族元素,或分子筛与来自元素周期表上述族的金属的组合。合适的催化剂描述于临时美国专利公布No.2015/0175498和2015/0175499,此二者通过引用全文并入本申请。催化剂可以任选地进一步包含磷和/或镧和/或提供结构稳定化的元素周期表第1-2族和/或第13-16族的其它元素。就此而言,术语“包含”还可以意指,催化剂可以包含分子筛和第2-14族元素或来自相同族的元素组合(和任选地磷和/或镧和/或第1-2族和/或第13-16族的其它元素)的物理的或化学的反应产物。在本说明书中,对元素的族号的引述对应于当前的IUPAC元素周期表编号方案。任选地,催化剂还可包含填料或粘合剂并可结合载体以形成淤浆。
包含分子筛的催化剂可以通过第2-14族金属以任何方便的方式改性。用金属改性催化剂的典型的方法包括浸渍(比如通过incipient wetness),离子交换,通过沉淀来沉积和沉积由催化剂和/或催化剂载体负载的金属的任何其它方便的方法。
在各种方面中,分子筛占催化剂的≥10.0wt%。催化剂中分子筛的量的上限可为10.0wt%-100.0wt%。催化剂中分子筛的量的下限可为10.0wt%-100.0wt%。
本文中使用的术语“分子筛”是指具有多孔结构的结晶或非结晶材料。微孔分子筛典型地具有直径为≤约2.0nm的孔。中孔分子筛典型地具有直径为约2-约50nm的孔。大孔分子筛具有直径为>50.0nm的孔。孔直径的上限可为1.00×104nm-5.0nm。孔直径的下限可为5.00×103nm-1.0nm或更低。
另外或备选地,可用于这里的一些分子筛通过约1-约12的约束指数来描述。约束指数范围的上限可为12.0-2.0。约束指数范围的下限可为11.0-1.0。约束指数如描述于美国专利No.4,016,218中那样确定,该方法的详细内容通过引用并入本申请。
具体的分子筛为沸石类材料。沸石类材料为结晶或类结晶材料。一些沸石为包含[SiO4]和[AlO4]单元的硅铝酸盐。其它沸石为具有包含[AlO4]和[PO4]单元的结构的铝磷酸盐(AlPO)。再其它的沸石为包含[SiO4]、[AlO4]和[PO4]单元的硅铝磷酸盐(SAPO)。
可用于这里的SAPO和AlPO分子筛的非限制性实例包括以下中的一种或其组合:SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AlPO-5,AlPO-11,AlPO-18,AlPO-31,AlPO-34,AlPO-36,AlPO-37,AlPO-46和它们的含金属的分子筛。这些中,特别有用的分子筛为以下中的一种或其组合:SAPO-18,SAPO-34,SAPO-35,SAPO-44,SAPO-56,AlPO-18,AlPO-34以及其含有金属的衍生物,比如SAPO-18,SAPO-34,AlPO-34,AlPO-18和其含有金属的衍生物中的一种或其组合,特别是SAPO-34,AlPO-18和其含有金属的衍生物中的一种或其组合。
另外或备选地,可用于这里的分子筛可由Si与Al的比例来表征。在具体实施方案中,可用于这里的分子筛包括Si/Al比为约10-200,优选约10-80,更优选约20-60和最优选约30-55的那些。
在一种实施方案中,分子筛为内生物质,其在一种分子筛组成内具有两个或更多个不同的结晶相。具体来说,内生分子筛描述于美国专利申请公布No.2002-0165089和1998年4月16日公开的国际公布No.WO 98/15496,此二者通过引用全文并入本申请。
可用于本发明的具体的分子筛包括ZSM-5(美国专利No.3,702,886和再颁专利29,948);ZSM-11(美国专利No.3,709,979);ZSM-12(美国专利No.3,832,449);ZSM-22(美国专利No.4,556,477);ZSM-23(美国专利No.4,076,842);ZSM-34(美国专利No.4,079,095);ZSM-35(美国专利No.4,016,245);ZSM-48(美国专利No.4,397,827);ZSM-57(美国专利No.4,046,685);和ZSM-58(美国专利No.4,417,780)。以上文献的全部内容通过引用并入本申请。其它有用的分子筛包括MCM-22,PSH-3,SSZ-25,MCM-36,MCM-49或MCM-56,其中MCM-22。再其它分子筛包括沸石T、ZK5、毛沸石和菱沸石。
表征沸石(或其它分子筛)的另一种选择是基于沸石中环通道的特性。沸石中的环通道可以基于包含于形成概通道的环结构中的原子数量来限定。在一些方面中,沸石可以包括至少一个基于10元环的环通道。在这样的方面中,沸石优选不具有任何基于大于10元环的环的环通道。具有10元环通道但不具有更大尺寸的环通道的合适的骨架结构的实例包括EUO,FER,IMF,LAU,MEL,MFI,MFS,MTT,MWW,NES,PON,SFG,STF,STI,TON,TUN,MRE和PON。
催化剂还包含选自元素周期表第2-14族,优选第8-14族的至少一种金属,比如至少两种金属(即双金属的)或至少三种金属(即三金属的)。典型地,第2-14族元素的总重量≥0.1wt%,基于催化剂的总重量。典型地,第2-14族元素的总重量≤约20.0wt%,基于催化剂的总重量。因此,加入分子筛的第2-14族元素的量的范围的上限可为20.0wt%-0.1wt%。加入分子筛的第2-14族元素的量的范围的下限可为20.0wt%-0.1wt%。当然,第2-14族元素的总重量不应包括归属于分子筛自身的量。
另外或备选地,在一些方面中,催化剂还可以包括磷和/或镧和/或第1-2族和/或第13-16族的其它元素中的至少一种,比如至少两种这样的元素或至少三种这样的元素。典型地,磷和/或镧和/或第1-2族和/或第13-16族的其它元素的总重量为≥0.1wt%,基于催化剂的总重量。典型地,磷和/或镧和/或第1-2族和/或第13-16族的其它元素的总重量为≤约10.0wt%,基于催化剂的总重量。因此,加入分子筛的磷和/或镧和/或第1-2族和/或第13-16族的其它元素的量的范围的上限为可为10.0wt%-0.1wt%;和加入分子筛的磷和/或镧和/或第1-2族和/或第13-16族的其它元素的量的范围的下限可为10.0wt%-0.1wt%。当然,加入分子筛的磷和/或镧和/或第1-2族和/或第13-16族的其它元素的总重量不应包括归属于分子筛自身的量。
为了本说明书和权利要求的目的,元素周期表族号的编号方案对应于当前IUPAC编号方案。因此,“第4族金属”为元素周期表第4族的元素,例如Hf、Ti或Zr。更优选的分子筛为SAPO分子筛和金属替换的SAPO分子筛。在特定实施方案中,可使用一种或多种第1族元素(例如Li,Na,K,Rb,Cs,Fr)和/或第2族元素(例如Be,Mg,Ca,Sr,Ba和Ra)和/或磷和/或镧。还可使用一种或多种第7-9族元素(例如Mn,Tc,Re,Fe,Ru,Os,Co,Rh和Ir)。第10族元素(Ni,Pd和Pt)较不常用于形成烯烃和芳族物质的应用中,因为第10族元素的组合在氢的存在下可以往往导至芳族物质和/或烯烃的饱和化。在一些实施方案中,可使用一种或多种第11族和/或第12族元素(例如Cu,Ag,Au,Zn和Cd)。在再其它实施方案中,可使用一种或多种第13族元素(B,Al,Ga,In和Tl)和/或第14族元素(Si,Ge,Sn,Pb)。在优选的实施方案中,金属选自Zn,Ga,Cd,Ag,Cu,P,La,或它们的组合。在另一优选的实施方案中,金属为Zn,Ga,Ag,或它们的组合。
具体的分子筛及其含金属的衍生物已被详细描述于许多出版物中,包括例如,美国专利No.4,567,029(MeAPO,其中Me为Mg,Mn,Zn,或Co),美国专利No.4,440,871(SAPO),欧洲专利申请EP-A-0 159 624(E1APSO,其中E1为Be,B,Cr,Co,Ga,Fe,Mg,Mn,Ti,或Zn),美国专利No.4,554,143(FeAPO),美国专利No.4,822,478,4,683,217,4,744,885(FeAPSO),EP-A-0 158 975和美国专利No.4,935,216(ZnAPSO,EP-A-0 161 489(CoAPSO),EP-A-0 158976(ELAPO,其中EL为Co,Fe,Mg,Mn,Ti,或Zn),美国专利No.4,310,440(AlPO4),美国专利No.5,057,295(BAPSO),美国专利No.4,738,837(CrAPSO),美国专利No.4,759,919和4,851,106(CrAPO),美国专利No.4,758,419,4,882,038,5,434,326和5,478,787(MgAPSO),美国专利No.4,554,143(FeAPO),美国专利No.4,686,092,4,846,956和4,793,833(MnAPSO),美国专利No.5,345,011和6,156,931(MnAPO),美国专利No.4,737,353(BeAPSO),美国专利No.4,940,570(BeAPO),美国专利No.4,801,309,4,684,617和4,880,520(TiAPSO),美国专利No.4,500,651,4,551,236和4,605,492(TiAPO),美国专利No.4,824,554,4,744,970(CoAPSO),美国专利No.4,735,806(GaAPSO)EP-A-0 293 937(QAPSO,其中Q为骨架氧化物单元[QO2]),以及美国专利No.4,567,029,4,686,093,4,781,814,4,793,984,4,801,364,4,853,197,4,917,876,4,952,384,4,956,164,4,956,165,4,973,785,5,241,093,5,493,066和5,675,050,所有这些文献都通过引用全文并入本申请。其它分子筛包括描述于R.Szostak,Handbook of Molecular Sieves,Van Nostrand Reinhold,New York,N.Y.(1992)中的那些,其通过引用全文并入本申请。
在一些方面中,包含由第2-14族元素,优选由第8-14族元素,和/或第1-2族,第13-16族,镧和/或磷改性的分子筛的催化剂为基于ZSM-5的分子筛。在一些优选的方面,第2-14族元素可以选自第11-13族,比如Zn、Ga、Ag或它们的组合。在其它方面中,第2-14族元素可以为来自第11-13族的两种或更多种元素,比如第11-13族中相同族的两种或更多种元素。在再其它方面,分子筛可以用第2-14族的至少一种元素,比如第2-14族的至少两种元素或至少三种元素改性,该至少两种元素或至少三种元素任选地来自第2-14族中相同的族。在任何以上方面,包含分子筛的催化剂可以用第1-2族、第13-16族的元素、镧和/或磷进一步改性。
合成分子筛或改性分子筛的各种方法描述于美国专利No.5,879,655(控制模板剂与磷的比例),美国专利No.6,005,155(使用改性剂但没有盐),美国专利No.5,475,182(酸提取),美国专利No.5,962,762(用过渡金属处理),美国专利No.5,925,586和6,153,552(磷改性的),美国专利No.5,925,800(整块负载的),美国专利No.5,932,512(氟处理的),美国专利No.6,046,373(电磁波处理或改性的),美国专利No.6,051,746(多核芳族改性剂),美国专利No.6,225,254(加热模板),公布于2001年5月25日的国际专利申请WO 01/36329(表面活性剂合成),公布于2001年4月12日的国际专利申请WO 01/25151(分级的酸加入),公布于2001年8月23日的国际专利申请WO 01/60746(硅油),公布于2002年5月9日的美国专利申请公布No.2002-0055433(冷却分子筛),美国专利No.6,448,197(金属浸渍,包括铜),美国专利No.6,521,562(导电性微填料)和2002年8月22日公布的美国专利申请公布No.2002-0115897(冻干分子筛),这些文献全部通过引用全文并入本申请。
在利用催化剂将氧化烃转化成芳族物质和烯烃之前,催化剂可以在有效的汽蒸条件下进行汽蒸。有效的汽蒸条件的总体实例包括将催化剂在约400℃-约850℃,或约400℃-约750℃,或约400℃-约650℃,或约500℃-约850℃,或约500℃-约750℃,或约500℃-约650℃的温度暴露于包含蒸汽的气氛。该气氛可以包含少至1vol%的水和至多100vol%水。化剂可以暴露于蒸汽任何方便的时间周期,比如约10分钟(0.15小时)-约48小时。在一些方面中,催化剂暴露于蒸汽的时间为至少约0.25小时,比如约0.25小时-约8小时,或约0.25小时-约4小时,或约0.25小时-约2小时,或约0.5小时-约8小时,或约0.5小时-约4小时,或约0.5小时-约2小时,或约1小时-约8小时,或约1小时-约4小时,或约1小时-约2小时。
转化工艺
现将描述在具有多个区的反应器中将氧化烃进料转化成芳族物质和烯烃的方法。氧化烃进料可以包含脂族醛类、羧酸类、碳水化合物类、醇类、醚类、缩醛类及类似物。优选地,氧化烃进料包含任何具有1-4个碳原子的一元醇或得自这些醇的醚。因此,甲醇、乙醇、正丙醇、异丙醇、正丁醇、仲丁醇和异丁醇可单独或与得自这些醇的醚掺混使用。类似的,所述醚,例如甲乙醚可类似地使用。尤其优选的进料为甲醇、甲醚及其混合物。任选地,氧化烃进料还含有C1-C5烷烃类,比如甲烷和/或丙烷,以将至少一部分烷烃类和主要的氧化烃转化成芳族物质。另外或备选地,进料可以用蒸汽在任何方便的时间稀释,比如在进入转化反应器之前或进入转化反应器之后。优选的进料(排除任何用蒸汽的任选稀释)的实例包括基本上为甲醇的进料,基本上为甲醚的进料,基本上为甲醇和甲醚的进料,或包含至少约50wt%的甲醇和/或甲醚,比如至少约60wt%或至少约70wt%的进料。基本上由一种化合物(或多种化合物)组成的进料为这样的进料,其中至少90wt%为该一种化合物(或多种化合物),或至少95wt%为该化合物,或至少98wt%为该化合物,或至少99wt%为该化合物。对于少于100wt%甲醇和/或甲醚的进料(排除任何用蒸汽的任选稀释)的进料,该进料中的其它烃化合物(和/或烃质化合物)可以包括链烷烃、烯烃、芳族物质以及其混合物。
进料可以暴露于任何方便类型的反应器中的转化催化剂,该反应器可用上述在各区中促进特定反应的区来配置。合适的反应器配置包括固定床反应器、流化床反应器(比如ebullating床反应器)、升气管反应器、移动床反应器,以及其它类型的反应器,其中所述进料可以以受控的方式暴露于催化剂。优选的反应器配置为具有至少2、至少3或至少4个反应区的固定床反应器。
氧化烃进料可以通过将该进料在有效的转化条件下暴露于转化催化剂而转化成芳族物质(包括对二甲苯)和烯烃。用于将含氧化的烃转化成芳族物质和烯烃的通常转化条件包括压力约100kPaa(千帕绝压)-约2500kPaa,或约100kPaa-约2000kPaa,或约100kPaa-约1500kPaa,或约100kPaa-约1200kPaa。相对于催化剂(重量)的量进料(重量)量可以表达为重时空速(WHSV)。合适的重时空速包括约0.1hr-1-约20hr-1,或约1.0hr-1-约10hr-1的WHSV。
通常,转化反应的温度可以根据用于转化的催化剂的性质而变化。合适的反应温度包括约300℃-约600℃,或约400℃-约600℃,或约400℃-约575℃,或约425℃-约600℃,或约425℃-约575℃,或约450℃-600℃,或约450℃-约575℃,或约475℃-约600℃,或约475℃-约575℃,或约500℃-约600℃,或约500℃-约575℃,或约525℃-约575℃的温度。
参考展示了转化工艺的图2,氧化烃进料105可以引入具有至少2个含有转化催化剂的区的反应器110。蒸汽(未示出)可以任选地也与氧化烃进料105一起引入反应器110。氧化烃进料105与第一催化剂106在反应器110的第一区101反应。调节第一区101中的条件以促进甲醇到汽油的反应从而产生包含烯烃、链烷烃和芳族物质的第一混合物111。第一混合物111然后与反应器的第二区102中的第二催化剂107反应以促进烯烃脱氢环化反应,将至少一部分第一混合物的烯烃转化成芳族物质并产生包含烯烃、链烷烃和芳族物质的第二混合物112。第二混合物的芳族物质重量百分比大于第一混合物的芳族物质重量百分比。
任选地,第二混合物112可与反应器110的第三区103中的第三催化剂108反应,将至少一部分第二混合物的链烷烃转化成不饱和的烃并产生包含烯烃、链烷烃和芳族物质的第三混合物113。第三混合物的烯烃加芳族物质重量百分比大于第二混合物中的烯烃加芳族物质重量百分比。
包含第二混合物112(如果反应器具有两个区)、第三混合物113(如果反应器具有三个区)或第N混合物(如果反应器具有个N区)的反应器流出物115被导走以分离成期望的产物。
现参考图3,其中相同的组件具有附图标记,在进行转化反应后,反应器流出物115可以在骤冷阶段120被骤冷以便于流出物基于流出物的相的分离。骤冷可以足以允许从流出物作为液体除去水124。含有4个或更少的碳的轻质有机物作为轻质气相料流126除去。乙烯和丙烯可以接下来在一个或多个回收工艺160中从该轻质料流126分离。流出物115的剩余部分可以基本上对应于在标准温度和压力下为液体122的烃。然后可以进行系列分离以分离出期望的产物。例如,对液体流出物122的第一分离阶段130可以将C7-(较低沸点)化合物132与C8+(较高沸点)化合物134分离。在第一分离130中,对二甲苯和其它C8+分子包含于较高沸点级分134中,而C7-化合物(苯,甲苯)和其它较低沸点化合物比如含氧化合物则形成较低沸点级分132。在这样的讨论中,C7-产物料流132被定义为这样的产物料流,其中至少50wt%的该烃对应于具有7个或更少的碳的烃。类似地,C8+产物料流134被定义为这样的产物料流,其中至少50wt%的该烃对应于具有至少8个碳的烃。该较低沸点级分132还可含有多种非芳族化合物。
然后C8+级分134可以在第二分离阶段140中进一步分离成C8级分144和C9+级分142。C9+级分142典型地主要为芳族物质。在这样的讨论中,C8产物料流144被定义为这样的产物料流,其中至少50wt%的该烃对应于具有8个碳的烃。类似地,C9+产物料流142被定义为这样的产物料流,其中至少50wt%的该烃对应于具有至少9个碳的烃。在一些方面中,如果使用了蒸馏塔,则第一分离130和第二分离140可以在单一蒸馏或分馏工艺中合并以形成C7-、C8和C9+级分(分别为132、144和142)。在一些方面中,分离以形成C7-、C8和C9+级分可以对应于任何方便的蒸馏步骤数量,从而改进对期望的C8级分的回收。
转化产生的液体流出物的C8级分144典型地除了对二甲苯外包含至少一部分二甲苯异构体。邻位和间位二甲苯异构体152可以在阶段150中与对二甲苯异构体154通过任何方便的方法,比如利用结晶来分离异构体或通过选择性吸附来分离。任选地,C8级分144可以在二甲苯异构化单元(未示出)中被处理,然后回收对二甲苯154。这样可以相对于二甲苯异构化之前的浓度提高C8级分144中对二甲苯的浓度。任选地,分离的邻位和间位二甲苯152可以再循环回(未示出)一个或多个蒸馏步骤以进一步回收任何剩余的对二甲苯和/或以进一步异构化以形成更多的对二甲苯。
实施例1
为了比较的目的,在单区化反应器和在多区化反应器中在相似条件下进行氧化烃转化工艺。结果总结于图4和图5中。进行转化反应以实现甲醇进料的100%转化。用于图4和图5中的转化反应的催化剂为改性为包含1wt%Zn的粘结的ZSM-5催化剂。图4和图5中的A轮(比较的)对应于含有原样或“新鲜的”催化剂的单区化反应器。B轮为这样的反应器,其具有第一区,该第一区含通过在转化反应中使用前汽蒸24小时来制备的相同的ZSM-5催化剂,和含相同的新鲜的催化剂的第二区。C轮(比较的)为含有经汽蒸24小时的相同的ZSM-5催化剂的单区化反应器。在图4和图5中,结果表示为每种产物类型的分组柱形图,其中柱形图以A-B-C的顺序显示,表示第一数据组(链烷烃)和最后的数据组(焦炭)。
图4显示了单区和多区化反应器的转化反应器流出物中的平均产物分布。得到图4中的结果的转化反应是在500℃,15psig和重时空速(WHSV)2hr-1进行的。新鲜催化剂的比较工艺A轮显示了高酸性和相对较低金属(Zn)分散的效果。A轮最大芳族物质收率为48wt%。显著浓度的二氧化碳(CO2)和一氧化碳(CO)表明甲醇分解的严重性。强酸性效果反映在高甲烷(CH4)和结焦(结焦栏的比例尺为x10,因此A轮焦炭实际为在A轮中的2%焦炭)。经24hr汽蒸的催化剂的比较工艺C轮产生由较好金属分散带来的较少CO2和CO。另外,C轮单区经汽蒸的催化剂产生较少甲烷和焦炭以及更高的烯烃,证明了降低的催化酸性带来降低的甲醇分解。示例的B轮包括在第一区中的汽蒸的催化剂(较低的酸性,更高的分散)和在第二区中的新鲜的催化剂(较高的酸性,较低的分散)。B轮结果表明芳族物质的显著提高(61wt%)且烯烃收率类似于A轮新鲜的催化剂(更烯烃转化成芳族物质)。当在相同条件下操作时,B轮两区工艺流出物具有比任意单区的比较工艺A轮或C轮的流出物大≥10wt%的更多的芳族物质。另外,两区的B轮工艺产生的链烷烃、甲烷、CO、CO2和焦炭收率类似于C轮汽蒸的催化剂(较少甲醇转化成不期望的副产物)。值得注意的是,图4中显示的焦炭的量代表在工艺运行结束后测量的在催化剂上的焦炭的量。
图5含有关于图4以上总结的轮次A、B和C的单区和多区化反应器的转化反应器流出物中产生的芳族物质的分布。示例的B轮的结果表明,与A轮和C轮中单一床的比较反应器相比,期望芳族物质苯、甲苯和二甲苯的浓度提高和不期望的C9+芳族物质浓度降低。
实施例2
氧化烃转化工艺在多区化反应器中在相似的条件下进行。结果总结于图6。进行转化反应以实现甲醇进料的100%转化。描述于图6的三轮运行中多区化反应器的第一区中使用的催化剂为改性为包含1wt%Zn的粘结的ZSM-5催化剂,其通过在转化反应中使用前汽蒸24小时来制备。反应器的第二区含有改性为包含提高量的Zn的粘结的ZSM-5催化剂。A轮、B轮和C轮的第二区催化剂分别用1wt%Zn、3wt%Zn和5wt%Zn改性。第二区催化剂也通过在转化反应中使用前汽蒸24小时来制备。在图6中,结果表示为每种产物类型的分组柱形图,其中柱以A-B-C的顺序表示,如表示第一数据组(链烷烃)和最后一组数据组(CO2)那样。
图6含有多区化反应器的转化反应器流出物的平均产物分布。得到图6中的结果的转化反应在450℃、15psig和1hr-1的重时空速(WHSV)进行。在反应器流出物中的芳族物质浓度随着第二区催化剂中提高的Zn含量而提高。C轮(在第二区催化剂中5wt%的Zn)具有比A轮(在第二区催化剂1wt%的Zn)提高8wt%的芳族物质浓度。另外,不期望的反应产物甲烷(CH4)、一氧化碳(CO)和二氧化碳(CO2)的浓度保持在低位,即低于3wt%。此外,B轮和C轮流出物中的较低的链烷烃浓度低于A轮,C轮具有比A轮低6wt%的链烷烃浓度。
虽然已通过具体实施方案描述了本发明,但本发明不限于此。在具体条件下操作的合适的替代方式/变化方式对于本领域技术人员来说应该是显然的。因此,意图将以下权利要求解释为覆盖如同落入本发明真实的主旨/范围内的所有这样的替代方式/变化方式。

Claims (22)

1.氧化烃的转化方法,包括:
a)使氧化烃进料与第一催化剂在反应器的第一区反应以产生包含烯烃、链烷烃和芳族物质的第一混合物;和
b)使第一混合物与第二催化剂在反应器的第二区反应以将至少一部分第一混合物的烯烃转化为芳族物质并产生包含烯烃、链烷烃和芳族物质的第二混合物;其中,第二混合物中芳族物质的重量浓度大于第一混合物中芳族物质的重量浓度,并且第一和第二催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的过渡金属元素;
c)将第二混合物作为反应器流出物导走。
2.权利要求1所述的方法,其中所述第一区的温度为300℃-450℃和第二区的温度为400℃-550℃。
3.权利要求1-2中任一项所述的方法,其中第一区中的第一催化剂通过以下方式制备:在执行步骤(a)之前在至少1vol%水的存在下在约400℃的温度汽蒸该第一催化剂至少0.25小时。
4.权利要求1-3中任一项所述的方法,其中第一催化剂和第二催化剂通过以下方式制备:在执行步骤(a)之前在至少1vol%水的存在下在约400℃的温度汽蒸该第一和第二催化剂至少0.25小时。
5.权利要求1-4中任一项所述的方法,其中所述第一和第二催化剂包含ZSM-5和至少一种各自选自元素周期表第2-14族的过渡金属元素。
6.权利要求5所述的方法,其中所述至少一种选自元素周期表第2-14族的元素为Zn、Ga或Ag。
7.权利要求1-6中任一项所述的方法,其中所述反应器在100kPaa-2500kPaa的压力和0.1hr-1-20hr-1的重时空速操作。
8.权利要求1-7中任一项所述的方法,其中所述第一催化剂进一步包含至少约0.1wt%的磷。
9.权利要求1-8中任一项所述的方法,其中所述第二催化剂与第一催化剂相比具有高至少>1wt%的过渡金属浓度。
10.权利要求1-9中任一项所述的方法,其中所述第二催化剂进一步包含至少约0.1wt%的磷。
11.权利要求1-10中任一项所述的方法,其中所述氧化烃进料包含≥90.0wt%甲醇和/或甲醚。
12.权利要求1-11中任一项所述的方法,进一步包括以下步骤:分离至少一部分所述反应器流出物以形成i)包含乙烯、丙烯或它们的组合的轻质产物和ii)液体流出物。
13.权利要求所述的方法12,进一步包括分离至少一部分所述液体流出物以形成C8产物料流和一种或多种C7-料流和C9+料流。
14.权利要求13所述的方法,进一步包括分离该C8产物料流以形成至少对二甲苯产物料流,该对二甲苯产物料流与该C8产物料流相比具有更高浓度的对二甲苯。
15.氧化烃的转化方法,包括:
a)使氧化烃进料与第一催化剂在反应器的第一区反应以产生包含烯烃、链烷烃和芳族物质的第一混合物;和
b)使第一混合物与第二催化剂在反应器的第二区反应以将至少一部分第一混合物的烯烃转化为芳族物质并产生包含烯烃、链烷烃和芳族物质的第二混合物;
其中,第二混合物中芳族物质的重量浓度大于第一混合物中芳族物质的重量浓度,并且第一和第二催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的过渡金属元素;
c)使来自步骤b)的第二混合物与第三催化剂在反应器的第三区反应以将至少一部分第二混合物的链烷烃转化为不饱和的烃并产生包含烯烃、链烷烃和芳族物质的第三混合物,其中所述第三催化剂包含至少一种分子筛和至少一种选自元素周期表第2-14族的元素;
d)将第三混合物作为反应器流出物导走。
16.权利要求15所述的方法,其中所述第一区的温度为300℃-450℃,第二区的温度为400℃-550℃和如存在的第三区处于大于500℃的温度。
17.权利要求15-16中任一项的方法,其中第一区中的第一催化剂通过以下方式制备:在执行步骤(a)之前在至少1vol%水的存在下在约400℃的温度汽蒸该第一催化剂至少0.25小时。
18.权利要求15-17中任一项的方法,其中第一催化剂和第二催化剂通过以下方式制备:在执行步骤(a)之前在至少1vol%水的存在下在约400℃的温度汽蒸该第一和第二催化剂至少0.25小时。
19.权利要求15-18中任一项的方法,其中所述第一和第二催化剂包含ZSM-5和至少一种各自选自元素周期表第2-14族的过渡金属元素。
20.权利要求19所述的方法,其中所述至少一种选自元素周期表第2-14族的元素为Zn、Ga或Ag。
21.权利要求15-20中任一项的方法,其中所述反应器在100kPaa-2500kPaa的压力和0.1hr-1-20hr-1的重时空速操作。
22.权利要求15-21中任一项的方法,其中所述第二催化剂与第一催化剂相比具有高至少>1wt%的过渡金属浓度。
CN201580078399.8A 2015-03-31 2015-12-07 氧化烃转化的分区方法 Active CN107428628B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562140566P 2015-03-31 2015-03-31
US62/140,566 2015-03-31
PCT/US2015/064244 WO2016160081A1 (en) 2015-03-31 2015-12-07 Oxygenated hydrocarbon conversion zoned method

Publications (2)

Publication Number Publication Date
CN107428628A true CN107428628A (zh) 2017-12-01
CN107428628B CN107428628B (zh) 2021-03-02

Family

ID=55066782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580078399.8A Active CN107428628B (zh) 2015-03-31 2015-12-07 氧化烃转化的分区方法

Country Status (4)

Country Link
US (1) US10059638B2 (zh)
CN (1) CN107428628B (zh)
SG (1) SG11201707462TA (zh)
WO (1) WO2016160081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021089049A1 (zh) * 2019-11-09 2021-05-14 洛阳维达石化工程有限公司 一种提高含氧化合物转化制低碳烯烃选择性的方法及其装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476338A (en) * 1983-06-02 1984-10-09 Mobil Oil Corporation Olefins from methanol and/or dimethyl ether
US4935568A (en) * 1988-12-05 1990-06-19 Mobil Oil Corporation Multistage process for oxygenate conversion to hydrocarbons
US6372680B1 (en) * 1999-07-27 2002-04-16 Phillips Petroleum Company Catalyst system for converting oxygenated hydrocarbons to aromatics
WO2003020667A1 (en) * 2001-08-30 2003-03-13 Exxonmobil Chemical Patents Inc. Two catalyst process for making olefin
WO2009156435A2 (en) * 2008-06-25 2009-12-30 Total Petrochemicals Research Feluy Process to make olefins and aromatics from organics
US9035120B2 (en) * 2007-07-31 2015-05-19 Total Research & Technology Feluy Use of phosphorus modified molecular sieves in conversion of organics to olefins
US20150175498A1 (en) * 2013-12-20 2015-06-25 Exxonmobil Chemical Patents Inc. Process for Converting Oxygenates to Aromatic Hydrocarbons

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US4046685A (en) 1973-07-26 1977-09-06 Desalination Systems, Inc. Simultaneous production of multiple grades of purified water by reverse osmosis
US3894104A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US3894107A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US3894103A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization reactions
US3894102A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of synthesis gas to gasoline
US3998898A (en) 1973-08-09 1976-12-21 Mobil Oil Corporation Manufacture of gasoline
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US3941871A (en) 1973-11-02 1976-03-02 Mobil Oil Corporation Crystalline silicates and method of preparing the same
US4058576A (en) 1974-08-09 1977-11-15 Mobil Oil Corporation Conversion of methanol to gasoline components
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4035430A (en) 1976-07-26 1977-07-12 Mobil Oil Corporation Conversion of methanol to gasoline product
US4079095A (en) 1976-11-04 1978-03-14 Mobil Oil Corporation Manufacture of light olefins
US4180689A (en) 1976-12-20 1979-12-25 The British Petroleum Company Limited Process for converting C3 -C12 hydrocarbons to aromatics over gallia-activated zeolite
US4397827A (en) 1979-07-12 1983-08-09 Mobil Oil Corporation Silico-crystal method of preparing same and catalytic conversion therewith
US4417780A (en) 1980-04-30 1983-11-29 Thomas & Betts Corporation Pitch transition connector
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4347395A (en) * 1981-04-13 1982-08-31 Mobil Oil Corporation Conversion of paraffinic hydrocarbons to aromatics over zeolite catalysts
US4686312A (en) 1981-12-23 1987-08-11 Mobil Oil Corporation Aromatics production
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4551236A (en) 1983-03-31 1985-11-05 Union Carbide Corporation Conversion processes with titanium-containing molecular sieves
US4500651A (en) 1983-03-31 1985-02-19 Union Carbide Corporation Titanium-containing molecular sieves
US4605492A (en) 1983-03-31 1986-08-12 Union Carbide Corporation Separation and conversion processes with titanium-containing molecular sieves
US4744885A (en) 1983-07-15 1988-05-17 Union Carbide Corporation Hydro-carbon conversion using ferroaluminophosphates
US4801364A (en) 1983-07-15 1989-01-31 Uop Separation and conversion processes using metal aluminophosphates
US4554143A (en) 1983-07-15 1985-11-19 Union Carbide Corporation Crystalline ferroaluminophosphates
US4567029A (en) 1983-07-15 1986-01-28 Union Carbide Corporation Crystalline metal aluminophosphates
US4556477A (en) 1984-03-07 1985-12-03 Mobil Oil Corporation Highly siliceous porous crystalline material ZSM-22 and its use in catalytic dewaxing of petroleum stocks
US4793984A (en) 1984-04-13 1988-12-27 Union Carbide Corporation Molecular sieve compositions
DE3584905D1 (de) 1984-04-13 1992-01-30 Uop Inc Molekularsiebzusammensetzungen.
US4738837A (en) 1984-04-13 1988-04-19 Union Carbide Corporation Chromium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4684617A (en) 1984-04-13 1987-08-04 Union Carbide Corporation Titanium-aluminum-phosphorus-silicon-oxide molecular sieves
US4846956A (en) 1984-04-13 1989-07-11 Uop Manganese-aluminum-phosphorus-silicon-oxide Molecular sieves
CA1241628A (en) 1984-04-13 1988-09-06 Brent M.T. Lok Molecular sieve compositions
US4744970A (en) 1984-04-13 1988-05-17 Union Carbide Corporation Cobalt-aluminum-phosphorus-silicon-oxide molecular sieves
US4824554A (en) 1984-04-13 1989-04-25 Uop Processes for the use of cobalt-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4940570A (en) 1984-04-13 1990-07-10 Uop Beryllium-aluminum-phosphorus-oxide molecular sieve compositions
US4935216A (en) 1984-04-13 1990-06-19 Uop Zinc-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4952384A (en) 1984-04-13 1990-08-28 Uop Molecular sieve compositions
US4793833A (en) 1984-04-13 1988-12-27 Uop Manganese-aluminum-phosphorus-silicon-oxide molecular sieves
US4759919A (en) 1984-04-13 1988-07-26 Union Carbide Corporation Chromium-aluminum-phosphorus-oxide molecular sieve compositions
US4737353A (en) 1984-04-13 1988-04-12 Union Carbide Corporation Beryllium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4686092A (en) 1984-04-13 1987-08-11 Union Carbide Corporation Manganese-aluminum-phosphorus-silicon-oxide molecular sieves
US4686093A (en) 1984-04-13 1987-08-11 Union Carbide Corporation Molecular sieve compositions with aluminum, phosphorus and at least two other elements
US4880520A (en) 1984-04-13 1989-11-14 Uop Hydrocarbon conversion process using titanium-aluminum-phosphorus-silicon-oxide molecular sieves as catalyst
US4758419A (en) 1984-04-13 1988-07-19 Union Carbide Corporation Magnesium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US5057295A (en) 1984-04-13 1991-10-15 Uop Boron-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4851106A (en) 1984-04-13 1989-07-25 Uop Process for the use of chromium-aluminum-phosphorus-oxide molecular sieve compositions
US4882038A (en) 1984-04-13 1989-11-21 Uop Process for the use of magnesium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4822478A (en) 1984-04-13 1989-04-18 Uop Iron-aluminum-phosphorus-silicon-oxide molecular sieves
US4956164A (en) 1984-04-13 1990-09-11 Uop Quinary molecular sieve compositions
US4917876A (en) 1984-04-13 1990-04-17 Uop Iron-titanium-aluminum-phosphorus-oxide molecular sieve compositions
US4973785A (en) 1984-04-13 1990-11-27 Uop Molecular sieve compositions
US4735806A (en) 1984-04-13 1988-04-05 Union Carbide Corporation Gallium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
US4781814A (en) 1984-04-13 1988-11-01 Union Carbide Corporation Molecular sieve compositions and their use in cracking/hydrocracking
US4683217A (en) 1984-04-13 1987-07-28 Union Carbide Corporation Iron-aluminum-phosphorus-silicon-oxide molecular sieves
US4801309A (en) 1984-04-13 1989-01-31 Uop Titanium-aluminum-phosphorus-silicon-oxide molecular sieves
US4956165A (en) 1984-04-13 1990-09-11 Uop Molecular sieve compositions
US4861739A (en) 1987-06-04 1989-08-29 Uop Microporous crystalline composite compositions
US4853197A (en) 1987-06-04 1989-08-01 Uop Crystalline metal aluminophosphates
US5102428A (en) * 1989-10-20 1992-04-07 Mobil Oil Corporation Integrated process for the production of diisopropyl ether and gasoline
FR2671790B1 (fr) 1991-01-18 1993-04-16 Inst Francais Du Petrole Procede de preparation de composes aluminophosphates et derives substitues de type structural vfi invention de : jean-francois joly, herve cauffriez et jean-louis guth.
US5240891A (en) 1991-12-26 1993-08-31 Patton Robert L Discrete molecular sieve and use
US5478787A (en) 1991-12-26 1995-12-26 Uop Discrete molecular sieve and use
AU667114B2 (en) 1992-05-27 1996-03-07 Exxon Chemical Patents Inc. Use of acid extracted molecular sieve catalysts in oxygenate conversion
US5879655A (en) 1992-11-02 1999-03-09 Chevron Research And Technology Company Method of making microporous non-zeolitic molecular sieves
CA2123631C (en) 1993-05-18 2005-02-22 Bettina Kraushaar-Czarnetzki Process for the isomerisation of a hydrocarbonaceous feedstock
US5345011A (en) 1993-09-20 1994-09-06 Sun Company, Inc. (R&M) New manganese catalyst for light alkane oxidation
FR2715648B1 (fr) 1994-01-31 1996-04-05 Elf Aquitaine Solides microporeux cristallisés consistant en aluminophosphates substitués par un métal et éventuellement par du silicium et appartenant au type structural Fau, leurs synthèses et applications.
US5962762A (en) 1995-12-13 1999-10-05 Sun; Hsian-Ning Use of transition metal containing small pore molecular sieve catalysts in oxygenate conversion
NO304108B1 (no) 1996-10-09 1998-10-26 Polymers Holding As En mikroporos silikoaluminofosfat-sammensetning, katalytisk materiale som omfatter denne sammensetningen og fremgangsmate for fremstilling derav, og bruken av disse for a fremstille olefiner fra metanol
US5925586A (en) 1996-12-31 1999-07-20 Exxon Chemical Patents, Inc. Phosphorus modified small pore molecular sieve catalysts, and their use in the production of light olefins
US5925800A (en) 1996-12-31 1999-07-20 Exxon Chemical Patents Inc. Conversion of oxygenates to hydrocarbons with monolith supported non-zeolitic molecular sieve catalysts
US6051746A (en) 1997-06-18 2000-04-18 Exxon Chemical Patents Inc. Oxygenate conversions using modified small pore molecular sieve catalysts
US5932512A (en) 1997-08-19 1999-08-03 Exxon Chemical Patents, Inc. Fluorination of synthesized molecular sieve catalysts for increased selectivity to ethylene during conversion of oxygenates to olefins
US6153552A (en) 1997-10-29 2000-11-28 Exxon Chemical Patents Inc. Methods for making catalysts
US6005155A (en) 1997-12-03 1999-12-21 Exxon Chemicals Patents Inc. Modification of molecular sieve catalyst for reduced methane production during conversion of oxygenates to olefins
US6046373A (en) 1998-04-29 2000-04-04 Exxon Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
US6156931A (en) 1999-03-24 2000-12-05 Uop Llc Crystalline manganese (II/III) phosphate compositions
US6225254B1 (en) 1999-06-07 2001-05-01 Exxon Mobil Chemical Patents Inc. Maintaining acid catalyst sites in sapo molecular sieves
US6503863B2 (en) 1999-06-07 2003-01-07 Exxonmobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
WO2001025150A1 (en) 1999-10-01 2001-04-12 Pop, Grigore Process for the synthesis of silicoaluminophosphate molecular sieves
CA2391954A1 (en) 1999-11-18 2001-05-25 Exxon Chemical Patents, Inc. Method for the synthesis of molecular sieves
WO2001060746A1 (en) 2000-02-16 2001-08-23 Exxonmobil Chemical Patents Inc. Treatment of molecular sieves with silicon containing compounds
US6448197B1 (en) 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
US6521562B1 (en) 2000-09-28 2003-02-18 Exxonmobil Chemical Patents, Inc. Preparation of molecular sieve catalysts micro-filtration
US6537941B2 (en) 2001-01-04 2003-03-25 Exxonmobil Chemical Patents, Inc. Rejuvenating SAPO molecular sieve by freeze drying
US6812372B2 (en) 2001-03-01 2004-11-02 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieve
CN101602643B (zh) 2009-07-24 2013-07-24 中国海洋石油总公司 一种甲醇/二甲醚转化制取乙烯丙烯联产对二甲苯的方法
CN101607864B (zh) 2009-07-24 2013-05-22 中国海洋石油总公司 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
CN101602648B (zh) 2009-07-24 2013-04-17 中国海洋石油总公司 一种甲醇/二甲醚转化制备对二甲苯的方法
CN101780417B (zh) 2010-02-10 2012-04-18 中国海洋石油总公司 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用
US9732013B2 (en) 2014-09-30 2017-08-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methanol and co-feeds

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476338A (en) * 1983-06-02 1984-10-09 Mobil Oil Corporation Olefins from methanol and/or dimethyl ether
US4935568A (en) * 1988-12-05 1990-06-19 Mobil Oil Corporation Multistage process for oxygenate conversion to hydrocarbons
US6372680B1 (en) * 1999-07-27 2002-04-16 Phillips Petroleum Company Catalyst system for converting oxygenated hydrocarbons to aromatics
WO2003020667A1 (en) * 2001-08-30 2003-03-13 Exxonmobil Chemical Patents Inc. Two catalyst process for making olefin
US9035120B2 (en) * 2007-07-31 2015-05-19 Total Research & Technology Feluy Use of phosphorus modified molecular sieves in conversion of organics to olefins
WO2009156435A2 (en) * 2008-06-25 2009-12-30 Total Petrochemicals Research Feluy Process to make olefins and aromatics from organics
CN102076639A (zh) * 2008-06-25 2011-05-25 道达尔石油化学产品研究弗吕公司 由有机物制造烯烃和芳烃的方法
US20150175498A1 (en) * 2013-12-20 2015-06-25 Exxonmobil Chemical Patents Inc. Process for Converting Oxygenates to Aromatic Hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021089049A1 (zh) * 2019-11-09 2021-05-14 洛阳维达石化工程有限公司 一种提高含氧化合物转化制低碳烯烃选择性的方法及其装置

Also Published As

Publication number Publication date
SG11201707462TA (en) 2017-10-30
WO2016160081A1 (en) 2016-10-06
US20180044260A1 (en) 2018-02-15
US10059638B2 (en) 2018-08-28
CN107428628B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US9809505B1 (en) Production of aromatics from methanol and co-feeds
US20150175499A1 (en) Conversion of Methanol to Olefins and Para-Xylene
US10173946B2 (en) Apparatus and process for producing gasoline, olefins and aromatics from oxygenates
CN1321953C (zh) 减低含氧化合物至烯烃转化方法的再生器内的温差的方法
US7655825B2 (en) Method for the production of synthetic fuels from oxygenates
CN100443452C (zh) 在含控制碳原子对酸性位之比的酸性分子筛的催化剂上将含氧物转化成烯烃
CN101001822A (zh) 生产烯烃的方法
US8962902B2 (en) Dehydrogenation of alkanols to increase yield of aromatics
CN103140458B (zh) 由异丁醇制造烯烃的组合方法
CN1845981A (zh) 从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法
CN1860206A (zh) 维持有效的反应器流体动力学的微细粉末共进料
WO2011045535A1 (fr) Procede de production d' hydrocarbures en c10+ a partir de composes organiques heteroatomiques
WO2012016788A1 (en) Process to make olefins from methanol and isobutanol
US10196325B2 (en) Process for converting syngas to aromatics and catalyst system suitable therefor
CN1993305B (zh) 制备烯烃的方法
CN102317238A (zh) 将含氧化合物原料转化成轻质烯烃的方法
US11390814B2 (en) Catalytic conversion of alcohols and/or ethers to olefins
CN107428628A (zh) 氧化烃转化的分区方法
US9783463B2 (en) Conversion of acetylene and methanol to aromatics
EP2601158B1 (en) Process to make olefins from isobutanol
US11453622B2 (en) Catalytic conversion of alcohols and/or ethers to olefins
CN108329186B (zh) 一种串级移动床的甲醇转化方法
CN108325477B (zh) 一种用于含氧化合物转化的串级移动床反应系统和应用方法
CN108314601B (zh) 一种用于含氧化合物转化的串级移动床反应系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant