CN107419223A - 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法 - Google Patents

一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法 Download PDF

Info

Publication number
CN107419223A
CN107419223A CN201710586485.0A CN201710586485A CN107419223A CN 107419223 A CN107419223 A CN 107419223A CN 201710586485 A CN201710586485 A CN 201710586485A CN 107419223 A CN107419223 A CN 107419223A
Authority
CN
China
Prior art keywords
tisi
gas
hobboing cutter
cutter ring
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710586485.0A
Other languages
English (en)
Inventor
李巍
郭岩
刘刚
李太江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN201710586485.0A priority Critical patent/CN107419223A/zh
Publication of CN107419223A publication Critical patent/CN107419223A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法,所述薄膜包括依次沉积于滚刀刀圈表面的Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层;所述的TiSiCrCN耐磨薄膜层为(TiCr)(CN)和CrN纳米晶与非晶相(Si3N4和C)的纳米复合结构。所述制备方法包括以下步骤:清洗滚刀刀圈的表面,再将滚刀刀圈放置到真空腔室内的旋转装置上进行旋转,并进行等离子体清洗,然后再在滚刀刀圈表面采用多弧离子镀物理气相沉积法,依次沉积Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,完成滚刀刀圈的TiSi基纳米复合结构硬质薄膜制备。

Description

一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法
技术领域
本发明涉及刀具领域,具体为一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法。
背景技术
这种滚刀是地下岩石质隧道(洞)工程全断面施工的大型机械设备的重要部件,主要用于铁路公路交通隧道、煤矿巷道、城市地下铁道、水电水利隧洞等全断面施工。滚刀主要零部件为刀体、刀圈、刀圈卡环、密封、轴承、心轴和端盖等。开挖隧洞过程中,滚刀刀圈与岩石(磨料)间相互磨损和挤压引起刀圈的磨损、发热和变形,滚刀刀圈发热会降低其硬度,从而加快磨损。检查、更换、维修刀具,耗时费力,直接影响其施工工程的造价和工期。据统计,施工工程中滚刀消耗费用约占工程造价的1/5-1/3,其中因滚刀磨损而更换的刀圈数量达80%,刀圈损耗最大。
发明内容
针对现有技术中存在的问题,本发明提供一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法,制备方法简单,操作方便,成本低,并且绿色环保、无任何污染废水废气产生。
本发明是通过以下技术方案来实现:
一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜,包括依次沉积于滚刀刀圈表面的Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层;所述的TiSiCrCN耐磨薄膜层为(TiCr)(CN)和CrN纳米晶与非晶相(Si3N4和C)的纳米复合结构。
优选的,所述TiSi过渡层由Ti元素及Si元素构成。
优选的,所述TiSiN耐氧化过渡层由Ti元素、Si元素及N元素构成。
优选的,所述TiSiCrCN耐磨薄膜层由Ti元素、Si元素、Cr元素、C元素及N元素构成。
优选的,金属Cr底层的厚度为300nm,TiSi过渡层为100nm,TiSiN耐氧化过渡层的厚度为200nm,TiSiCrCN耐磨层的厚度为10μm。
本发明所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,包括以下步骤:
清洗滚刀刀圈的表面,再将滚刀刀圈放置到真空腔室内的旋转装置上进行旋转,并进行等离子体清洗,然后再在滚刀刀圈表面采用多弧离子镀物理气相沉积法,依次沉积Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,完成滚刀刀圈的TiSi基纳米复合结构硬质薄膜制备。
优选的,采用多弧离子镀物理气相沉积方法沉积Cr底层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以Cr作为沉积靶材,弧电流为56A,偏置电压为16V。
优选的,采用多弧离子镀物理气相沉积方法沉积TiSi过渡层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以TiSi作为沉积靶材,弧电流为56A,偏置电压为17V。
优选的,采用多弧离子镀物理气相沉积方法沉积TiSiN耐氧化过度层的过程中,向真空腔室内通入N2气和Ar气的混合气体,其中,N2气的流量为380sccm,Ar气的流量为200sccm,混合气体的气压为1.6Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为62A,偏置电压19V。
优选的,采用多弧离子镀物理气相沉积方法沉积TiSiCrCN耐磨薄膜层的过程中,向真空腔室内通入N2气、Ar气和CH4气的混合气体,其中,N2气的流量、Ar气的流量和CH4气的流量分别为500sccm、100sccm及200sccm,混合气体的气压为1.1Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为74A,偏置电压为18V;Cr作为沉积靶材,弧电流为70A,偏置电压为19V。
与现有技术相比,本发明具有以下有益的技术效果:
本发明滚刀刀圈的TiSi基纳米复合结构硬质薄膜包括金属Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,其中,通过金属Cr底层提高薄膜与滚刀刀圈的结合力;通过耐氧TiSiN耐氧化过渡层提高刀具的抗氧化性能,通过TiSiCrCN耐磨薄膜层起到耐磨作用,从而有效的提高滚刀刀圈的使用寿命。
本发明所述的TiSi基纳米复合结构硬质薄膜在制备时,先对滚刀刀圈的表面进行清洗,然后采用多弧离子镀物理气相沉积法依次沉积金属Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,操作方便,成本低,并且绿色环保、无任何污染废水废气产生。借助化学气相沉积(CVD)和物理气相沉积(PVD)方法制备的TiN硬质薄膜在很大程度上改善部件表面性能,使之具有高耐磨性、高强度、高硬度和较小的摩擦系数。二元硬质薄膜在剧烈摩擦或高温环境中使用时,其耐磨性、热强性及高温抗氧化性等不够理想。在TiN硬质薄膜基础上添加C、Si元素形成的TiCN、TiSiN、TiSiCrCN硬质薄膜,使硬质薄膜的摩擦学性能和力学性能获得不同程度地提高。其中TiCN硬质薄膜具有良好的耐磨减摩性能,但抗高温氧化性能较差。TiSiN硬质薄膜是非晶与纳米晶的复合结构,薄膜中的Si元素与空气中的氧气反应形成Si2O3氧化膜,起到抑制氧化、耐磨及隔热作用,使更多的热量通过切屑带走,降低了刀体温度,从而延长使用寿命。在TiSiN中添加Cr和C形成的TiSiCrCN硬质薄膜是纳米复合结构,显著提高硬质薄膜的硬度和耐磨性。通过PVD离子镀膜使得镀膜中入射粒子能量高、硬质薄膜的致密度高,可采用多个电弧的蒸发源,提高沉积速率,基材与硬质薄膜界面产生原子扩散构成的过渡层可改善界面性能,降低内应力,膜/基结合强度高,镀膜过程无环境污染,能够提高其使用寿命。
附图说明
图1为本发明实例中所述滚刀刀圈的结构示意图。
图2为本发明实例中所述滚刀刀圈的TiSi基纳米复合结构硬质薄膜结构示意图。
图3为本发明实例中所述的TiSiCrCN耐磨薄膜层的XRD谱图。
图4本发明实例中所述的TiSiCrCN耐磨薄膜层中Si元素的XPS谱图。
图5本发明实例中所述的TiSiCrCN耐磨薄膜层中C元素的XPS谱图。
图中:滚刀刀圈1,Cr底层2,TiSi过渡层3,TiSiN耐氧化过渡层4,TiSiCrCN耐磨薄膜层5。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参考图1,本发明所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜包括依次沉积于滚刀刀圈1表面的Cr底层2、TiSi过渡层3、TiSiN耐氧化过渡层4及TiSiCrCN耐磨薄膜层5。
需要说明的是,所述TiSiN耐氧化过度层由Ti元素、Si元素及N元素构成;耐磨减摩的TiSiCrCN耐磨薄膜层由Ti元素、Si元素、Cr元素、C元素及N元素构成;Cr底层的厚度为300nm,TiSi过渡层厚度为100nm,TiSiN耐氧化过渡层的厚度为200nm,TiSiCrCN耐磨薄膜层的厚度为10μm。
本发明所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法包括以下步骤:
清洗滚刀刀圈的表面,再将滚刀刀圈放置到真空腔室内的旋转装置上进行旋转,并进行等离子体清洗,然后再在滚刀刀圈的表面采用多弧离子镀物理气相沉积法依次沉积Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,完成滚刀刀圈的TiSi基纳米复合结构硬质薄膜制备。
其中,采用多弧离子镀物理气相沉积方法沉积金属Cr底层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以Cr作为沉积靶材,弧电流为56A,偏置电压为16V。
采用多弧离子镀物理气相沉积方法沉积TiSi过渡层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以TiSi作为沉积靶材,弧电流为56A,偏置电压为17V。
采用多弧离子镀物理气相沉积方法沉积TiSiN耐氧化过度层的过程中,向真空腔室内通入N2气和Ar气的混合气体,其中,N2气的流量为380sccm,Ar气的流量为200sccm,混合气体的气压为1.6Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为62A,偏置电压19V。
采用多弧离子镀物理气相沉积方法沉积TiSiCrCN耐磨薄膜层的过程中,向真空腔室内通入N2气、Ar气和CH4气的混合气体,其中,N2气的流量、Ar气的流量和CH4气的流量分别为500sccm、100sccm及200sccm,混合气体的气压为1.1Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为74A,偏置电压为18V;Cr作为沉积靶材,弧电流为70A,偏置电压为19V。
所述旋转装置包括转架、支撑盘、支撑杆及电机,其中,电机的输出轴与转架相连接,支撑盘通过支撑杆固定于转架上,滚刀刀圈放置于支撑盘上。
图3为TiSiCrCN耐磨薄膜层的XRD谱图,从图3中可知,其相组成为面心立方结构的(TiCr)(CN)和CrN相的混合物,未发现Si化合物出现。
为确定TiSiCrCN耐磨薄膜层中元素的化学态,对薄膜表面进行XPS谱分析,结果如图4和图5所示。通过曲线数学拟合对元素化学价态进行分析,如图4所示,Si元素主要以非晶态Si3N4形式存在,如图5所示,C元素主要以非晶C为主。结合XRD和XPS结果,可知TiSiCrCN耐磨薄膜层为(TiCr)(CN)纳米晶和CrN纳米晶与非晶相Si3N4和非晶相C的纳米复合结构。

Claims (10)

1.一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜,其特征在于,包括依次沉积于滚刀刀圈表面的Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层;所述的TiSiCrCN耐磨薄膜层为(TiCr)(CN)和CrN纳米晶与非晶相(Si3N4和C)的纳米复合结构。
2.根据权利要求1所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜,其特征在于,所述TiSi过渡层由Ti元素及Si元素构成。
3.根据权利要求1所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜,其特征在于,所述TiSiN耐氧化过渡层由Ti元素、Si元素及N元素构成。
4.根据权利要求1所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜,其特征在于,所述TiSiCrCN耐磨薄膜层由Ti元素、Si元素、Cr元素、C元素及N元素构成。
5.根据权利要求1所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜,其特征在于,金属Cr底层的厚度为300nm,TiSi过渡层为100nm,TiSiN耐氧化过渡层的厚度为200nm,TiSiCrCN耐磨层的厚度为10μm。
6.一种权利要求1所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,包括以下步骤:
清洗滚刀刀圈的表面,再将滚刀刀圈放置到真空腔室内的旋转装置上进行旋转,并进行等离子体清洗,然后再在滚刀刀圈表面采用多弧离子镀物理气相沉积法,依次沉积Cr底层、TiSi过渡层、TiSiN耐氧化过渡层及TiSiCrCN耐磨薄膜层,完成滚刀刀圈的TiSi基纳米复合结构硬质薄膜制备。
7.根据权利要求6所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,采用多弧离子镀物理气相沉积方法沉积Cr底层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以Cr作为沉积靶材,弧电流为56A,偏置电压为16V。
8.根据权利要求6所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,采用多弧离子镀物理气相沉积方法沉积TiSi过渡层的过程中,向真空腔室内通入流量为300sccm、气压为1.6Pa的Ar气,沉积温度为300℃,沉积过程中以TiSi作为沉积靶材,弧电流为56A,偏置电压为17V。
9.根据权利要求6所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,采用多弧离子镀物理气相沉积方法沉积TiSiN耐氧化过度层的过程中,向真空腔室内通入N2气和Ar气的混合气体,其中,N2气的流量为380sccm,Ar气的流量为200sccm,混合气体的气压为1.6Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为62A,偏置电压19V。
10.根据权利要求6所述的滚刀刀圈的TiSi基纳米复合结构硬质薄膜的制备方法,其特征在于,采用多弧离子镀物理气相沉积方法沉积TiSiCrCN耐磨薄膜层的过程中,向真空腔室内通入N2气、Ar气和CH4气的混合气体,其中,N2气的流量、Ar气的流量和CH4气的流量分别为500sccm、100sccm及200sccm,混合气体的气压为1.1Pa,沉积温度为300℃,沉积过程中以TiSi合金作为沉积靶材,弧电流为74A,偏置电压为18V;Cr作为沉积靶材,弧电流为70A,偏置电压为19V。
CN201710586485.0A 2017-07-18 2017-07-18 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法 Pending CN107419223A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710586485.0A CN107419223A (zh) 2017-07-18 2017-07-18 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710586485.0A CN107419223A (zh) 2017-07-18 2017-07-18 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN107419223A true CN107419223A (zh) 2017-12-01

Family

ID=60430034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710586485.0A Pending CN107419223A (zh) 2017-07-18 2017-07-18 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107419223A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853280A (zh) * 2020-12-23 2021-05-28 华电电力科学研究院有限公司 一种汽轮机叶片的TiSi基纳米复合多层耐水蚀薄膜及其应用
CN113373407A (zh) * 2021-05-10 2021-09-10 华电电力科学研究院有限公司 一种水轮机导叶纳米晶与非晶复合结构多层硬质薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084600A (zh) * 2013-02-27 2013-05-08 武汉大学 超硬TiN-TiSiN-CN多层交替复合梯度涂层硬质合金刀片及制备方法
CN104805408A (zh) * 2015-05-19 2015-07-29 上海井研精密工具有限公司 高硬度TiSiBN纳米复合结构保护性涂层及其制备方法
CN105971617A (zh) * 2016-05-12 2016-09-28 西安热工研究院有限公司 一种隧道掘进机刀具刀圈的多层薄膜及其制备方法
CN106048541A (zh) * 2016-07-27 2016-10-26 西安热工研究院有限公司 一种隧道掘进机刀具刀圈的纳米多层薄膜及其制备方法
CN106498396A (zh) * 2016-11-03 2017-03-15 佳木斯大学 镁合金表面低应力疏水复合TiSiCN薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084600A (zh) * 2013-02-27 2013-05-08 武汉大学 超硬TiN-TiSiN-CN多层交替复合梯度涂层硬质合金刀片及制备方法
CN104805408A (zh) * 2015-05-19 2015-07-29 上海井研精密工具有限公司 高硬度TiSiBN纳米复合结构保护性涂层及其制备方法
CN105971617A (zh) * 2016-05-12 2016-09-28 西安热工研究院有限公司 一种隧道掘进机刀具刀圈的多层薄膜及其制备方法
CN106048541A (zh) * 2016-07-27 2016-10-26 西安热工研究院有限公司 一种隧道掘进机刀具刀圈的纳米多层薄膜及其制备方法
CN106498396A (zh) * 2016-11-03 2017-03-15 佳木斯大学 镁合金表面低应力疏水复合TiSiCN薄膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853280A (zh) * 2020-12-23 2021-05-28 华电电力科学研究院有限公司 一种汽轮机叶片的TiSi基纳米复合多层耐水蚀薄膜及其应用
CN113373407A (zh) * 2021-05-10 2021-09-10 华电电力科学研究院有限公司 一种水轮机导叶纳米晶与非晶复合结构多层硬质薄膜的制备方法

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
Patscheider et al. Structure–performance relations in nanocomposite coatings
CN102653855B (zh) 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
CN105971617B (zh) 一种隧道掘进机刀具刀圈的多层薄膜及其制备方法
CN101518935B (zh) Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN103256306B (zh) 电流绝缘的轴承部件及轴承
CN104278241B (zh) 一种具有多环境适应性的薄膜材料的制备技术
Wei Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings
CN102066617B (zh) 涂层切削工具和其制造方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN101818332A (zh) 一种超硬自润滑金刚石/类金刚石复合多层涂层材料及制备方法
CN107419223A (zh) 一种滚刀刀圈的TiSi基纳米复合结构硬质薄膜及其制备方法
CN103820761A (zh) 一种金属碳化物镀层的制备方法
Chen et al. Structure and cutting performance of Ti-DLC films prepared by reactive magnetron sputtering
CN104066870B (zh) 发动机部件
CN107365964A (zh) 一种滚刀刀圈的TiAl基多层硬质薄膜及其制备方法
CN102994947A (zh) 类金刚石复合二硫化钼纳米多层薄膜及其制备方法
RU2014120463A (ru) Сверло с покрытием
Nouvellon et al. WC/C: H films synthesized by an hybrid reactive magnetron sputtering/Plasma Enhanced Chemical Vapor Deposition process: An alternative to Cr (VI) based hard chromium plating
CN105506622A (zh) 复合涂层刀具及其制造方法
Wang et al. Enhanced mechanical and tribological properties of V-Al-C coatings via increasing columnar boundaries
Li et al. Tribological performance of a novel wide-temperature applicable aC/(WC/aC) film against M50 steel
Kim et al. Long-term low-friction of Ti-overcoated and-doped DLCs: Robustly developed carbonous transfer layer with titanium
Jiménez et al. A review of monolithic and multilayer coatings within the boron–carbon–nitrogen system by ion-beam-assisted deposition
CN107354436A (zh) 一种滚刀刀圈的TiSi基多层硬质薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171201

WD01 Invention patent application deemed withdrawn after publication