CN107425716A - 具有高效vcc充电的开关功率变换器 - Google Patents

具有高效vcc充电的开关功率变换器 Download PDF

Info

Publication number
CN107425716A
CN107425716A CN201710233925.4A CN201710233925A CN107425716A CN 107425716 A CN107425716 A CN 107425716A CN 201710233925 A CN201710233925 A CN 201710233925A CN 107425716 A CN107425716 A CN 107425716A
Authority
CN
China
Prior art keywords
vcc
power
charge switch
voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710233925.4A
Other languages
English (en)
Other versions
CN107425716B (zh
Inventor
高小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor Inc
Original Assignee
Dialog Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor Inc filed Critical Dialog Semiconductor Inc
Publication of CN107425716A publication Critical patent/CN107425716A/zh
Application granted granted Critical
Publication of CN107425716B publication Critical patent/CN107425716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种开关功率变换器控制器,其包括耦接在功率开关晶体管的漏极和存储电容器之间的VCC充电开关晶体管。

Description

具有高效VCC充电的开关功率变换器
技术领域
本申请涉及开关功率变换器,并且更特别地,涉及调节用于开关功率变换器的电力供应电压。
背景技术
由于有利的低功率消耗及无有毒材料,固态发光二极管(LED)照明应用正在快速取代常规的白炽和荧光照明系统。然而,LED不能像白炽灯泡一样暴露于AC主干线。固态照明应用因此包括开关功率变换器以将AC输入电流变换成可以对LED供电的经整流的DC输出电流。控制器控制开关功率变换器中的功率开关,以使得期望的电流对LED供电。所述控制器需要其自己的电力供应电压,该电压在本文中指定为VCC。用于所述控制器的VCC的生成必须使成本和效率平衡。对于高效地生成VCC的需要也适用于其他类型的开关功率供应,例如AC-DC适配器和充电器。
VCC的生成取决于开关功率变换器架构。例如,在反激式电源中的功率开关耦接到变压器的初级绕组。变压器上的辅助绕组因此提供生成VCC的便利且非常高效的方式。但是,变压器增加了制造成本,所以使用非隔离的开关调节器架构(例如降压或降压-升压开关功率变换器)来对LED供电是比较便宜的。在非隔离的开关调节器中,功率开关耦接到电感器。尽管电感器相对于变压器的简单性降低了非隔离的开关调节器的成本,但是以合适地低的成本高效地生成VCC变得更加具有挑战性。例如,“源极-开关”VCC充电架构可以用于非隔离的开关功率变换器中,其中,功率开关晶体管包括NMOS功率开关晶体管,其漏极耦接到电感器并且其源极耦接到控制器的源极电压端子。NMOS功率开关晶体管的栅极由源自经整流的输入电压的相对恒定的电压来驱动。所述控制器包括用于控制源极电压端子是否接地的第一控制开关。如果源极电压端子通过第一控制开关接地,则NMOS功率开关晶体管接通以用于功率循环。如果第一控制开关关断,则源极电压端子浮动到充分高的电压以使得NMOS功率开关晶体管关断。选择性地将NMOS功率开关的源极通过第一控制开关耦接到地,因此提供了所述架构的“源极-开关”的命名。
为了生成VCC,源极-开关架构中的控制器包括耦接在源极电压端子和VCC端子之间的另一第二控制开关。当第二控制开关接通时,耦接到VCC端子的存储电容器被充电。所述控制器调节第二控制开关的循环以调节VCC。尽管第二控制开关调节对于相对低功率的LED高效地工作,但是对于较高功率的系统(例如20W或更大的输出功率)其效率下降。特别地,由于第一控制开关在电感器的主传导路径中,所以第一控制开关的漏极到源极的导通电阻(Rdson)变得有问题。要注意,第一功率开关被结合到控制器裸片中。当电感器电流增加到产生较高的输出功率时,由于Rdson的功率损失对于第一控制开关的相对小的晶体管尺寸来说变得有问题。因此,对于高功率源极-开关的解决方案是增加第一控制开关的裸片空间或用外部晶体管来取代它,这增加了制造成本。
当前对于源极-开关架构的替代方案还存在生成VCC成本高或效率低的问题。例如,外部电容器可以耦接在耦接到功率开关晶体管的漏极的控制器上的漏极端子和另一合适的控制器端子(例如AC供应端子)之间。当漏极电压在每个功率开关循环中从高切换到低时,外部电容器被充电以提供VCC源。尽管这样的生成非常简单,但是因为损失了大部分充电能量所以其效率不佳。
因此,在技术领域中存在对具有高效VCC生成的非隔离的开关功率变换器的需要。
发明内容
提供了一种开关功率变换器控制器,其配置为控制功率开关晶体管的循环以调节提供到负载的输出功率。所述控制器包括用于耦接到功率开关晶体管的漏极的漏极端子和用于耦接到控制器电力供应电压(VCC)电容器的阳极的电容器端子。所述控制器还包括耦接在所述漏极端子和所述电容器端子之间的VCC充电开关晶体管。
所述控制器控制所述VCC充电开关晶体管以对于所述功率开关晶体管的每个开关循环的初始周期循环接通。当VCC充电开关晶体管循环接通时,VCC充电电流流经VCC充电开关晶体管以对VCC电容器充电。通过调制所述功率开关晶体管每个开关循环中VCC充电开关晶体管的接通时间,所述控制器调制横跨VCC电容器存储的VCC。无论开关功率变换器是隔离的还是非隔离的,控制器电力供应电压(VCC)的产生的调制都是相当高效的。例如,在诸如反激式变换器的隔离的开关功率变换器中,功率开关晶体管的漏极耦接到变压器的初级绕组。类似地,非隔离的开关功率变换器(例如降压或升压变换器)中的功率开关晶体管的漏极耦接到电感器。反激式变换器中初级绕组的电感负载或者隔离的开关功率变换器中的电感器的电感负载理想地在VCC充电开关晶体管的每个开关循环中是无损的。因此,用于所述控制器的电力供应电压VCC的调节非常高效。通过考虑下面的详细说明可以更好地理解这些有利特征。
附图说明
图1是根据本公开一个方面的配置用于高效VCC充电的非隔离的开关功率变换器的电路图。
图2是图1的开关功率变换器的电压和电流波形的图。
图3是用于根据峰值电流命令来控制VCC充电开关晶体管的循环的反馈控制电路的框图。
图4是用于根据恒定导通时间控制方法来控制VCC充电开关晶体管的循环的反馈控制电路的框图。
图5是根据本公开一个方面的配置用于高效VCC充电的隔离的开关功率变换器的电路图。
图6是根据本公开一个方面的高效地生成控制器电力供应电压VCC的方法的流程图。
通过参阅下文的详细说明将最佳地理解本公开文本的实施方式及其优势。应该意识到,类似的附图标记用于标识一个或多个附图中的类似元件。
具体实施方式
本文讨论的用于调节控制器电力供应电压VCC的高效VCC充电可以在非隔离和隔离的开关功率变换器中实施。当在本文中使用时,“非隔离的”开关功率变换器视为用于输入电力源的接地与用于负载的接地共享的功率变换器。与此相比,“隔离的”开关功率变换器在本文视为用于输入电力源的接地与用于负载的接地并不共享的功率变换器。首先讨论非隔离的开关功率变换器的实施方式,再讨论隔离的开关功率变换器的实施方式。
现在转到附图,图1示出了配置成实施本文讨论的高效VCC充电的示例非隔离开关功率变换器100。二极管桥105对来自AC主干线110的AC输入电压整流以在输入节点125处产生横跨输入电容器115存储的经整流的输入电压V输入。控制器120通过输入电容器电压端子Vcb来监测横跨输入电容器115存储的经整流的输入电压,输入电容器电压端子Vcb通过耦接在输入电容器电压端子Vcb和输入节点125之间的一个或多个电阻器R1来接收经整流的输入电压V输入。诸如NMOS晶体管的功率开关晶体管Q1使其漏极耦接到控制器120的漏极端子并且使其栅极耦接到控制器120的输出端子。功率开关晶体管Q1的源极通过感测电阻器Rs耦接到接地。
功率开关晶体管Q1的漏极耦接到电感器L的端子130,电感器L具有耦接到输入节点125的另一端子135。当控制器120将其输出端子的电压驱动到充分高时,功率开关晶体管Q1循环导通以使得电感器电流iL流经电感器L。电感器L的端子130通过二极管D1耦接到输出电压节点140。二极管D1在功率开关晶体管Q1接通时被反向偏置,以使得电感器电流iL作为漏极电流id流过功率开关晶体管Q1。控制器120通过耦接到功率开关晶体管Q1的源极的I感测端子监测每个功率开关循环中的漏极电流id。类似地,控制器120通过Vd端子监测功率开关晶体管Q1的漏极电压(Vd),Vd端子通过一个或多个电阻器R2耦接到功率开关晶体管Q1的漏极。
当控制器120对其输出端子的电压放电时,功率开关晶体管Q1关断以使得其漏极电压上升。然后,二极管D1变成正向偏置,以使得由于在功率开关循环中功率开关晶体管Q1的接通时间而存储在电感器L中的磁能被递送到负载(未示意),并且作为二极管电流iD递送到输出电容器140。通过控制功率开关晶体管Q1的循环,控制器120就可以调节递送到负载的输出电流I输出。负载耦接在输出节点140和输入节点125之间。
控制器120包括VCC充电开关晶体管Q2,VCC充电开关晶体管Q2的第一端子耦接到控制器120的漏极端子,并且第二端子耦接到充电二极管D2的阳极,充电二极管D2的阴极耦接到VCC端子。VCC存储电容器C1耦接在接地和VCC端子之间。如果在VCC的第一端子和第二端子之间形成沟道,则充电二极管D2因此形成电流路径。下面的讨论将假设VCC充电开关晶体管Q2是n沟道耗散型场效应晶体管(DFET)。DFET是有利的,原因在于当控制器120初始接通时,还没有在VCC存储电容器C1之间形成VCC。需要正VCC来偏置NMOS晶体管的栅极,以使得控制器120将需要自举电路(未示意)来初始地对NMOS VCC充电开关晶体管Q2的栅极充电。与此相比,DFET VCC充电开关晶体管Q2不需要这样的自举电路,原因是在控制器120起动时其将是接通的。DFET VCC充电开关晶体管Q2因此将在控制器120的起动时传导电流,以使得二极管D2变得正向偏置并且VCC可横跨VCC存储电容器C1形成。一旦VCC已经达到操作水平以使得可以确保正常操作,控制器120就可以通过通电重置程序来启动。
在正常操作期间,控制器120在功率开关晶体管Q1的每个循环中调制VCC充电开关晶体管Q2的接通时间以保持VCC的期望水平。要注意,所产生的VCC的生成是相当高效的,原因是通过电感器L的传导损失相对小量。当VCC充电开关晶体管Q2循环接通时,充电电流iVCC流经充电二极管D2以对VCC电容器充电。如图2所示,栅极电压的由于控制器120的脉动使得VCC充电开关晶体管Q2的栅极-源极电压(Vgs_Q2)脉动,这转而使得充电电流iVCC约以V输入/L的斜率(忽略VCC电压)斜升,其中V输入是横跨输入电容器115(图1)的经整流的输入电压,并且L是电感器L的电感。当栅极-源极电压Vgs_Q2脉动被关断时,充电电流iVCC下降为零。根据电荷守恒定律,可以看到,充电电流iVCC的DC平均(IVCC)等于控制器120的操作电流。
在每个功率开关循环中,控制器120使功率开关晶体管Q1的栅极电压脉动,这使得其栅极-源极电压Vgs_Q1脉动。当Vgs_Q1脉动时,进入功率开关晶体管Q1的漏极的漏极电流id约以V输入/L的斜率增加。当控制器120使功率开关晶体管Q1的栅极电压放电时,漏极电流id下降为零。iVCC和id的增加通过流经电感器L的电感器电流iL的相应的增加来反映,当功率开关晶体管Q1循环关断时,所述电感器电流iL在每个功率开关循环中达到其峰值。随着电力被递送到负载,电感器电流iL之后斜降到零。在每个功率开关循环中,当功率开关晶体管Q1循环关断时,通过二极管D1的二极管电流(iD)从零上升到峰值。通过负载被驱动的输出电流的DC平均I输出等于二极管电流iD的DC平均。
每个功率开关循环以VCC充电周期200开始,在VCC充电周期200中,Vgs_Q2被脉动以对VCC充电。在一种实施方式中,直到周期200结束为止,每个功率开关循环中的Vgs_Q1不被接通持续周期205。在替代实施方式中,可以在周期200的结束之前开始周期205,以使得在VCC充电晶体管Q2和功率开关晶体管Q1的循环接通之间存在相对小的重叠。这样的重叠防止电感器电流iL的开路,以便防止横跨电感器的任何电压尖峰以及作为结果的对VCC充电晶体管Q2和功率开关晶体管Q1的压力。
图3所示的反馈电路300配置为使用恒定峰值电流控制方法来调制VCC充电开关晶体管Q2的循环。比较器305通过将控制器电力供应电压VCC与稳定的参考电压(例如来源于带隙参考电路310)比较来生成误差电压V误差。补偿滤波器315对误差电压V误差滤波以产生用作峰值电流命令340的补偿的误差电压。差分放大器345将充电电流iVCC的值与峰值电流命令340比较以在达到期望的峰值电流时关断VCC充电开关晶体管Q2。要注意,当输入电压接近零时,由于产生的小的V输入/L斜率,所以VCC充电开关晶体管Q2的接通时间长。因此,在达到峰值电流命令340之前,根据最大接通时间限制来关断VCC充电开关晶体管Q2。再次参考图1,感测电阻器(未示意)可以插入到VCC充电电流路径中以获得在差分放大器343处比较的充电电流值。
在替代方法中,如对于图4的反馈电路400所示出的,可以实施恒定导通时间的控制方法。差分放大器415将稳定的参考电压(例如来源于带隙参考电路420)与VCC比较来生成误差电压V误差。补偿滤波器(未示意)可以补偿V误差来产生补偿的误差信号435。差分放大器将补偿的误差信号435与来自斜坡生成器410的斜坡信号430比较以在斜坡信号430超过补偿的误差信号435时将VCC充电开关晶体管Q2循环为关断。斜坡生成器410可以由控制功率开关循环周期的时钟(未示出)来触发,以使得斜坡信号430中的每个斜坡的开始与功率开关晶体管Q1的开关周期的开始同步。将应当理解,除了峰值恒定电流或恒定导通时间之外的其他控制方法也可以用于调节控制器电力供应电压VCC。
如在上面讨论的,还可以在隔离的开关功率变换器(例如图5中示出的反激式变换器500)中实施本文公开的高效VCC充电。变压器505包括初级绕组T1和次级绕组T2。初级绕组T1由输入电压V_IN(例如从对AC主干线的整流获得)驱动,以在控制器510使功率开关晶体管Q1循环接通时传导磁化电流。次级绕组T2通过二极管D3耦接到输出电容器C2和负载,例如发光二极管(LED)。如类似地关于图1的控制器120所讨论的,控制器510包括耦接到功率开关晶体管Q1的漏极的漏极端子,并且还包括耦接到VCC存储电容器C1的VCC端子。耦接在变压器505的输入和输出侧之间的光隔离器(未示意)对到LED的电力递送提供反馈,以使得控制器510可以相应地调节功率开关晶体管Q1的循环。虽然VCC电力供应电压的高效充电,变压器505不需要辅助绕组,这有利地降低了反激式变换器500的成本。
现在关于图6的流程图将讨论用于高效VCC充电技术的操作的方法。所述方法包括动作600:使功率开关晶体管在开关功率变换器中循环接通和关断以调节对负载的电力递送,其中,功率开关晶体管的每个循环在电力开关循环周期上发生。关于开关功率变换器100和500所讨论的功率开关晶体管Q1的循环是动作600的示例。
所述方法还包括动作605:在每个功率开关循环周期,使VCC充电开关晶体管循环接通和关断以调节存储在VCC存储电容器上的控制器电力供应电压VCC,以给用于开关功率变换器的控制器供电,其中,VCC充电开关晶体管耦接在功率开关晶体管的漏极和VCC存储电容器之间。关于开关功率变换器100和500所讨论的VCC充电开关晶体管Q2的循环是动作605的示例。
现在,本领域技术人员将意识到,取决于当前特定的应用,可以在本公开的材料、装置、配置和设备的使用方法中(或对它们)进行许多改进、替换和改变,而不脱离本公开的范围。鉴于这点,本公开的范围不应该被限制于本文所示出和描述的特定实施方式的范围,这是因为这些实施方式仅仅是通过其一些实例来展示,本公开的范围应该与随附权利要求及其功能性等价物的范围完全相当。

Claims (20)

1.一种开关电力供应控制器;包括:
配置为耦接到功率开关晶体管的漏极的漏极端子;
配置为耦接到VCC电容器的端子的VCC电容器端子;
耦接在漏极端子和VCC电容器端子之间的VCC充电开关晶体管;以及
反馈控制电路,该反馈控制电路配置为调制VCC充电开关晶体管的循环以调节横跨VCC电力供应电压电容器存储的控制器电力供应电压VCC。
2.根据权利要求1所述的开关电力供应控制器,其中,VCC充电开关晶体管是耗散型场效应晶体管(DFET)。
3.根据权利要求1所述的开关电力供应控制器,其中,VCC充电开关晶体管是增强型场效应晶体管。
4.根据权利要求1所述的开关电力供应控制器,进一步包括具有耦接到VCC充电开关晶体管的阳极并且具有耦接到VCC电容器端子的阴极的二极管。
5.根据权利要求1所述的开关电力供应控制器,其中,反馈控制电路配置为响应于等于期望的峰值电流的、由VCC充电开关晶体管传导的充电电流,来使VCC充电开关晶体管在VCC充电开关晶体管的每个循环中关断。
6.根据权利要求5所述的开关电力供应控制器,其中,反馈控制电路包括比较器,所述比较器配置为响应于控制器电力供应电压VCC与参考电压的比较来生成误差电压。
7.根据权利要求6所述的开关电力供应控制器,其中,反馈控制电路进一步包括补偿滤波器,所述补偿滤波器配置为对误差电压滤波以生成补偿的误差电压,所述补偿的误差电压形成表示期望的峰值电流的峰值电电流命令电压。
8.根据权利要求7所述的开关电力供应控制器,其中,反馈控制电路进一步包括差分放大器,所述差分放大器配置为响应于表示充电电流的感测电压与峰值电流命令电压的比较,来使VCC充电开关晶体管在VCC充电开关晶体管的每个循环中关断。
9.根据权利要求1所述的开关电力供应控制器,其中,反馈控制电路配置为使VCC充电开关晶体管关断,以在VCC充电开关晶体管的每个循环中保持VCC充电开关晶体管的恒定导通时间。
10.根据权利要求10所述的开关电力供应控制器,其中,反馈控制电路包括斜坡生成器,所述斜坡生成器配置为在VCC充电开关晶体管的每个循环中使斜坡信号倾斜。
11.根据权利要求11所述的开关电力供应控制器,其中,反馈控制电路进一步包括差分放大器,所述差分放大器配置为响应于斜坡信号和补偿的误差信号的比较,来使VCC充电开关晶体管在VCC充电开关晶体管的每个循环中关断。
12.根据权利要求11所述的开关电力供应控制器,其中,所述开关电力供应控制器包括在非隔离的开关功率变换器中。
13.根据权利要求11所述的开关电力供应控制器,其中,所述开关电力供应控制器包括在隔离的开关功率变换器中。
14.根据权利要求13所述的开关电力供应控制器,其中,隔离的开关功率变换器包括反激式变换器。
15.一种方法,包括:
使功率开关晶体管在开关功率变换器中循环接通和关断以调节对负载的电力递送,其中,功率开关晶体管的每个循环在电力开关循环周期上发生;以及
在每个功率开关循环周期,使VCC充电开关晶体管循环接通和关断以调节存储在VCC存储电容器上的控制器电力供应电压VCC,以给用于开关功率变换器的控制器供电,其中,VCC充电开关晶体管耦接在功率开关晶体管的漏极和VCC存储电容器之间。
16.根据权利要求15所述的方法,进一步包括:
通过将控制器电力供应电压VCC与参考电压比较来确定误差电压;以及
响应于误差电压确定VCC充电开关晶体管的期望的峰值电流,其中,使VCC充电开关晶体管循环包括:响应于等于期望的峰值电流的、由VCC充电开关晶体管传导的电流,来使VCC充电开关晶体管在每个功率开关循环周期关断。
17.根据权利要求15所述的方法,其中,使功率开关晶体管在开关功率变换器中循环导通和关断包括使功率开关晶体管在隔离的开关功率变换器中循环。
18.根据权利要求15所述的方法,其中,使功率开关晶体管在开关功率变换器中循环导通和关断包括使功率开关晶体管在非隔离的开关功率变换器中循环。
19.根据权利要求15所述的方法,进一步包括:
通过将控制器电力供应电压VCC与参考电压比较来确定误差电压;
生成斜坡信号;
在VCC充电开关晶体管的每个循环中,将斜坡信号与误差电压比较;以及
响应于斜坡信号与误差信号的比较,来使VCC充电开关晶体管在VCC充电开关晶体管的每个循环中循环关断。
20.根据权利要求19所述的方法,进一步包括在带隙参考电路中生成参考电压。
CN201710233925.4A 2016-04-12 2017-04-11 具有高效vcc充电的开关功率变换器 Active CN107425716B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/097,213 2016-04-12
US15/097,213 US10148186B2 (en) 2016-04-12 2016-04-12 Switching power converter with efficient VCC charging

Publications (2)

Publication Number Publication Date
CN107425716A true CN107425716A (zh) 2017-12-01
CN107425716B CN107425716B (zh) 2020-06-02

Family

ID=59930044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710233925.4A Active CN107425716B (zh) 2016-04-12 2017-04-11 具有高效vcc充电的开关功率变换器

Country Status (3)

Country Link
US (1) US10148186B2 (zh)
CN (1) CN107425716B (zh)
DE (1) DE102017206121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873723A (zh) * 2021-09-14 2021-12-31 无锡英迪芯微电子科技股份有限公司 一种高性能的浮栅nmos功率管驱动控制电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892140B2 (en) * 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
CN103887961B (zh) * 2014-04-18 2015-06-10 杭州士兰微电子股份有限公司 开关电源及其控制器
CN107733255A (zh) * 2017-10-20 2018-02-23 福建省福芯电子科技有限公司 一种双绕组电源电路
US10778080B1 (en) * 2019-06-06 2020-09-15 Microchip Technology Incorporated Self-biased non-isolated low-power switching regulator
CN110289762B (zh) * 2019-07-02 2021-01-01 温州大学 一种大电流电源及其恒流控制方法及系统
CN116232082A (zh) * 2023-02-24 2023-06-06 深圳原能电器有限公司 一种极简多功能变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570538A (zh) * 2010-09-17 2012-07-11 罗姆股份有限公司 充电电路和利用它的电子设备
CN102892239A (zh) * 2012-10-31 2013-01-23 杭州士兰微电子股份有限公司 反激式恒流驱动电路及包含其的反激式恒流驱动控制系统
CN103066855A (zh) * 2013-01-15 2013-04-24 昂宝电子(上海)有限公司 用于电源变换系统中的零电压开关的系统和方法
US20130294120A1 (en) * 2012-05-02 2013-11-07 Semiconductor Energy Laboratory Co., Ltd. Switching converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438695B1 (ko) * 2001-03-09 2004-07-05 삼성전자주식회사 전원 공급 제어 장치 및 방법
US20070159863A1 (en) * 2006-01-09 2007-07-12 Chao-Cheng Lu Field effect transistor of Lus Semiconductor and synchronous rectifier circuits
KR100819252B1 (ko) * 2006-06-01 2008-04-02 삼성전자주식회사 광원 구동 집적회로
US9343971B2 (en) * 2009-12-30 2016-05-17 Silicon Laboratories Inc. Synchronous VCC generator for switching voltage regulator
US8941404B2 (en) * 2011-11-29 2015-01-27 Infineon Technologies Austria Ag System and method for testing a power supply controller
US8787039B2 (en) * 2012-07-18 2014-07-22 Dialog Semiconductor Inc. Hybrid adaptive power factor correction schemes for switching power converters
TWM447632U (zh) * 2012-10-05 2013-02-21 Excelliance Mos Corp 電源供應器及其啟動電路
US8933675B2 (en) * 2012-12-10 2015-01-13 Dialog Semiconductor Inc. Two-inductor based AC-DC offline power converter with high efficiency
US9367109B2 (en) * 2013-07-11 2016-06-14 Qualcomm Incorporated Switching power supply with noise control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570538A (zh) * 2010-09-17 2012-07-11 罗姆股份有限公司 充电电路和利用它的电子设备
US20130294120A1 (en) * 2012-05-02 2013-11-07 Semiconductor Energy Laboratory Co., Ltd. Switching converter
CN102892239A (zh) * 2012-10-31 2013-01-23 杭州士兰微电子股份有限公司 反激式恒流驱动电路及包含其的反激式恒流驱动控制系统
CN103066855A (zh) * 2013-01-15 2013-04-24 昂宝电子(上海)有限公司 用于电源变换系统中的零电压开关的系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873723A (zh) * 2021-09-14 2021-12-31 无锡英迪芯微电子科技股份有限公司 一种高性能的浮栅nmos功率管驱动控制电路
CN113873723B (zh) * 2021-09-14 2023-09-15 无锡英迪芯微电子科技股份有限公司 一种高性能的浮栅nmos功率管驱动控制电路

Also Published As

Publication number Publication date
US20170294841A1 (en) 2017-10-12
US10148186B2 (en) 2018-12-04
CN107425716B (zh) 2020-06-02
DE102017206121A1 (de) 2017-10-12

Similar Documents

Publication Publication Date Title
CN107425716A (zh) 具有高效vcc充电的开关功率变换器
CN103038989B (zh) 用于切换电力变换器控制器的多个电源
US7830094B2 (en) Driver arrangement for LED lamps
CN202856643U (zh) 一种具有独立控制的级联升压和反相降压转换器
CN103534919B (zh) Led驱动电路
CN109088544A (zh) 开关电源装置
CN105580497B (zh) 电子谐振及绝缘半桥zeta转换器
CN103167690B (zh) 点亮装置以及包括点亮装置的照明设备
US9282605B2 (en) Driver circuit for at least one load and method of operating the same
US9515485B1 (en) Power control system with power drop out immunity and uncompromised startup time
CN104813742A (zh) 电源电压管理
US20150048756A1 (en) Lamp unit power supply system
CN107567130A (zh) 供电电路及应用其的led驱动电路
CN110521284B (zh) Led照明驱动器及驱动方法
TWI551025B (zh) Lighting power conversion device
JP2009118589A (ja) 直流昇圧回路及び誘導灯装置
JP2015109283A (ja) 誘導灯装置
JP6791486B2 (ja) 発光素子駆動装置及びその駆動方法
US20110169416A1 (en) Discontinuous current regulator circuit for driving light-emitting diodes
TWI672975B (zh) 發光元件驅動裝置及其驅動方法
EP4002665A1 (en) A primary-side switched and isolated converter
JP5720363B2 (ja) 照明装置
WO2018076097A1 (en) Energy efficient smart led lamp
KR20140119489A (ko) 발광 다이오드 구동 장치
JP2013094055A (ja) 直流昇圧回路及び誘導灯装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant