CN107421131A - 基于生物精细结构及表面等离子共振效应的光热转化系统 - Google Patents

基于生物精细结构及表面等离子共振效应的光热转化系统 Download PDF

Info

Publication number
CN107421131A
CN107421131A CN201710502254.7A CN201710502254A CN107421131A CN 107421131 A CN107421131 A CN 107421131A CN 201710502254 A CN201710502254 A CN 201710502254A CN 107421131 A CN107421131 A CN 107421131A
Authority
CN
China
Prior art keywords
conversion system
photothermal conversion
fine
biological
biomorph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710502254.7A
Other languages
English (en)
Inventor
顾佳俊
章潇慧
孙诚
祝弘滨
刘佰博
张丽娇
张荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
CRRC Industry Institute Co Ltd
Original Assignee
Shanghai Jiaotong University
CRRC Industry Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, CRRC Industry Institute Co Ltd filed Critical Shanghai Jiaotong University
Priority to CN201710502254.7A priority Critical patent/CN107421131A/zh
Publication of CN107421131A publication Critical patent/CN107421131A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S21/00Solar heat collectors not provided for in groups F24S10/00-F24S20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/88Multi reflective traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提出一种基于生物精细结构及表面等离子共振效应的光热转化系统,包括具有生物形态精细分级结构的金属材料,以及吸热材料,所述具有生物形态精细分级结构的金属材料粘接在吸热材料的一侧。本发明结合贵金属的局域表面等离子共振效应,选择具有三维周期性结构的贵金属。在电磁波的作用下,金属微纳结构内部电子的协同振荡会在其表面激发产生表面等离激元共振效应,从而增强金属表面的局域电磁场,可在亚波长范围内形成光汇聚、光波导、光增强、光储存等光学效应,即具有良好的光热效应。

Description

基于生物精细结构及表面等离子共振效应的光热转化系统
技术领域
本发明属于光热转换材料领域,具体涉及一种具有表面等离子共振效应的光热转换系统。
背景技术
液体蒸发对于许多基本过程和工业应用具有重要意义。目前对于液体蒸发的研究主要基于两个问题,一个是蒸发驱动力即能量来源的取舍,由于蒸发为吸热过程,其必须有外界能量供给使得蒸发作用得以持续进行,因此对于能量来源的选择十分重要。而另一个则是蒸发过程中的能量转化效率,这也是研究蒸发的核心问题。对于利用高压蒸汽发电的电站来说,高效的蒸发过程能够大幅提高整个系统的产能效率,并因此节省大量的成本。另一方面,高效的蒸发过程也能够显著提高基于相变的热传导系统,例如热管和蒸汽室。而高效、高分辨率的选择性蒸发也能大幅提升蒸馏过程中对混合物的分离效率。
考虑到能源清洁化的发展趋势,光能因其无污染、来源广泛的性质受到众多研究的青睐。目前大量的研究致力于将自然界中最常见也最易获取的太阳光能转化为其他形式的能量,例如化学能、电能等。其中光的热效应对于液体蒸发具有重要意义,一般认为是由光热效应引起,即材料受光照射后,光子能量与晶格相互作用,振动加剧,温度升高。然而直接照射液体由于其实际照射面积小,热能扩散快等原因,导致光热转换效率极其低下,无法投入实际应用中。因此,需要寻找对照射光具有汇聚、放大等作用的材料来提高光能的利用率。
发明内容
针对现有技术的不足,本发明的目的是提供一种基于生物精细结构及表面等离子共振效应的光热转化系统。
本发明的另一目的是提出所述基于生物精细结构及表面等离子共振效应的光热转化系统的应用。
本发明的第三个目的是提出所述基于生物精细结构及表面等离子共振效应的光热转化系统的制备方法。
本发明上述目的通过以下技术方案来实现:
一种基于生物精细结构及表面等离子共振效应的光热转化系统,包括具有生物形态精细分级结构的金属材料,以及吸热材料,所述具有生物形态精细分级结构的金属材料粘接在吸热材料的一侧。
其中,所述具有生物形态精细分级结构的金属材料是在模板化的生物翅膀表面镀覆纳米级贵金属颗粒而得;所述贵金属选自金、银、铂、铱、钌、铑中的一种或多种;镀覆的金属颗粒层厚度为20-50nm。
其中,所述吸热材料为碳纸、碳布、碳毡、碳纳米管、纸、石墨烯中的一种或两种。
其中,所述生物形态精细分级结构包括周期式排布的分立突起型嵴结构,和/或末端分叉的树枝状结构。
进一步地,所述生物形态精细分级结构是以生物的翅膀为基体,经过酸溶液脱矿处理得到。
本发明所述基于生物精细结构及表面等离子共振效应的光热转化系统的制备方法,包括生物翅膀脱矿处理和表面镀覆贵金属颗粒的操作,
所述生物翅膀脱矿处理,是以蝴蝶、飞蛾、蜻蜓的翅膀为基体,在常温下用酸溶液处理,所述酸溶液为硫酸、硝酸、盐酸中的一种,质量浓度为5~20%;处理的时间为1~5小时,干燥后得到生物翅膀模板;
所述表面镀覆贵金属颗粒,是将贵金属颗粒通过化学施镀和/或等离子溅射的方法,镀覆到所述生物翅膀模板上,得到具有生物形态精细分级结构的金属材料。
优选地,所述化学施镀为:将生物翅膀模板置于化学镀液中20-30min;所述化学镀液由质量浓度的0.2~5%金属盐溶液、2~5%氨水,2~10%络合剂、余量的水组成;所述金属盐为硝酸银、溴化银、氯金酸钠、氯铂酸、氯铱酸中的一种;所述络合剂为柠檬酸钠、EDTA二钠盐、三乙醇胺、酒石酸钾纳中的一种或多种。
所述的制备方法,还包括将具有生物形态精细分级结构的金属材料粘接到吸热材料上的操作;所述粘接采用防水的粘接剂。
本发明所述基于生物精细结构及表面等离子共振效应的光热转化系统的应用,将所述光热转化系统置于光照下,所述光热转化系统与待加热液体接触。
更进一步地,所述待加热液体为海水;所述光热转化系统置于水面上、或水面下0.2cm以内。
本发明的有益效果为:
本发明结合贵金属的局域表面等离子共振效应(Localized SPRs,LSPRs),选择具有三维周期性结构的贵金属。已有研究明确指出,在电磁波的作用下,金属微纳结构内部电子的协同振荡会在其表面激发产生表面等离激元共振效应,从而增强金属表面的局域电磁场,可在亚波长范围内形成光汇聚、光波导、光增强、光储存等光学效应,即具有良好的光热效应。受到某些蝶翅鳞片表现出天然的光子晶体特征这一现象的启发,具有类蝶翅微观结构的贵金属的SPR能够被大幅增强,显示出更多的活性点,从而光热效应更为明显。
本发明优选具有蝶翅三维光子晶体结构的纳米银模板,以获得高效的光热转化效应,并将转化的热能高效的用于海水蒸发,制作方便,成本低廉。
附图说明
图1是本发明实例中所用银蝶翅实物图及扫描电子显微镜(SEM)图;
图2是本发明中一较佳实例所述金属模板与碳基吸热衬底结合形成的光热转化系统实物图;
图3是本发明在具体的光热实验中应用的装置实物图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:
选取天然的大蓝闪蝶翅膀(图1之a)为模板,在10%稀硝酸中浸渍2小时后干燥(图1之b),活化后进一步放入化学镀银液中进行化学镀20分钟,化学镀银液由1g硝酸银,2mL氨水,5g酒石酸钾钠,100mL去离子水组成。再用去离子水清洗,在真空中干燥后得到具有生物形态的精细分级结构的金属材料(图1之c,其中rib/ridge是突起型嵴结构)。通过SEM观察表面镀覆贵金属颗粒层的厚度约为40nm。
取上述干燥后的银蝶翅材料背部与大小相当的碳纸用不溶于水的固体粘合剂(市购的防水胶)进行连接,得到基于碳基吸热衬底的高效光热转化系统。实物照片见图2。
试验例1
图3示出在具体的光热实验中,实施例1制系统置于水表面层,上方安置氙灯光源,保持光源光斑与系统大小相当,定时观测容器内水量变化。本发明提供的新型光热蒸发装置在一般太阳光照下性能优异,4小时累计蒸发253g人造海水,光热转换效率达到64.34%,相较于同期商业及工业水平碳基或纸基膜材料(M.A.Samee,U.K.Mirza,T.Majeed andN.Ahmad,Renewable Sustainable Energy Rev.,2007,11,543–549.;M.M.Naim andM.Kawi,Desalination,2003,153)55.)的30%-40%,提升幅度超过100%。
试验例2
实施例1制备的光热转化系统置于水表面下0.2cm处,上方安置氙灯光源,保持光源光斑与系统大小相当,定时观测容器内水量变化。试验结果表明,在水面下0.2cm以内对系统的光热转换性能基本没有影响,4小时的光热转换效率达到63.65%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于生物精细结构及表面等离子共振效应的光热转化系统,其特征在于,包括具有生物形态精细分级结构的金属材料,以及吸热材料,所述具有生物形态精细分级结构的金属材料粘接在吸热材料的一侧。
2.根据权利要求1所述的光热转化系统,其特征在于,所述具有生物形态精细分级结构的金属材料是在模板化的生物翅膀表面镀覆纳米级贵金属颗粒而得;所述贵金属选自金、银、铂、铱、钌、铑中的一种或多种;镀覆的金属颗粒层厚度为20-50nm。
3.据权利要求1所述的光热转化系统,其特征在于,所述吸热材料为碳纸、碳布、碳毡、碳纳米管、纸、石墨烯中的一种或两种。
4.据权利要求1~3任一项所述的光热转化系统,其特征在于,所述生物形态精细分级结构包括周期式排布的分立突起型嵴结构,和/或末端分叉的树枝状结构。
5.据权利要求4所述的光热转化系统,其特征在于,所述生物形态精细分级结构是以生物的翅膀为基体,经过酸溶液脱矿处理得到。
6.权利要求1~5任一项所述基于生物精细结构及表面等离子共振效应的光热转化系统的制备方法,其特征在于,包括生物翅膀脱矿处理和表面镀覆贵金属颗粒的操作,
所述生物翅膀脱矿处理,是以蝴蝶、飞蛾、蜻蜓的翅膀为基体,在常温下用酸溶液处理,所述酸溶液为硫酸、硝酸、盐酸中的一种,质量浓度为5~20%;处理的时间为1~5小时,干燥后得到生物翅膀模板;
所述表面镀覆贵金属颗粒,是将贵金属颗粒通过化学施镀和/或等离子溅射的方法,镀覆到所述生物翅膀模板上,得到具有生物形态精细分级结构的金属材料。
7.根据权利要求6所述的制备方法,其特征在于,所述化学施镀为:将生物翅膀模板置于化学镀液中20-30min;所述化学镀液由质量浓度的0.2~5%金属盐溶液、2~5%氨水,2~10%络合剂、余量的水组成;所述金属盐为硝酸银、溴化银、氯金酸钠、氯铂酸、氯铱酸中的一种;所述络合剂为柠檬酸钠、EDTA二钠盐、三乙醇胺、酒石酸钾纳中的一种或多种。
8.根据权利要求6或7所述的制备方法,其特征在于,还包括将具有生物形态精细分级结构的金属材料粘接到吸热材料上的操作;所述粘接采用防水的粘接剂。
9.权利要求1~5任一项所述基于生物精细结构及表面等离子共振效应的光热转化系统的应用,其特征在于,将所述光热转化系统置于光照下,所述光热转化系统与待加热液体接触。
10.根据权利要求9所述的应用,其特征在于,所述待加热液体为海水;所述光热转化系统置于水面上、或水面下0.2cm以内。
CN201710502254.7A 2017-06-27 2017-06-27 基于生物精细结构及表面等离子共振效应的光热转化系统 Pending CN107421131A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710502254.7A CN107421131A (zh) 2017-06-27 2017-06-27 基于生物精细结构及表面等离子共振效应的光热转化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710502254.7A CN107421131A (zh) 2017-06-27 2017-06-27 基于生物精细结构及表面等离子共振效应的光热转化系统

Publications (1)

Publication Number Publication Date
CN107421131A true CN107421131A (zh) 2017-12-01

Family

ID=60427714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710502254.7A Pending CN107421131A (zh) 2017-06-27 2017-06-27 基于生物精细结构及表面等离子共振效应的光热转化系统

Country Status (1)

Country Link
CN (1) CN107421131A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169181A (zh) * 2016-12-08 2018-06-15 东莞东阳光科研发有限公司 一种光学生物晶片制备方法
CN109911844A (zh) * 2019-03-05 2019-06-21 中车工业研究院有限公司 一种仿蝴蝶翅膀的三维纳米结构制备方法及三维纳米结构
CN109972093A (zh) * 2019-03-22 2019-07-05 中车工业研究院有限公司 一种高聚物仿生构型光热转换材料及其制备方法和应用
CN110579028A (zh) * 2019-08-19 2019-12-17 浙江大学 一种基于亲水性碳毡的光热转化器件及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060243A (zh) * 2014-06-30 2014-09-24 上海交通大学 一种等离子体、磁性一体化金属纳米颗粒薄膜及制备方法
CN105177522A (zh) * 2015-09-08 2015-12-23 上海交通大学 具有减反射微纳结构的碳基纳米颗粒薄膜及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060243A (zh) * 2014-06-30 2014-09-24 上海交通大学 一种等离子体、磁性一体化金属纳米颗粒薄膜及制备方法
CN105177522A (zh) * 2015-09-08 2015-12-23 上海交通大学 具有减反射微纳结构的碳基纳米颗粒薄膜及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAJUN GU ET AL.: ""Morphology Genetic Materials Templated from Natural Species"", 《ADVANCED MATERIALS》 *
JUNLONG TIAN ET AL.: ""Bioinspired Au-CuS coupled photothermal materials: enhanced infrared absorption and photothermal conversion from butterfly wings"", 《NANO ENERGY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169181A (zh) * 2016-12-08 2018-06-15 东莞东阳光科研发有限公司 一种光学生物晶片制备方法
CN109911844A (zh) * 2019-03-05 2019-06-21 中车工业研究院有限公司 一种仿蝴蝶翅膀的三维纳米结构制备方法及三维纳米结构
CN109911844B (zh) * 2019-03-05 2021-09-21 中车工业研究院有限公司 一种仿蝴蝶翅膀的三维纳米结构制备方法及三维纳米结构
CN109972093A (zh) * 2019-03-22 2019-07-05 中车工业研究院有限公司 一种高聚物仿生构型光热转换材料及其制备方法和应用
CN110579028A (zh) * 2019-08-19 2019-12-17 浙江大学 一种基于亲水性碳毡的光热转化器件及其应用

Similar Documents

Publication Publication Date Title
CN107421131A (zh) 基于生物精细结构及表面等离子共振效应的光热转化系统
Yang et al. Solar-driven simultaneous steam production and electricity generation from salinity
Li et al. Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation
Lin et al. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation
Yang et al. Carbon-based absorbers for solar evaporation: Steam generation and beyond
Shan et al. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation
Gao et al. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination
Ding et al. A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation
Yin et al. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination
Kim et al. α-Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting
Yang et al. Low‐Cost and High‐Efficiency Solar‐Driven Vapor Generation Using a 3D Dyed Cotton Towel
JP6096728B2 (ja) 海水発電システム
CN107158968B (zh) 一种用于光蒸发水的含半导体硫属化合物复合半透膜、其制备方法及用途
CN110028962A (zh) 基于海绵的三维石墨烯和纳米银光热转换材料的制备方法
Du et al. Janus film evaporator with improved light-trapping and gradient interfacial hydrophilicity toward sustainable solar-driven desalination and purification
Luo et al. An anti-salt accumulation 2.5 D arch solar-driven evaporator based on Marangoni effect for seawater desalination
Ding et al. Spectrally selective absorption coatings and their applications: A review
Ge-Zhang et al. Interfacial solar steam generator by MWCNTs/carbon black nanoparticles coated wood
Liu et al. Self-interlocked down biomass-based carbon fiber aerogel for highly efficient and stable solar steam generation
Pham et al. Novel Cu and Leaf Nanostructure‐Based Photothermal Biomaterial for Efficient Solar Steam Generation
CN106185890A (zh) 一种多孔类石墨烯的制备方法
Zhao et al. Carbonized bark by laser treatment for efficient solar-driven interface evaporation
Zhao et al. Carbon nanofiber stringed hierarchical porous carbon polyhedrons flexible thin films for solar vapor generation
Tao et al. Interfacial solar vapor generation: introducing students to experimental procedures and analysis for efficiently harvesting energy and generating vapor at the air–water Interface
Min et al. A 3D pillar hydrogel assembled from multi-metallic oxides nanoparticles for plasmon-enhanced solar interfacial evaporation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171201

RJ01 Rejection of invention patent application after publication