CN107418967A - Uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application - Google Patents

Uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application Download PDF

Info

Publication number
CN107418967A
CN107418967A CN201710338267.5A CN201710338267A CN107418967A CN 107418967 A CN107418967 A CN 107418967A CN 201710338267 A CN201710338267 A CN 201710338267A CN 107418967 A CN107418967 A CN 107418967A
Authority
CN
China
Prior art keywords
shaped nuohan
uracil
nuohan inferior
inferior yeast
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710338267.5A
Other languages
Chinese (zh)
Other versions
CN107418967B (en
Inventor
何秀萍
秦立春
程艳飞
郭雪娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of CAS
University of Chinese Academy of Sciences
Original Assignee
Institute of Microbiology of CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbiology of CAS, University of Chinese Academy of Sciences filed Critical Institute of Microbiology of CAS
Priority to CN201710338267.5A priority Critical patent/CN107418967B/en
Publication of CN107418967A publication Critical patent/CN107418967A/en
Application granted granted Critical
Publication of CN107418967B publication Critical patent/CN107418967B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01023Orotidine-5'-phosphate decarboxylase (4.1.1.23)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application.The preparation method of uracil auxotrophy multiple-shaped nuohan inferior yeast disclosed by the invention, including:Knock out the content of the phosphate decarboxylase gene of orotidine 5 ' or the DNA encoding the protein in multiple-shaped nuohan inferior yeast starting strain or inactivate the DNA encoding the protein, obtain uracil auxotrophy multiple-shaped nuohan inferior yeast;It is following M1 to knock out the phosphate decarboxylase gene of orotidine 5 ') and M2):M1 the coding of the phosphate decarboxylase gene of orotidine 5 ') is made to terminate in advance;M2) exogenous dna fragment is inserted in the phosphate decarboxylase gene of orotidine 5 '.The uracil auxotrophy multiple-shaped nuohan inferior yeast inheritance stability that the present invention is built, and other growth characteristics do not have notable difference with wild-type strain, can be used as metabolic engineering or the chassis cell of synthetic biology transformation, and the cell factory of highly effective expressing recombinant protein.

Description

Uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application
Technical field
The present invention relates in biological technical field, uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method thereof is with answering With.
Background technology
Saccharomycete is that biological technical field applies very extensive microorganism, in large hair as unicellular eukaryote Very important effect is played in the production of ferment product, fine pharmaceutical chemicals and pharmaceutical grade protein.Hansenula polymorpha (Hansenula polymorpha) is a kind of methanotrophic yeast, can be using methanol as sole carbon source growth and inducible protein High efficient expression;Optimum growth temperature is 37 DEG C, is had to a variety of environment-stress such as heat stress, metal stress and Oxdative stress good Tolerance, therefore there is extensive adaptability to industrial environment;Exogenous DNA stabilization on chromosome, high copy are integrated and ensured The high efficiency of protein expression, stability and homogeneity;Protein secretion pathway and posttranslational modification mechanism are closer to height Deng eucaryote, the immunogenicity risk of recombinant protein is reduced;It is generally acknowledged safe microorganisms (Generally Recognized as safe, GRAS), obtain State Food and Drug Administration (CFDA) and approve;Some are at other Expression system can not realize that the high molecular weight protein, memebrane protein and complicated albumen of functional expression obtain in multiple-shaped nuohan inferior yeast Functional effective expression.Therefore multiple-shaped nuohan inferior yeast, which turns into, efficiently synthesizes recombinant protein medicine and other high-valued albumen the most Preferable Microbial cell factories.
Selection markers are important tools necessary to carrying out genetic modification to microbial strains.Multiple-shaped nuohan inferior yeast heredity changes The selection markers commonly used in making include antibiotic resistance screening and auxotrophy complementation.Compared with antibiotic resistance screens, There is the characteristics of biological safety is high, false positive rate is low by the auxotrophy selection markers having complementary functions, in food use and medicine Widely applied with having in the high efficient expression of recombinant protein.But the multiple-shaped nuohan inferior yeast auxotrophic strain used at present Majority derive from traditional physically or chemically mutagenesis, influences screening efficiency the defects of inheritance stability aspect;And original strain base This is the type strain of American Type Culture Collection center (American type culture collection, ATCC), It is restricted in commercial application.From source, exploitation has auxotrophy selection markers, inheritance stability multiple-shaped nuohan inferior yeast Bacterial strain, it is the advantage for giving full play to multiple-shaped nuohan inferior yeast in expression of recombinant proteins, realizes that commercial application is urgently to be resolved hurrily and ask Topic.
The content of the invention
The technical problems to be solved by the invention be how to prepare uracil auxotrophy multiple-shaped nuohan inferior yeast and how The marking protein in uracil auxotrophy multiple-shaped nuohan inferior yeast.
In order to solve the above technical problems, present invention firstly provides uracil auxotrophy multiple-shaped nuohan inferior yeast The preparation method of (Hansenula polymorpha).
The system of uracil auxotrophy multiple-shaped nuohan inferior yeast (Hansenula polymorpha) provided by the present invention Preparation Method, including:Gene or the reduction multiform Chinese are inferior in uracil route of synthesis in knockout multiple-shaped nuohan inferior yeast starting strain The content of DNA encoding the protein or go out the multiple-shaped nuohan inferior yeast in uracil route of synthesis described in yeast starting strain DNA encoding the protein inactivates in uracil route of synthesis described in bacterium germination strain, obtains the inferior ferment of the uracil auxotrophy multiform Chinese It is female;The multiple-shaped nuohan inferior yeast starting strain contains gene in the uracil route of synthesis.
The multiple-shaped nuohan inferior yeast starting strain can be multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP20110424, it is CGMCC in the preserving number of China Committee for Culture Collection of Microorganisms's common micro-organisms center No.7.89。
In the above method, gene can be orotidine -5 '-phosphate decarboxylase gene in the uracil route of synthesis.
In the above method, the orotidine -5 '-phosphate decarboxylase gene can be following A1) or A2) or A3) or A4):
A1) coded sequence is the DNA molecular of sequence 1 in sequence table;
A2) coded sequence is the DNA molecular of the 634-1425 positions of sequence 1 in sequence table;
A3) and A1) or A2) nucleotide sequence that limits has 75% or more than 75% homogeneity, and the coding whey The DNA molecular of glycosides -5 '-phosphate decarboxylase;
A4) under strict conditions with A1) or the A2) nucleotide sequence hybridization that limits, and encode orotidine -5 '-phosphorus The DNA molecular of acid decarboxylase.
In the above method, gene can be following in uracil route of synthesis in the knockout multiple-shaped nuohan inferior yeast starting strain M1) and/or M2):
M1 the coding of gene in the uracil route of synthesis) is made to terminate in advance;
M2) exogenous dna fragment is inserted in gene in the uracil route of synthesis.
M1) specifically can be by encoding base in orotidine -5 described in the multiple-shaped nuohan inferior yeast starting strain '-phosphate decarboxylase Because coded sequence 5-6 interdigits insertion adenylic acid realize, will the multiple-shaped nuohan inferior yeast starting strain it is described The sequence of orotidine -5 '-phosphate decarboxylase gene changes into the 620-1412 of sequence 2 by the 634-1425 positions of sequence 1 Position.
The insertion position of the exogenous dna fragment is the restriction enzyme identification of gene in the uracil route of synthesis Between sequence.The restriction enzyme can be Sac I.The insertion position of the exogenous dna fragment is the 1075- of sequence 2 The 1088-1089 interdigits of 1076 interdigits or sequence 1.The insertion of the exogenous dna fragment can cause the uracil to synthesize Gene function is lost in approach.
In an embodiment of the present invention, the sequence of the exogenous dna fragment is CYC1TT and its upstream and downstream sequence or sequence The 1434-5590 positions of sequence 5 in table.
In the above method, the insertion of the exogenous dna fragment can be completed by restriction enzyme.
In order to solve the above technical problems, present invention also offers the system of the uracil auxotrophy multiple-shaped nuohan inferior yeast Uracil auxotrophy multiple-shaped nuohan inferior yeast prepared by Preparation Method.
In order to solve the above technical problems, present invention also offers the method for express express target protein.
The method of express express target protein provided by the invention, including:The expression of encoding gene containing destination protein is carried Body is imported in the uracil auxotrophy multiple-shaped nuohan inferior yeast, is obtained recombinating multiple-shaped nuohan inferior yeast, is realized the purpose egg White expression.
In the method for above-mentioned express express target protein, the expression vector contains gene in the uracil route of synthesis.
In one embodiment of the invention, the destination protein is dextranase.
In order to solve the above technical problems, present invention also offers the uracil auxotrophy multiple-shaped nuohan inferior yeast in table Up to the application in protein.
In order to solve the above technical problems, present invention also offers a kind of reagent set for marking protein.
Reagent set provided by the present invention, carried by the uracil auxotrophy multiple-shaped nuohan inferior yeast and the expression Body forms.
Multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP20110424 falls within protection scope of the present invention, more Shape Hansenula yeast (Hansenula polymorpha) HP20110424 is common in China Committee for Culture Collection of Microorganisms The preserving number at microorganism center is CGMCC No.7.89.
The present invention is dashed forward using the multiple-shaped nuohan inferior yeast with independent intellectual property right as starting strain by the PCR genes mediated Become and the screening marker-free Gene silence of mazF-zeoR expression cassettes mediation constructs orotidine -5 '-phosphate decarboxylase function Missing, inheritance stability polymorpha strain, the bacterial strain removes, and there is nutrition caused by the blocking of uracil route of synthesis to lack Fall into outside phenotype, other growth characteristics do not have notable difference with wild-type strain, can be used as metabolic engineering or synthetic biology transformation Chassis cell, and the cell factory of highly effective expressing recombinant protein.
Biomaterial preservation explanation
The Classification And Nomenclature of biomaterial:Multiple-shaped nuohan inferior yeast (Hansenula polymorpha)
The strain number of biomaterial:HP20110424
Depositary institution's title of biomaterial:China Committee for Culture Collection of Microorganisms's common micro-organisms center
The depositary institution of biomaterial is referred to as:CGMCC
The depositary institution address of biomaterial:Yard 1, BeiChen xi Road, Chaoyang District, Beijing City 3, Chinese Academy of Sciences microorganism Research institute, postcode:100101
The preservation date of biomaterial:On 05 02nd, 2017
The collection of biomaterial is registered on the books numbering:CGMCC No.7.89
Brief description of the drawings
Fig. 1 is wild-type strain multiple-shaped nuohan inferior yeast CGMCC 7.89 and the auxanogram of uracil-deficient bacterial strain compares.
Fig. 2 is the PCR checkings that reversely screening knocks out selection markers bacterial strain.Wherein, M is DNA molecular amount standard.
Fig. 3 is uracil auxotrophy polymorpha HP7.89-ura3 and wild type Hansenula polymorpha bacterium CGMCC 7.89 growth curve.
Embodiment
The present invention is further described in detail with reference to embodiment, the embodiment provided is only for explaining The bright present invention, the scope being not intended to be limiting of the invention.Experimental method in following embodiments, unless otherwise specified, it is Conventional method.Material used, reagent, instrument etc., unless otherwise specified, are commercially obtained in following embodiments. Quantitative test in following examples, it is respectively provided with and repeats to test three times, results averaged.
Plasmid pEBCMZC (Song PP, Liu S, Guo XN, Bai XJ, He XP, Zhang in following embodiments BR.Scarless gene deletion in methylotrophic Hansenula polymorpha by using mazF as counter-selectable marker.Anal Biochem,2015,468:66-74) public can be from applicant Place obtains the biomaterial, and the biomaterial is only attached most importance to used in the related experiment of duplicate invention, can not used as other purposes.
YEp352 carriers (Hill JE, Meyers AM, Koerner TJ, et al.A yeast/ in following embodiments E.coli shuttle vectors with multiple unique restriction sites.Yeast,1993,9: Saccharomyces cerevisiae URA3 genes 163-167) are carried, the public can obtain the biomaterial at applicant, and the biomaterial is only attached most importance to Used in the related experiment of duplicate invention, it can not be used as other purposes.
Antibiotic Zeocin in following embodiments is Invitrogen Products, catalog number R25001.
The various culture mediums used in embodiment:
YPD solid mediums:The culture medium is made up of solute and solvent;Solute is dusty yeast, peptone, glucose and fine jade Cosmetics, solvent are water;The concentration of solute is as follows:10g/L dusty yeasts, 20g/L peptones, 20g/L glucose and 10g/L agar Powder, natural pH.
YPM solid mediums:The culture medium is made up of solute and solvent;Solute is dusty yeast, peptone, methanol and agar Powder, solvent are water;The concentration of solute is as follows:10g/L dusty yeasts, 20g/L peptones, 10ml/L methanol and 10g/L agar powders, from Right pH.
SC solid mediums:The culture medium is made up of solute and solvent;Solute is yeast nitrogen culture medium (Yeast Nitrogen Base, YNB) and glucose, solvent be water;The concentration of solute is as follows:6.7g/L YNB, 10g/L glucose and 10g/L agar powders, natural pH.
SCM solid mediums:The culture medium is made up of solute and solvent;Solute is yeast nitrogen culture medium (Yeast Nitrogen Base, YNB) and methanol, solvent be water;The concentration of solute is as follows:6.7g/L YNB, 10ml/L methanol and 10g/L Agar powder, natural pH.
SCU solid mediums:The culture medium is made up of solute and solvent;Solute is yeast nitrogen culture medium (Yeast Nitrogen Base, YNB), glucose and uracil, solvent be water;The concentration of solute is as follows:6.7g/L YNB, 10g/L Portugals Grape sugar, 30mg/L uracils and 10g/L agar powders, natural pH.
The fluid nutrient medium of above culture medium is made by not adding agar powder therein, and remaining composition and concentration are homogeneous Together.
The structure of embodiment 1, uracil auxotrophy multiple-shaped nuohan inferior yeast HP7.89-ura3
The present embodiment, to go out bacterium germination, is constructed using multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP20110424 Uracil auxotrophy multiple-shaped nuohan inferior yeast, multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP20110424 is in The preserving number of state's Microbiological Culture Collection administration committee common micro-organisms center (abbreviation CGMCC) is CGMCC No.7.89, with Lower abbreviation multiple-shaped nuohan inferior yeast CGMCC 7.89.
First, for destroying orotidine -5 '-phosphate decarboxylase encoding gene URA3 construction of recombinant plasmid
(1) using primer URA3-2K-F and URA3-2K-R using multiple-shaped nuohan inferior yeast CGMCC 7.89 genomic DNA as Template enters performing PCR amplification, obtains the URA3 genes shown in sequence 1 in sequence table, the URA3 genes and the inferior ferment of the multiform Chinese in NCBI Female DL-1 URA3 and its flanking sequence uniformity is 95.93%.The URA3 genes are connected to cloning vector pEASY-blunt In simple, recombinant plasmid pEASY-URA3 is obtained.Wherein the 634-1425 positions of sequence 1 are the coded sequence of URA3 genes. Primer sequence is as follows:
URA3-2K-F:5’-AACCAGTGAATGAAAACGAAGAGC-3’;
URA3-2K-R:5’-GGTGAAGAAAACCGGGAAAAGAATT-3’.
(2) enter performing PCR amplification by template of pEASY-URA3 using primer URA3RH-F1 and URA3RH-R1, obtain DNA Fragment URA3-1, enter performing PCR amplification by template of pEASY-URA3 using primer URA3RH-F2 and URA3RH-R2, obtain DNA Fragment URA3-2, enter performing PCR amplification by template of URA3-1 and URA3-2 using primer URA3RH-F1 and URA3RH-R2, obtain DNA fragmentation shown in sequence 2.Recognition sequence containing a Sac I in sequence 2, the 1071-1076 positions of sequence 2 are Sac I Recognition sequence.The DNA fragmentation inserts a base A after the bit base of URA3 gene coded sequences the 5th, makes the of sequence 2 TATAA after the ATG of 620-622 positions sports continuous two terminator codon TAATAA, and the DNA fragmentation is named as into mURA3. MURA3 is connected in cloning vector pEASY-blunt simple, obtains recombinant plasmid pEASY-mURA3.The primer sequence Row are as follows:
URA3RH-F1:5’-AACGAAGAGCCCAACTACTACAAG-3’;
URA3RH-R1:5’-TCGCCCTTTCTCCATAAGATTTAtTACATGTTGATTATTATTCAGGGAAATGTTG- 3’;
URA3RH-F2:5’-CAACATTTCCCTGAATAATAATCAACATGTAaTAAATCTTATGGAGAAAGGGCGA- 3’;
URA3RH-R2:5’-GGTGAAGAAAACCGGGAAAAG-3’.
(3) enter performing PCR amplification by template of plasmid pEBCMZC using primer Ps-F and Ps-R, obtain shown in sequence 3 DNA fragmentation C-mazF-zeoR, the 4-9 positions and 3967-3972 positions of sequence 3 are Sac I recognition sequence, the of sequence 3 22-392 positions and the sequence that 3580-3950 positions are CYC1TT, the 432-2725 positions of sequence 3 are the virulent gene of methanol induction The sequence of mazF expression cassettes, the 432-1959 positions of sequence 3 are the sequence of MOX promoters, and the 2726-3950 positions of sequence 3 are The sequence of zeoR expression cassettes, the 3205-3579 positions of sequence 3 are zeoR sequence.The primer sequence is as follows:
Ps-F:5’-AGGGAGCTCATCCAATTGTGACACGTC-3 ' (underscore part is Sac I recognition sequence);
Ps-R:5’-AGGGAGCTCGATGCCAGCAACGCG-3 ' (underscore part is Sac I recognition sequence).
By carrier bones of the C-mazF-zeoR after the DNA fragmentation after the digestions of Sac I and the digestions of pEASY-mURA3 Sac I Frame is connected, and obtains recombinant plasmid pmURA3-CMMZC, and C-mazF-zeoR is inserted into the SacI inside mURA3 in the recombinant plasmid Between recognition sequence, virulent gene mazF expression of the recombinant plasmid with zeocin resistance screenings mark zeoR and methanol induction Box.
2nd, for destroying the DNA fragmentations of URA3 genes
Using recombinant plasmid pmURA3-CMMZC as template, enter performing PCR amplification using primer pair URA3RH-F1 and P37, obtain The DNA fragmentation of 4536bp correct sequence, the DNA fragmentation include mURA3 5 ' terminal sequences, CYC1TT, mazF expression cassette and 5 ' terminal sequences of zeoR expression cassettes, are named as mUCMZ-1.
Using recombinant plasmid pmURA3-CMMZC as template, enter performing PCR amplification using primer pair ZEO-F and URA3RH-R2, obtain To the DNA fragmentation of 1515bp correct sequence, the DNA fragmentation includes 3 ' terminal sequences of zeoR expression cassettes and mURA3 3 ' end sequences Row, are named as ZmU-2.
259bp overlay region between DNA fragmentation mUCMZ-1 and ZmU-2 wherein be present, can be formed completely by recombinating ZeoR expression cassettes, conversion bacterial strain is set to show zeocin resistances.
Wherein, primer P37 is respectively positioned in zeoR gene order with ZEO-F sequences, and sequence is as follows:
P37:5’-CGTCCCGGAAGTTCGTGG-3’;
ZEO-F:5’-AAGTTGACCAGTGCCGTTCC-3’.
3rd, conversion of saccharomycetes and recombinant bacterial strain Screening and Identification
(1) DNA fragmentation mUCMZ-1 and ZmU-2 equimolar concentration are mixed, then takes the electricity conversion of 10 μ g hybrid dnas fragments Multiple-shaped nuohan inferior yeast CGMCC 7.89, bacterium solution is coated on YPD+zeocin solid mediums after conversion, in 37 DEG C of quiescent cultures 3-5d.The single bacterium colony grown is inoculated in 1mL sterilized waters, is stored at room temperature 2h, is then put respectively in SC solid mediums and YPD On solid medium, 37 DEG C of quiescent culture 48h, obtain the normal growth on YPD culture mediums and do not grown on SC culture mediums Convert bacterial strain, i.e. auxotrophic strain.Wherein, YPD+zeocin solid mediums are to add zeocin into YPD culture mediums Obtained zeocin concentration is 200 μ g/mL solid medium.
(2) auxotrophic strain and wild-type strain multiple-shaped nuohan inferior yeast CGMCC 7.89 obtained step (1) It is inoculated in respectively in 1mL sterilized waters, is stored at room temperature 2h, then respectively puts in SC, SCU, YPD and YPD+zeocin solid culture On base, 37 DEG C of quiescent culture 48h.As a result show, wild strain equal normal growth on SC, SCU, YPD culture medium, but in YPD+ It can not be grown on zeocin culture medium flat plates;The auxotrophic strain that step (1) obtains can not grow on SC culture mediums, But the normal growth on SCU, YPD and YPD+zeocin culture medium.Show that the auxotrophic strain that step (1) obtains is urine Pyrimidine synthesizes deficient strain, and is marked with zeocin resistance screenings.
Bacterial strain is identified:
According to multiple-shaped nuohan inferior yeast URA3 upstream and downstream flanking sequences, primer URA3UP-F and URA3DOWN- are designed and synthesized R, wherein primer URA3UP-F and URA3DOWN-R sequence are respectively on URA3 upstream and downstream flanking sequences, and each primer sequence is such as Under:
URA3UP-F:5’-AGTCAGACGAGGGTAAGGAA-3’;
URA3DOWN-R:5’-CGATGATCCTAGCCCTGTCG-3’.
Using primer pair URA3UP-F and URA3DOWN-R respectively to multiple-shaped nuohan inferior yeast CGMCC 7.89 and step (1) The genomic DNA of obtained auxotrophic strain enters performing PCR amplification, is amplified from multiple-shaped nuohan inferior yeast CGMCC 7.89 2719bp DNA fragmentations, the DNA fragmentation is sequenced and shows its sequence as shown in sequence 4, the 544-2385 positions of sequence 4 Sequence and the URA3 gene orders shown in sequence 1 are completely the same;And the auxotrophic strain genome obtained from step (1) 6683bp DNA fragmentation is amplified, sequencing result shows its sequence as shown in sequence 5, the 558-1633 positions of sequence 5 The 1-1076 bit sequences of sequence and sequence 2 are completely the same, and the 1634-5590 positions of sequence 5 are C-mazF-zeo sequences, sequence 5 5597-6349 bit sequences and the 1077-1829 bit sequences of sequence 2 is completely the same.Therefore the nutrition that step (1) obtains Deficient strain is to identify sequence in mURA3 Sac I corresponding to the sequence of multiple-shaped nuohan inferior yeast CGMCC 7.89 URA3 genes The sequence that C-mazF-zeoR is obtained is inserted between row.Show URA3 positions on the auxotrophic strain genome that step (1) obtains C-mazF-zeoR, and the Partial Fragment of the mURA3 shown in 620-628 positions of the bacterial strain also containing sequence 2 are inserted in point, Cell is seted to produce uracil auxotrophic phenotype from synthesizing orotidine -5 '-phosphate decarboxylase, cell.Step (1) is obtained Auxotrophic strain be named as HP-ura3::MZ.
4th, reversely screening knocks out selection markers and obtains uracil-deficient type bacterial strain HP7.89-ura3
(1) by the uracil auxotrophy bacterial strain HP-ura3 of step 3::MZ is connected in 2ml YPD fluid nutrient mediums, 37 DEG C, 200rpm culture 18h, 5000rpm centrifugation 5min collection cells, sterilized water washed once, and add 2ml sterilized waters, room temperature After standing 2h, 100 μ L bacteria suspensions are taken to be coated on YPM solid mediums, 37 DEG C of quiescent cultures are to growing single bacterium colony.
Random four single bacterium colonies of picking (being respectively designated as Δ U1, Δ U2, Δ U3 and Δ U4) are inoculated in 1mL sterilized waters, After being stored at room temperature 2h, dibbling is on SC, SCU, YPD and YPD+zeocin solid medium respectively, while more with wild-type strain Shape Hansenula yeast CGMCC 7.89 and uracil-deficient type bacterial strain HP-ura3::MZ is compares, 37 DEG C of quiescent culture 48h.
As a result as shown in figure 1, all bacterial strains energy normal growth, but only bacterial strain HP-ura3 on YPD culture mediums::MZ It can be grown on YPD+zeocin culture mediums;Wild-type strain equal normal growth on SC, SCU culture medium, but bacterial strain HP- ura3::MZ and the single bacterium colony (Δ U1, Δ U2, Δ U3 and Δ U4) on YPM flat boards can not grow on SC culture mediums, The normal growth on the SCU culture mediums for the addition of uracil.Show HP-ura3::After MZ is cultivated on YPM culture mediums, due to first Alcohol-induced toxic protein MazF expression produces lethal effect to cell, and is only knocked out by the homologous recombination of CYC1TT mediations Zeocin resistance screenings mark could grow with the yeast cells after mazF expression cassettes, and show as uracil auxotrophy.
(2) according to multiple-shaped nuohan inferior yeast URA3 site nucleotide sequences, following primer is designed and synthesized:
URA3-mF:5’-CAGGCCGCAGAAGAAAGTAC-3’;
URA3HP-R:5’-TTAAGCAATGCGCCGCTTGTAAG-3’.
Extract Δ U1, Δ U2, Δ U3 and Δ U4 genomic DNA respectively, as template, using primer URA3-mF and URA3HP-R enters performing PCR amplification and above-mentioned bacterial strains is verified.Simultaneously respectively with wild-type strain CGMCC 7.89 and uracil Deficient strain HP-ura3::MZ genomes are control.
The electrophoresis detection result of pcr amplification product using primer URA3-mF and URA3HP-R from reverse as shown in Fig. 2 sieved Bacterial strain Δ U1 after choosing, Δ U2, Δ U3 and Δ U4 genome amplify about 800bp DNA fragmentations, from wild-type strain CGMCC 7.89 genome amplifications go out about 400bp DNA fragmentation, from bacterial strain HP-ura3::MZ genome amplifications go out about 4.4kb DNA pieces Section.Sequence analysis and comparison are carried out to PCR primer, the results showed that the PCR from bacterial strain Δ U1, Δ U2, Δ U3 and Δ U4 is produced Thing has completely the same nucleotide sequence, and they are compared with wild-type strain CGMCC 7.89 PCR primer, in the 57th core 405bp CYC1TT sequences are inserted behind thuja acid, with bacterial strain HP-ura3::MZ PCR primer is compared and has lacked mazF expression Box and zeocin resistance expression's boxes.The above results show, CYC1TT is inserted inside target gene URA3 by reversely screening to obtain The mutant strain of sequence, the screening marker-free for realizing URA3 destroy, and yeast cells is produced uracil auxotrophic phenotype.Will HP7.89- is named as by the uracil auxotrophy bacterial strain (i.e. Δ U1, Δ U2, Δ U3 and Δ U4) for reversely screening acquisition ura3。
Wild-type strain CGMCC 7.89 and uracil auxotrophy bacterial strain HP7.89-ura3 URA3 sites code sequence Row compare:
According to wild-type strain CGMCC 7.89 URA3 upstream from start codon about 200bp sequences, design and synthesize and draw Thing URA3ORF:5’-GTCCACCAAACTGGTGTAG-3’.
Respectively with wild-type strain CGMCC 7.89 and uracil auxotrophy bacterial strain HP7.89-ura3 genomic DNAs For template, enter performing PCR amplification using primer URA3ORF and URA3HP-R.
Go out 991bp DNA fragmentation (to this from wild-type strain genome amplification using primer URA3ORF and URA3HP-R The sequencing of DNA fragmentation shows that its sequence is sequence 6 in sequence table), from HP7.89-ura3 genome amplification go out 1397bp's DNA fragmentation (sequencing to the DNA fragmentation shows that its sequence is sequence 7 in sequence table).As a result show, with wild-type strain URA3 Coded sequence is compared, and the TATAA of HP7.89-ura3 URA3 coded sequences after the 620-622 positions ATG of sequence 2 is sported Continuous two terminator codon TAATAA;And insert CYC1TT at 454bp after the 620-622 positions ATG of sequence 2 (the 669-1039 positions of sequence 7) and its each 12bp and 22bp sequences of upstream and downstream.
5th, uracil-deficient type bacterial strain HP7.89-ura3 inheritance stability analysis
Uracil auxotrophy polymorpha strain HP7.89-ura3 is connected in 2ml YPD fluid nutrient mediums, 37 DEG C, 200rpm shaking table culture 20h, are transferred in fresh YPD medium, as above continuous passage culture 10 by 10% inoculum concentration It is secondary.The μ L of nutrient solution 200 of passage 1,5 and 10 time are taken respectively, carry out 10 times of gradient dilution.
Undiluted bacterium solution and each 100 μ L of different dilution factor bacterium solutions are respectively coated on SC, SCU and YPD culture medium flat plate, 37 DEG C of quiescent culture 48h, record colony growth situation on different flat boards.
As a result find all there is no colony growth on all SC flat boards, and bacterium colony normal growth on SCU and YPD flat boards, bacterium Fall number to improve and successively decrease with dilution factor, and the clump count under same treatment conditions on SCU and YPD flat boards does not have notable difference. Illustrate the uracil auxotrophy polymorpha strain HP7.89-ura3 inheritance stabilities of the present invention.
6th, wild type and uracil-deficient type bacterial strain HP7.89-ura3 growth characteristics compare
By wild type Hansenula polymorpha CGMCC 7.89 and uracil auxotrophy polymorpha HP7.89- Ura3 is inoculated in 2ml YPD fluid nutrient mediums respectively, 37 DEG C, 200rpm shaken cultivation 16h, by volume 10% inoculum concentration Transfer in 10ml YPD fluid nutrient mediums, 37 DEG C of shaking table shaken cultivations 16 hours;Somatic cells are collected by centrifugation, by cell nothing Bacterium is washed twice, and thalline is resuspended in 5ml sterilized waters and bacteria suspension is made;Bacteria suspension is transferred in SCU, YPD and YPM liquid respectively In culture medium, nutrient solution is set to originate OD600About 0.15,37 DEG C, 200rpm shaking table shaken cultivation 36h, 2ml is during which sampled per 6h Determine OD600, make growth curve.As a result as shown in figure 3, the uracil auxotrophy multiple-shaped nuohan inferior yeast that the present invention is built Bacterium (Hansenula polymorpha) HP7.89-ura3 and wild type Hansenula polymorpha bacterium CGMCC 7.89 are in growth characteristics Upper no notable difference.
The table of embodiment 2, dextranase in multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP7.89-ura3 Reach
First, the structure of expression vector
By the pMOXZ α-A (patent No.s:ZL200810101801.1) the DNA fragmentation between carrier EcoRI and XbaI recognition sequences This is replaced with up to saccharomyces oleaginosus glucanase coding gene (LSD1 genes, its sequence are the 1798-3624 positions of sequence 8), is obtained To recombinant vector, by the recombinant vector be named as pMOXZ α-LSD1, pMOXZ α-LSD1 can expressed sequence 8 1798-3624 This of LSD1 gene codes shown in position reaches saccharomyces oleaginosus dextranase.
Using recombinant vector pMOXZ α-LSD1 as template, enter performing PCR amplification using primer MOXp-F and AOX1TT-R, by sequence Arrange correct PCR primer and be named as DNA fragmentation 1, the sequence of DNA fragmentation 1 is sequence 8, and the 1-1511 positions of sequence 8 are methanol oxygen Change enzyme gene promoter MOXp sequences, the 1525-1791 positions of sequence 8 are alpha signal peptide sequence, the 1798-3624 positions of sequence 8 For LSD1 gene coded sequences, the 3695-4033 positions of sequence 8 are alcohol oxidase gene terminator AOX1TT sequences.
The primer sequence is as follows:
MOXp-F:5'-TCTTCGACGCGGAGAACGATCTCCT-3',
AOX1TT-R:5'-TCCGCACAAACGAAGGTCTC-3'.
DNA fragmentation 1 is inserted into the SmaI sites of YEp352 carriers, obtains recombinant vector, the recombinant vector is named For pMOXU α-LSD1.
2nd, conversion of saccharomycetes and recombinant bacterial strain screening
Using restriction enzyme SacII digested plasmid pMOXU α-LSD1, linearization plasmid pMOXU α-LSD1 are obtained;It is logical Cross electrotransformation (Bio-Rad Gene-Pulser instrument, 1.5kV, 50 μ F, 200 Ω, 3mSec) by linearization plasmid pMOXU α- Uracil auxotrophy polymorpha (Hansenula polymorpha) HP7.89- of LSD1 conversion embodiments 1 Ura3 (Host Strains HP7.89-ura3), transformed bacteria solution are coated on SC culture medium flat plates, and 37 DEG C of quiescent culture 3-5d are to forming list Bacterium colony.
Single bacterium colony on SC flat boards is transferred in 1ml sterilized waters, stands 2-4h at ambient temperature, correspond to respectively dibbling in On SC, SCU and YPD flat board, 37 DEG C are cultivated 48 hours, using Host Strains HP7.89-ura3 as control.As a result Host Strains HP7.89- Ura3 can not grow on SC flat boards, can only be grown on SCU and YPD flat boards, and convert pMOXU α-LSD1 single bacterium colony upper Equal energy normal growth on each culture medium flat plate is stated, illustrates that linearization plasmid pMOXU α-LSD1 successful conversions enter Host Strains HP7.89- Ura3, the uracil synthesis defect for the saccharomyces cerevisiae URA3 gene complementations Host Strains that linearization plasmid carries, will contain linear The recombinant bacterium for changing plasmid pMOXU α-LSD1 is named as HP-LSD1.
3rd, assay for dextranase activity
By Host Strains HP7.89-ura3 and 5 recombinant bacterium HP-LSD1 single bacterium colonies (HP-LSD1-1~HP- of random picking LSD1-5) it is connected to respectively in 5ml YPD culture mediums, 37 DEG C, 200rpm culture 20h, cell is collected by centrifugation, sterile washing is twice Afterwards, cell is resuspended in 10ml YPM culture mediums, 37 DEG C, 200rpm progress Fiber differentiation 72h, methanol is added to methanol per 12h Concentration of volume percent be 1%.Per 24h sample, by 3,5- dinitro bigcatkin willows acid system determine zymotic fluid in and yeast cells Interior dextranase activity (Kang HK, Kim SH, Park JY, Jin XJ, Oh DK, Kang SS, Kim D.Cloning and characterization of a dextranase gene from Lipomyces starkeyi and its expression in Saccharomyces cerevisiae.Yeast,2005,22:1239-1248).Total dextranase Activity is the summation of enzyme activity in intracellular enzyme activity and zymotic fluid.Specific method is as follows:
The preparation of solution:15mg glucose accurately is weighed, is dissolved in distilled water, obtains final concentration of 1mg/ml glucose Reservoir;7.16g disodium hydrogen phosphates accurately are weighed, are dissolved in distilled water, adjust pH to 5.5 with citric acid, distilled water is settled to 1000ml, obtain citrate-phosphate disodium hydrogen buffer solution (50mM, pH5.5);2g glucan T-70 accurately are weighed, are dissolved in lemon In acid-disodium hydrogen phosphate buffer solution, constant volume to 100ml;8g sodium hydroxides accurately are weighed, are dissolved in distilled water, constant volume arrives 100ml, make final concentration of 2mol/L;1g 3 accurately is weighed, 5- dinitrosalicylic acids (DNS), is dissolved in 20ml sodium hydroxide solutions In 50ml distilled water, 30g Rochelle salts are added, after dissolving plus water is settled to 100ml, obtains DNS solution, is keeping away Saved backup in light closed container.
Glucose standard curve:The glucose reservoir that concentration is 1mg/ml is suitably diluted, obtaining concentration respectively is 0th, 0.1,0.3,0.5,0.7,0.9 and 1.0mg/ml glucose solution, each 1ml of above-mentioned glucose solution is taken in test tube, point Not Jia Ru 1ml DNS solution, after mixing, 5min is boiled in boiling water bath, after being cooled to room temperature, adds distilled water to be settled to 5ml, with not Reaction solution containing glucose is control, determines 540nm absorbance value (OD540), using concentration of glucose as abscissa, OD540For Ordinate, standard curve is drawn, obtains concentration of glucose and OD540Between functional relation:Concentration of glucose (mg/ml)= (OD540+0.0317)/1.4602。
Dextranase activity determines in zymotic fluid:Different time points take nutrient solution 5ml, 6000rpm centrifugation 5min, receive respectively Collect supernatant and yeast cells;0.5ml supernatants are taken wherein to be added in contrast test tube and reaction tube in reaction tube respectively 2% dextran solution of 37 DEG C of preheatings of 0.5ml;Control tube and reaction tube are incubated 30min at 37 DEG C, are then respectively adding 1ml DNS solution, after mixing, 0.5ml 2% dextran solution is added in control tube;Boiling water bath boils 5min;It is cooled to After room temperature, control tube and reaction tube are separately added into distilled water and are settled to 5ml;Returned to zero with control tube, measure reaction tube OD540, foundation Standard curve functional expression calculates concentration of reduced sugar in reaction solution.
Cell endoglucanase activity determines:The yeast cells of foregoing collected after centrifugation, aqueous suspension is distilled with 5ml, 6000rpm centrifuges 5min, and yeast cells is resuspended in into citrate-phosphate hydrogen in the ratio of every gram of wet cell 10ml buffer solution In disodium buffer solution, -80 DEG C of freeze overnights;Naturally after melting, 0.5ml bacteria suspensions are taken to be added simultaneously in 1.5ml centrifuge tubes The a diameter of 0.45mm of 25mg bead, vortex oscillation 4 times, 1min, ice bath 1min is vibrated every time;4 DEG C, 6000rpm centrifugations 10min, collect supernatant;Dextranase activity in supernatant is determined by preceding method.
Enzyme activity is defined as:Under above-mentioned reaction condition, catalysis glucan hydrolysis per minute is produced equivalent to 1 μm of ol glucose Enzyme amount needed for reduced sugar is an enzyme-activity unit (IU).
As a result as shown in table 1, dextranase activity is not detected in host's fermented liquid, but in recombinant bacterium HP- Dextranase activity is detected in LSD1 zymotic fluid.After Fiber differentiation 72h, total dextranase activity is up to Dextranase enzyme activity is 720IU/L in 2050IU/L, wherein zymotic fluid.
The above results show uracil auxotrophy multiple-shaped nuohan inferior yeast HP7.89-ura3 of the dextranase in the present invention In obtain functional expression.
Dextranase activity and fermentation ends total enzyme activity in table 1, different strains zymotic fluid
<110>Institute of Microorganism, Academia Sinica, university of the Chinese Academy of Sciences
<120>Uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 1842
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 1
aaccagtgaa tgaaaacgaa gagcccaact actacaagct aatacggcat cccgtggaca 60
ttaagagttt gggtaaagct attaggacgg gtgaaataaa gtcattcgac gagttggaat 120
ttgagcttca actgatgttc agcaacgcaa ttatgtacaa cgatatgaat cagacagaaa 180
cttacaaatg gacgattgaa atgatggaag aaacgcaaaa cttgttgagc ctattccggg 240
aatcatccag caattaaagc tcattaattg ccgcctctca tctggttcat caacatctgg 300
ttctgttcct ggaatcttaa accaactctt tcggagtgct tgaggaactt ttcagcgcac 360
ttgttcaaac atgtttcttc tctagagcta agtttgttgg aggtgaagtc gttgacgcaa 420
tcattaaaac atctgtccac caaactggtg tagagctgca atgttagttt tcagaaggcg 480
ttcacttact ctcatgaagt cattcatttg cttctgctcc acaattttct ggaattcttg 540
ctgttcttta tagttgagtt gatccatggt gtatcaaaaa taaactaatg aattatcgaa 600
aaattttcaa catttccctg aataataatc aacatgtata aatcttatgg agaaagggcg 660
aagtctcacc catctaaggt cgccagcaga ctacttaatt tgatggaatc caagcaaaca 720
aacctctgcg cttctgtgga tgtgactaaa actcaggaat tattggagct tcttgataaa 780
ctgggccctt acatctgcct tgtcaaaact catattgaca tagtagagga cttctcttat 840
gaacacacca ttttaccatt acaaggactt gcaaagaaac acaacttcat gatttttgaa 900
gacagaaagt ttgctgatat aggaaacaca gtcaaactac agtataaggg aggaatttat 960
cgaacatcca agtgggccga tatcacgaat gcacacggag tgactggcgc aggaattgtt 1020
gaaggtctta aacaggccgc agaagaaagt acagatgagc cacgtgggct tttgatgctt 1080
gctgagctct cttcaaaggg atcattagct accggtgagt atactcaaaa aactgtggaa 1140
atagcgaaaa gcgataaaga atttgtcatt ggatttattg cacagagaga catgggaggt 1200
cgtgaggaag gctttgactg gctgatcatg actccaggag ttggtttaga tgataaaggt 1260
gattctctgg gccaacagta cagaactgtt gatgaagtga tgcaaacagg aaccgatgtc 1320
attatcgttg gaagaggttt attcggaaaa ggaagagatc ctgaagtgga agggaagaga 1380
tacagaaatg ctgggtggga agcttacaag cggcgcattg cttaacggct ttcagttcta 1440
tatacatcgt caaaattgat tttcgctaaa atgctgacgg gatatttcga atacgaaaag 1500
cccaatagaa gtcgcgggaa tactagtgaa ggacgatctg aaaaagcctc tatagcagaa 1560
gccaaagagg gagaggtgag attttcgcca tcgttgtaga ataatatcaa atgtctcaat 1620
gtaagaatta tagtagagtt tgaagaagcg acgccgatcc agttgatgtg cttcgttgta 1680
gagatctaga gattcgagtc tagtcaggtg gaccttttga attttattga gtggatattg 1740
gattgcaagc agtgtagttg cggcggaagc tccagcaaga aggataaacg tcaaattcaa 1800
agctttgaaa aatcttgaat tcttttcccg gttttcttca cc 1842
<210> 2
<211> 1829
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 2
aacgaagagc ccaactacta caagctaata cggcatcccg tggacattaa gagtttgggt 60
aaagctatta ggacgggtga aataaagtca ttcgacgagt tggaatttga gcttcaactg 120
atgttcagca acgcaattat gtacaacgat atgaatcaga cagaaactta caaatggacg 180
attgaaatga tggaagaaac gcaaaacttg ttgagcctat tccgggaatc atccagcaat 240
taaagctcat taattgccgc ctctcatctg gttcatcaac atctggttct gttcctggaa 300
tcttaaacca actctttcgg agtgcttgag gaacttttca gcgcacttgt tcaaacatgt 360
ttcttctcta gagctaagtt tgttggaggt gaagtcgttg acgcaatcat taaaacatct 420
gtccaccaaa ctggtgtaga gctgcaatgt tagttttcag aaggcgttca cttactctca 480
tgaagtcatt catttgcttc tgctccacaa ttttctggaa ttcttgctgt tctttatagt 540
tgagttgatc catggtgtat caaaaataaa ctaatgaatt atcgaaaaat tttcaacatt 600
tccctgaata ataatcaaca tgtaataaat cttatggaga aagggcgaag tctcacccat 660
ctaaggtcgc cagcagacta cttaatttga tggaatccaa gcaaacaaac ctctgcgctt 720
ctgtggatgt gactaaaact caggaattat tggagcttct tgataaactg ggcccttaca 780
tctgccttgt caaaactcat attgacatag tagaggactt ctcttatgaa cacaccattt 840
taccattaca aggacttgca aagaaacaca acttcatgat ttttgaagac agaaagtttg 900
ctgatatagg aaacacagtc aaactacagt ataagggagg aatttatcga acatccaagt 960
gggccgatat cacgaatgca cacggagtga ctggcgcagg aattgttgaa ggtcttaaac 1020
aggccgcaga agaaagtaca gatgagccac gtgggctttt gatgcttgct gagctctctt 1080
caaagggatc attagctacc ggtgagtata ctcaaaaaac tgtggaaata gcgaaaagcg 1140
ataaagaatt tgtcattgga tttattgcac agagagacat gggaggtcgt gaggaaggct 1200
ttgactggct gatcatgact ccaggagttg gtttagatga taaaggtgat tctctgggcc 1260
aacagtacag aactgttgat gaagtgatgc aaacaggaac cgatgtcatt atcgttggaa 1320
gaggtttatt cggaaaagga agagatcctg aagtggaagg gaagagatac agaaatgctg 1380
ggtgggaagc ttacaagcgg cgcattgctt aacggctttc agttctatat acatcgtcaa 1440
aattgatttt cgctaaaatg ctgacgggat atttcgaata cgaaaagccc aatagaagtc 1500
gcgggaatac tagtgaagga cgatctgaaa aagcctctat agcagaagcc aaagagggag 1560
aggtgagatt ttcgccatcg ttgtagaata atatcaaatg tctcaatgta agaattatag 1620
tagagtttga agaagcgacg ccgatccagt tgatgtgctt cgttgtagag atctagagat 1680
tcgagtctag tcaggtggac cttttgaatt ttattgagtg gatattggat tgcaagcagt 1740
gtagttgcgg cggaagctcc agcaagaagg ataaacgtca aattcaaagc tttgaaaaat 1800
cttgaattct tttcccggtt ttcttcacc 1829
<210> 3
<211> 3975
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 3
agggagctca tccaattgtg acacgtccga cggcggccca cgggtcccag gcctcggaga 60
tccgtccccc ttttcctttg tcgatatcat gtaattagtt atgtcacgct tacattcacg 120
ccctcccccc acatccgctc taaccgaaaa ggaaggagtt agacaacctg aagtctaggt 180
ccctatttat ttttttatag ttatgttagt attaagaacg ttatttatat ttcaaatttt 240
tctttttttt ctgtacagac gcgtgtacgc atgtaacatt atactgaaaa ccttgcttga 300
gaaggttttg ggacgctcga aggctttaat ttgcaagctg gagaccaaca tgtgagcaaa 360
aggccagcaa aaggccagga accgtaaaaa ggaagggcaa ttctgcagat atccatcaca 420
ctggcggccg ctcatgcatg agatcagatc ttcgacgcgg agaacgatct cctcgagctg 480
ctcgcggatc agcttgtggc ccggtaatgg aaccaggccg acgcgacgct ccttgcggac 540
cacggtggct ggcgagccca gtttgtgaac gaggtcgttt agaacgtcct gcgcaaagtc 600
cagtgtcaga tgaatgtcct cctcggacca attcagcatg ttctcgagca gccatctgtc 660
tttggagtag aagcgtaatc tctgctcctc gttactgtac cggaagaggt agtttgcctc 720
gccgcccata atgaacaggt tctctttctg gtggcctgtg agcagcgggg acgtctggac 780
ggcgtcgatg aggcccttga ggcgctcgta gtacttgttc cgtcgctgta gccggccgcg 840
gtgacgatac ccacatagag gtccttggcc attagtttga tgaggtgggg caggatgggc 900
gactcggcat cgaaattttt gccgtcgtcg tacagtgtga tgtcaccatc gaatgtaatg 960
agctgcagct tgcgatctcg gatggttttg gaatggaaga accgcgacat ctccaacagc 1020
tgggccgtgt tgagaatgag ccggacgtcg ttgaacgagg gggccacaag ccggcgtttg 1080
ctgatggcgc ggcgctcgtc ctcgatgtag aaggcctttt ccagaggcag tctcgtgaag 1140
aagctgccaa cgctcggaac cagctgcacg agccgagaca attcgggggt gccggctttg 1200
gtcatttcaa tgttgtcgtc gatgaggagt tcgaggtcgt ggaagatttc cgcgtagcgg 1260
cgttttgcct cagagtttac catgaggtcg tccactgcag agatgccgtt gctcttcacc 1320
gcgtacagga cgaacggcgt ggccagcagg cccttgatcc attctatgag gccatctcga 1380
cggtgttcct tgagtgcgta ctccactctg tagcgactgg acatctcgag actgggcttg 1440
ctgtgctgga tgcaccaatt aattgttgcc gcatgcatcc ttgcaccgca agtttttaaa 1500
acccactcgc tttagccgtc gcgtaaaact tgtgaatctg gcaactgagg gggttctgca 1560
gccgcaaccg aacttttcgc ttcgaggacg cagctggatg gtgtcatgtg aggctctgtt 1620
tgctggggta gcctacaacg tgaccttgcc taaccggacg gcgctaccca ctgctgtctg 1680
tgcctgctac cagaaaatca ccagagcagc agagggccga tgtggcaact ggtggggtgt 1740
cggacaggct gtttctccac agtgcaaatg cgggtgaacc ggccagaaag taaattctta 1800
tgctaccgtg cagcgactcc gacatcccca gtttttgccc tacttgatca cagatggggt 1860
cagcgctgcc gctaagtgta cccaaccgtc cccacacggt ccatctataa atactgctgc 1920
cagtgcacgg tggtgacatc aatctaaagt acaaaaacaa agcttaggaa gtctggtaat 1980
ggtaagccga tacgtacccg atatgggcga tctgatttgg gttgattttg acccgacaaa 2040
aggtagcgag caagctggac atcgtccagc tgttgtcctg agtcctttca tgtacaacaa 2100
caaaacaggt atgtgtctgt gtgttccttg tacaacgcaa tcaaaaggat atccgttcga 2160
agttgtttta tccggtcagg aacgtgatgg cgtagcgtta gctgatcagg taaaaagtat 2220
cgcctggcgg gcaagaggag caacgaagaa aggaacagtt gccccagagg aattacaact 2280
cattaaagcc aaaattaacg tactgattgg gtagtctaga acaaaaactc atctcagaag 2340
aggatctgaa tagcgccgtc gaccatcatc atcatcatca ttgagtttta gccttagaca 2400
tgactgttcc tcagttcaag ttgggcactt acgagaagac cggtcttgct agattctaat 2460
caagaggatg tcagaatgcc atttgcctga gagatgcagg cttcattttt gatacttttt 2520
tatttgtaac ctatatagta taggattttt tttgtcattt tgtttcttct cgtacgagct 2580
tgctcctgat cagcctatct cgcagctgat gaatatcttg tggtaggggt ttgggaaaat 2640
cattcgagtt tgatgttttt cttggtattt cccactcctc ttcagagtac agaagattaa 2700
gtgagacctt cgtttgtgcg gatcccccac acaccatagc ttcaaaatgt ttctactcct 2760
tttttactct tccagatttt ctcggactcc gcgcatcgcc gtaccacttc aaaacaccca 2820
agcacagcat actaaatttt ccctctttct tcctctaggg tgtcgttaat tacccgtact 2880
aaaggtttgg aaaagaaaaa agagaccgcc tcgtttcttt ttcttcgtcg aaaaaggcaa 2940
taaaaatttt tatcacgttt ctttttcttg aaattttttt ttttagtttt tttctctttc 3000
agtgacctcc attgatattt aagttaataa acggtcttca atttctcaag tttcagtttc 3060
atttttcttg ttctattaca acttttttta cttcttgttc attagaaaga aagcatagca 3120
atctaatcta agggcggtgt tgacaattaa tcatcggcat agtatatcgg catagtataa 3180
tacgacaagg tgaggaacta aaccatggcc aagttgacca gtgccgttcc ggtgctcacc 3240
gcgcgcgacg tcgccggagc ggtcgagttc tggaccgacc ggctcgggtt ctcccgggac 3300
ttcgtggagg acgacttcgc cggtgtggtc cgggacgacg tgaccctgtt catcagcgcg 3360
gtccaggacc aggtggtgcc ggacaacacc ctggcctggg tgtgggtgcg cggcctggac 3420
gagctgtacg ccgagtggtc ggaggtcgtg tccacgaact tccgggacgc ctccgggccg 3480
gccatgaccg agatcggcga gcagccgtgg gggcgggagt tcgccctgcg cgacccggcc 3540
ggcaactgcg tgcacttcgt ggccgaggag caggactgac acgtccgacg gcggcccacg 3600
ggtcccaggc ctcggagatc cgtccccctt ttcctttgtc gatatcatgt aattagttat 3660
gtcacgctta cattcacgcc ctccccccac atccgctcta accgaaaagg aaggagttag 3720
acaacctgaa gtctaggtcc ctatttattt ttttatagtt atgttagtat taagaacgtt 3780
atttatattt caaatttttc ttttttttct gtacagacgc gtgtacgcat gtaacattat 3840
actgaaaacc ttgcttgaga aggttttggg acgctcgaag gctttaattt gcaagctgga 3900
gaccaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct 3960
ggcatcgagc tccct 3975
<210> 4
<211> 2719
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 4
agtcagacga gggtaaggaa attacaaagg ttcttcaaga tctctcggat aaccagaaga 60
aagacggcca gattgtttta gatgaagaac agttggagaa aactttggaa atggccaaag 120
gtgacgcaca agaacctgaa gagaacgtgg acgataatga cgcagacaaa gagatcgatg 180
aaggtgtcga gcccgaggca gaatcatcgg ctcaatctca accggtcact gctttggaaa 240
aaagcagaac agagccatcg gaaacgcatt ccgaacctca agaaggccca gcgccaagct 300
ccgagttgaa tgtagaatca caaccccaaa cgaaattgga atccaagtcg gcttctaaag 360
aaataccatc gccaactcca gaacctgcta ccccatccac gccagcaagt ggagatgaag 420
aacgtgggag caagcgacgc ggatccgaaa gcgtcccccc tggttgtact aagcgcttta 480
atgctctttc tgcacaactt ctcacacaga tatcatccaa ccggtttgca tccatgttca 540
tgcaaccagt gaatgaaaac gaagagccca actactacaa gctaatacgg catcccgtgg 600
acattaagag tttgggtaaa gctattagga cgggtgaaat aaagtcattc gacgagttgg 660
aatttgagct tcaactgatg ttcagcaacg caattatgta caacgatatg aatcagacag 720
aaacttacaa atggacgatt gaaatgatgg aagaaacgca aaacttgttg agcctattcc 780
gggaatcatc cagcaattaa agctcattaa ttgccgcctc tcatctggtt catcaacatc 840
tggttctgtt cctggaatct taaaccaact ctttcggagt gcttgaggaa cttttcagcg 900
cacttgttca aacatgtttc ttctctagag ctaagtttgt tggaggtgaa gtcgttgacg 960
caatcattaa aacatctgtc caccaaactg gtgtagagct gcaatgttag ttttcagaag 1020
gcgttcactt actctcatga agtcattcat ttgcttctgc tccacaattt tctggaattc 1080
ttgctgttct ttatagttga gttgatccat ggtgtatcaa aaataaacta atgaattatc 1140
gaaaaatttt caacatttcc ctgaataata atcaacatgt ataaatctta tggagaaagg 1200
gcgaagtctc acccatctaa ggtcgccagc agactactta atttgatgga atccaagcaa 1260
acaaacctct gcgcttctgt ggatgtgact aaaactcagg aattattgga gcttcttgat 1320
aaactgggcc cttacatctg ccttgtcaaa actcatattg acatagtaga ggacttctct 1380
tatgaacaca ccattttacc attacaagga cttgcaaaga aacacaactt catgattttt 1440
gaagacagaa agtttgctga tataggaaac acagtcaaac tacagtataa gggaggaatt 1500
tatcgaacat ccaagtgggc cgatatcacg aatgcacacg gagtgactgg cgcaggaatt 1560
gttgaaggtc ttaaacaggc cgcagaagaa agtacagatg agccacgtgg gcttttgatg 1620
cttgctgagc tctcttcaaa gggatcatta gctaccggtg agtatactca aaaaactgtg 1680
gaaatagcga aaagcgataa agaatttgtc attggattta ttgcacagag agacatggga 1740
ggtcgtgagg aaggctttga ctggctgatc atgactccag gagttggttt agatgataaa 1800
ggtgattctc tgggccaaca gtacagaact gttgatgaag tgatgcaaac aggaaccgat 1860
gtcattatcg ttggaagagg tttattcgga aaaggaagag atcctgaagt ggaagggaag 1920
agatacagaa atgctgggtg ggaagcttac aagcggcgca ttgcttaacg gctttcagtt 1980
ctatatacat cgtcaaaatt gattttcgct aaaatgctga cgggatattt cgaatacgaa 2040
aagcccaata gaagtcgcgg gaatactagt gaaggacgat ctgaaaaagc ctctatagca 2100
gaagccaaag agggagaggt gagattttcg ccatcgttgt agaataatat caaatgtctc 2160
aatgtaagaa ttatagtaga gtttgaagaa gcgacgccga tccagttgat gtgcttcgtt 2220
gtagagatct agagattcga gtctagtcag gtggaccttt tgaattttat tgagtggata 2280
ttggattgca agcagtgtag ttgcggcgga agctccagca agaaggataa acgtcaaatt 2340
caaagctttg aaaaatcttg aattcttttc ccggttttct tcaccatgaa aaagccttga 2400
gcgccaatat tgataccact gtataactgc ttttgttttg tggaacccct ggtttttcac 2460
aagctcgaat actgaaaagt agaatgcaaa tccaaggctt tcctttatga aatttaaact 2520
aaagcctgca aatattccaa ctaaaccaat ttgttttagt ttgtataaag catactccca 2580
catgctcttc tgtttaccgc tgacaagctc tgagtaattc gatcgggcgt aaagtgcatc 2640
tagcggtgac gcagccacgc tagcagcagc tcccgcaaca aaaccagctt tgaaggtgtc 2700
gacagggcta ggatcatcg 2719
<210> 5
<211> 6683
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 5
agtcagacga gggtaaggaa attacaaagg ttcttcaaga tctctcggat aaccagaaga 60
aagacggcca gattgtttta gatgaagaac agttggagaa aactttggaa atggccaaag 120
gtgacgcaca agaacctgaa gagaacgtgg acgataatga cgcagacaaa gagatcgatg 180
aaggtgtcga gcccgaggca gaatcatcgg ctcaatctca accggtcact gctttggaaa 240
aaagcagaac agagccatcg gaaacgcatt ccgaacctca agaaggccca gcgccaagct 300
ccgagttgaa tgtagaatca caaccccaaa cgaaattgga atccaagtcg gcttctaaag 360
aaataccatc gccaactcca gaacctgcta ccccatccac gccagcaagt ggagatgaag 420
aacgtgggag caagcgacgc ggatccgaaa gcgtcccccc tggttgtact aagcgcttta 480
atgctctttc tgcacaactt ctcacacaga tatcatccaa ccggtttgca tccatgttca 540
tgcaaccagt gaatgaaaac gaagagccca actactacaa gctaatacgg catcccgtgg 600
acattaagag tttgggtaaa gctattagga cgggtgaaat aaagtcattc gacgagttgg 660
aatttgagct tcaactgatg ttcagcaacg caattatgta caacgatatg aatcagacag 720
aaacttacaa atggacgatt gaaatgatgg aagaaacgca aaacttgttg agcctattcc 780
gggaatcatc cagcaattaa agctcattaa ttgccgcctc tcatctggtt catcaacatc 840
tggttctgtt cctggaatct taaaccaact ctttcggagt gcttgaggaa cttttcagcg 900
cacttgttca aacatgtttc ttctctagag ctaagtttgt tggaggtgaa gtcgttgacg 960
caatcattaa aacatctgtc caccaaactg gtgtagagct gcaatgttag ttttcagaag 1020
gcgttcactt actctcatga agtcattcat ttgcttctgc tccacaattt tctggaattc 1080
ttgctgttct ttatagttga gttgatccat ggtgtatcaa aaataaacta atgaattatc 1140
gaaaaatttt caacatttcc ctgaataata atcaacatgt aataaatctt atggagaaag 1200
ggcgaagtct cacccatcta aggtcgccag cagactactt aatttgatgg aatccaagca 1260
aacaaacctc tgcgcttctg tggatgtgac taaaactcag gaattattgg agcttcttga 1320
taaactgggc ccttacatct gccttgtcaa aactcatatt gacatagtag aggacttctc 1380
ttatgaacac accattttac cattacaagg acttgcaaag aaacacaact tcatgatttt 1440
tgaagacaga aagtttgctg atataggaaa cacagtcaaa ctacagtata agggaggaat 1500
ttatcgaaca tccaagtggg ccgatatcac gaatgcacac ggagtgactg gcgcaggaat 1560
tgttgaaggt cttaaacagg ccgcagaaga aagtacagat gagccacgtg ggcttttgat 1620
gcttgctgag ctcatccaat tgtgacacgt ccgacggcgg cccacgggtc ccaggcctcg 1680
gagatccgtc ccccttttcc tttgtcgata tcatgtaatt agttatgtca cgcttacatt 1740
cacgccctcc ccccacatcc gctctaaccg aaaaggaagg agttagacaa cctgaagtct 1800
aggtccctat ttattttttt atagttatgt tagtattaag aacgttattt atatttcaaa 1860
tttttctttt ttttctgtac agacgcgtgt acgcatgtaa cattatactg aaaaccttgc 1920
ttgagaaggt tttgggacgc tcgaaggctt taatttgcaa gctggagacc aacatgtgag 1980
caaaaggcca gcaaaaggcc aggaaccgta aaaaggaagg gcaattctgc agatatccat 2040
cacactggcg gccgctcatg catgagatca gatcttcgac gcggagaacg atctcctcga 2100
gctgctcgcg gatcagcttg tggcccggta atggaaccag gccgacgcga cgctccttgc 2160
ggaccacggt ggctggcgag cccagtttgt gaacgaggtc gtttagaacg tcctgcgcaa 2220
agtccagtgt cagatgaatg tcctcctcgg accaattcag catgttctcg agcagccatc 2280
tgtctttgga gtagaagcgt aatctctgct cctcgttact gtaccggaag aggtagtttg 2340
cctcgccgcc cataatgaac aggttctctt tctggtggcc tgtgagcagc ggggacgtct 2400
ggacggcgtc gatgaggccc ttgaggcgct cgtagtactt gttccgtcgc tgtagccggc 2460
cgcggtgacg atacccacat agaggtcctt ggccattagt ttgatgaggt ggggcaggat 2520
gggcgactcg gcatcgaaat ttttgccgtc gtcgtacagt gtgatgtcac catcgaatgt 2580
aatgagctgc agcttgcgat ctcggatggt tttggaatgg aagaaccgcg acatctccaa 2640
cagctgggcc gtgttgagaa tgagccggac gtcgttgaac gagggggcca caagccggcg 2700
tttgctgatg gcgcggcgct cgtcctcgat gtagaaggcc ttttccagag gcagtctcgt 2760
gaagaagctg ccaacgctcg gaaccagctg cacgagccga gacaattcgg gggtgccggc 2820
tttggtcatt tcaatgttgt cgtcgatgag gagttcgagg tcgtggaaga tttccgcgta 2880
gcggcgtttt gcctcagagt ttaccatgag gtcgtccact gcagagatgc cgttgctctt 2940
caccgcgtac aggacgaacg gcgtggccag caggcccttg atccattcta tgaggccatc 3000
tcgacggtgt tccttgagtg cgtactccac tctgtagcga ctggacatct cgagactggg 3060
cttgctgtgc tggatgcacc aattaattgt tgccgcatgc atccttgcac cgcaagtttt 3120
taaaacccac tcgctttagc cgtcgcgtaa aacttgtgaa tctggcaact gagggggttc 3180
tgcagccgca accgaacttt tcgcttcgag gacgcagctg gatggtgtca tgtgaggctc 3240
tgtttgctgg ggtagcctac aacgtgacct tgcctaaccg gacggcgcta cccactgctg 3300
tctgtgcctg ctaccagaaa atcaccagag cagcagaggg ccgatgtggc aactggtggg 3360
gtgtcggaca ggctgtttct ccacagtgca aatgcgggtg aaccggccag aaagtaaatt 3420
cttatgctac cgtgcagcga ctccgacatc cccagttttt gccctacttg atcacagatg 3480
gggtcagcgc tgccgctaag tgtacccaac cgtccccaca cggtccatct ataaatactg 3540
ctgccagtgc acggtggtga catcaatcta aagtacaaaa acaaagctta ggaagtctgg 3600
taatggtaag ccgatacgta cccgatatgg gcgatctgat ttgggttgat tttgacccga 3660
caaaaggtag cgagcaagct ggacatcgtc cagctgttgt cctgagtcct ttcatgtaca 3720
acaacaaaac aggtatgtgt ctgtgtgttc cttgtacaac gcaatcaaaa ggatatccgt 3780
tcgaagttgt tttatccggt caggaacgtg atggcgtagc gttagctgat caggtaaaaa 3840
gtatcgcctg gcgggcaaga ggagcaacga agaaaggaac agttgcccca gaggaattac 3900
aactcattaa agccaaaatt aacgtactga ttgggtagtc tagaacaaaa actcatctca 3960
gaagaggatc tgaatagcgc cgtcgaccat catcatcatc atcattgagt tttagcctta 4020
gacatgactg ttcctcagtt caagttgggc acttacgaga agaccggtct tgctagattc 4080
taatcaagag gatgtcagaa tgccatttgc ctgagagatg caggcttcat ttttgatact 4140
tttttatttg taacctatat agtataggat tttttttgtc attttgtttc ttctcgtacg 4200
agcttgctcc tgatcagcct atctcgcagc tgatgaatat cttgtggtag gggtttggga 4260
aaatcattcg agtttgatgt ttttcttggt atttcccact cctcttcaga gtacagaaga 4320
ttaagtgaga ccttcgtttg tgcggatccc ccacacacca tagcttcaaa atgtttctac 4380
tcctttttta ctcttccaga ttttctcgga ctccgcgcat cgccgtacca cttcaaaaca 4440
cccaagcaca gcatactaaa ttttccctct ttcttcctct agggtgtcgt taattacccg 4500
tactaaaggt ttggaaaaga aaaaagagac cgcctcgttt ctttttcttc gtcgaaaaag 4560
gcaataaaaa tttttatcac gtttcttttt cttgaaattt ttttttttag tttttttctc 4620
tttcagtgac ctccattgat atttaagtta ataaacggtc ttcaatttct caagtttcag 4680
tttcattttt cttgttctat tacaactttt tttacttctt gttcattaga aagaaagcat 4740
agcaatctaa tctaagggcg gtgttgacaa ttaatcatcg gcatagtata tcggcatagt 4800
ataatacgac aaggtgagga actaaaccat ggccaagttg accagtgccg ttccggtgct 4860
caccgcgcgc gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg 4920
ggacttcgtg gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag 4980
cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 5040
ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 5100
gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 5160
ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgacacgtcc gacggcggcc 5220
cacgggtccc aggcctcgga gatccgtccc ccttttcctt tgtcgatatc atgtaattag 5280
ttatgtcacg cttacattca cgccctcccc ccacatccgc tctaaccgaa aaggaaggag 5340
ttagacaacc tgaagtctag gtccctattt atttttttat agttatgtta gtattaagaa 5400
cgttatttat atttcaaatt tttctttttt ttctgtacag acgcgtgtac gcatgtaaca 5460
ttatactgaa aaccttgctt gagaaggttt tgggacgctc gaaggcttta atttgcaagc 5520
tggagaccaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 5580
tgctggcatc gagctctctt caaagggatc attagctacc ggtgagtata ctcaaaaaac 5640
tgtggaaata gcgaaaagcg ataaagaatt tgtcattgga tttattgcac agagagacat 5700
gggaggtcgt gaggaaggct ttgactggct gatcatgact ccaggagttg gtttagatga 5760
taaaggtgat tctctgggcc aacagtacag aactgttgat gaagtgatgc aaacaggaac 5820
cgatgtcatt atcgttggaa gaggtttatt cggaaaagga agagatcctg aagtggaagg 5880
gaagagatac agaaatgctg ggtgggaagc ttacaagcgg cgcattgctt aacggctttc 5940
agttctatat acatcgtcaa aattgatttt cgctaaaatg ctgacgggat atttcgaata 6000
cgaaaagccc aatagaagtc gcgggaatac tagtgaagga cgatctgaaa aagcctctat 6060
agcagaagcc aaagagggag aggtgagatt ttcgccatcg ttgtagaata atatcaaatg 6120
tctcaatgta agaattatag tagagtttga agaagcgacg ccgatccagt tgatgtgctt 6180
cgttgtagag atctagagat tcgagtctag tcaggtggac cttttgaatt ttattgagtg 6240
gatattggat tgcaagcagt gtagttgcgg cggaagctcc agcaagaagg ataaacgtca 6300
aattcaaagc tttgaaaaat cttgaattct tttcccggtt ttcttcacca tgaaaaagcc 6360
ttgagcgcca atattgatac cactgtataa ctgcttttgt tttgtggaac ccctggtttt 6420
tcacaagctc gaatactgaa aagtagaatg caaatccaag gctttccttt atgaaattta 6480
aactaaagcc tgcaaatatt ccaactaaac caatttgttt tagtttgtat aaagcatact 6540
cccacatgct cttctgttta ccgctgacaa gctctgagta attcgatcgg gcgtaaagtg 6600
catctagcgg tgacgcagcc acgctagcag cagctcccgc aacaaaacca gctttgaagg 6660
tgtcgacagg gctaggatca tcg 6683
<210> 6
<211> 991
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 6
gtccaccaaa ctggtgtaga gctgcaatgt tagttttcag aaggcgttca cttactctca 60
tgaagtcatt catttgcttc tgctccacaa ttttctggaa ttcttgctgt tctttatagt 120
tgagttgatc catggtgtat caaaaataaa ctaatgaatt atcgaaaaat tttcaacatt 180
tccctgaata ataatcaaca tgtataaatc ttatggagaa agggcgaagt ctcacccatc 240
taaggtcgcc agcagactac ttaatttgat ggaatccaag caaacaaacc tctgcgcttc 300
tgtggatgtg actaaaactc aggaattatt ggagcttctt gataaactgg gcccttacat 360
ctgccttgtc aaaactcata ttgacatagt agaggacttc tcttatgaac acaccatttt 420
accattacaa ggacttgcaa agaaacacaa cttcatgatt tttgaagaca gaaagtttgc 480
tgatatagga aacacagtca aactacagta taagggagga atttatcgaa catccaagtg 540
ggccgatatc acgaatgcac acggagtgac tggcgcagga attgttgaag gtcttaaaca 600
ggccgcagaa gaaagtacag atgagccacg tgggcttttg atgcttgctg agctctcttc 660
aaagggatca ttagctaccg gtgagtatac tcaaaaaact gtggaaatag cgaaaagcga 720
taaagaattt gtcattggat ttattgcaca gagagacatg ggaggtcgtg aggaaggctt 780
tgactggctg atcatgactc caggagttgg tttagatgat aaaggtgatt ctctgggcca 840
acagtacaga actgttgatg aagtgatgca aacaggaacc gatgtcatta tcgttggaag 900
aggtttattc ggaaaaggaa gagatcctga agtggaaggg aagagataca gaaatgctgg 960
gtgggaagct tacaagcggc gcattgctta a 991
<210> 7
<211> 1397
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 7
gtccaccaaa ctggtgtaga gctgcaatgt tagttttcag aaggcgttca cttactctca 60
tgaagtcatt catttgcttc tgctccacaa ttttctggaa ttcttgctgt tctttatagt 120
tgagttgatc catggtgtat caaaaataaa ctaatgaatt atcgaaaaat tttcaacatt 180
tccctgaata ataatcaaca tgtaataaat cttatggaga aagggcgaag tctcacccat 240
ctaaggtcgc cagcagacta cttaatttga tggaatccaa gcaaacaaac ctctgcgctt 300
ctgtggatgt gactaaaact caggaattat tggagcttct tgataaactg ggcccttaca 360
tctgccttgt caaaactcat attgacatag tagaggactt ctcttatgaa cacaccattt 420
taccattaca aggacttgca aagaaacaca acttcatgat ttttgaagac agaaagtttg 480
ctgatatagg aaacacagtc aaactacagt ataagggagg aatttatcga acatccaagt 540
gggccgatat cacgaatgca cacggagtga ctggcgcagg aattgttgaa ggtcttaaac 600
aggccgcaga agaaagtaca gatgagccac gtgggctttt gatgcttgct gagctcatcc 660
aattgtgaca cgtccgacgg cggcccacgg gtcccaggcc tcggagatcc gtcccccttt 720
tcctttgtcg atatcatgta attagttatg tcacgcttac attcacgccc tccccccaca 780
tccgctctaa ccgaaaagga aggagttaga caacctgaag tctaggtccc tatttatttt 840
tttatagtta tgttagtatt aagaacgtta tttatatttc aaatttttct tttttttctg 900
tacagacgcg tgtacgcatg taacattata ctgaaaacct tgcttgagaa ggttttggga 960
cgctcgaagg ctttaatttg caagctggag accaacatgt gagcaaaagg ccagcaaaag 1020
gccaggaacc gtaaaaaggc cgcgttgctg gcatcgagct ctcttcaaag ggatcattag 1080
ctaccggtga gtatactcaa aaaactgtgg aaatagcgaa aagcgataaa gaatttgtca 1140
ttggatttat tgcacagaga gacatgggag gtcgtgagga aggctttgac tggctgatca 1200
tgactccagg agttggttta gatgataaag gtgattctct gggccaacag tacagaactg 1260
ttgatgaagt gatgcaaaca ggaaccgatg tcattatcgt tggaagaggt ttattcggaa 1320
aaggaagaga tcctgaagtg gaagggaaga gatacagaaa tgctgggtgg gaagcttaca 1380
agcggcgcat tgcttaa 1397
<210> 8
<211> 4033
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 8
tcttcgacgc ggagaacgat ctcctcgagc tgctcgcgga tcagcttgtg gcccggtaat 60
ggaaccaggc cgacgcgacg ctccttgcgg accacggtgg ctggcgagcc cagtttgtga 120
acgaggtcgt ttagaacgtc ctgcgcaaag tccagtgtca gatgaatgtc ctcctcggac 180
caattcagca tgttctcgag cagccatctg tctttggagt agaagcgtaa tctctgctcc 240
tcgttactgt accggaagag gtagtttgcc tcgccgccca taatgaacag gttctctttc 300
tggtggcctg tgagcagcgg ggacgtctgg acggcgtcga tgaggccctt gaggcgctcg 360
tagtacttgt tccgtcgctg tagccggccg cggtgacgat acccacatag aggtccttgg 420
ccattagttt gatgaggtgg ggcaggatgg gcgactcggc atcgaaattt ttgccgtcgt 480
cgtacagtgt gatgtcacca tcgaatgtaa tgagctgcag cttgcgatct cggatggttt 540
tggaatggaa gaaccgcgac atctccaaca gctgggccgt gttgagaatg agccggacgt 600
cgttgaacga gggggccaca agccggcgtt tgctgatggc gcggcgctcg tcctcgatgt 660
agaaggcctt ttccagaggc agtctcgtga agaagctgcc aacgctcgga accagctgca 720
cgagccgaga caattcgggg gtgccggctt tggtcatttc aatgttgtcg tcgatgagga 780
gttcgaggtc gtggaagatt tccgcgtagc ggcgttttgc ctcagagttt accatgaggt 840
cgtccactgc agagatgccg ttgctcttca ccgcgtacag gacgaacggc gtggccagca 900
ggcccttgat ccattctatg aggccatctc gacggtgttc cttgagtgcg tactccactc 960
tgtagcgact ggacatctcg agactgggct tgctgtgctg gatgcaccaa ttaattgttg 1020
ccgcatgcat ccttgcaccg caagttttta aaacccactc gctttagccg tcgcgtaaaa 1080
cttgtgaatc tggcaactga gggggttctg cagccgcaac cgaacttttc gcttcgagga 1140
cgcagctgga tggtgtcatg tgaggctctg tttgctgggg tagcctacaa cgtgaccttg 1200
cctaaccgga cggcgctacc cactgctgtc tgtgcctgct accagaaaat caccagagca 1260
gcagagggcc gatgtggcaa ctggtggggt gtcggacagg ctgtttctcc acagtgcaaa 1320
tgcgggtgaa ccggccagaa agtaaattct tatgctaccg tgcagcgact ccgacatccc 1380
cagtttttgc cctacttgat cacagatggg gtcagcgctg ccgctaagtg tacccaaccg 1440
tccccacacg gtccatctat aaatactgct gccagtgcac ggtggtgaca tcaatctaaa 1500
gtacaaaaac aaagcttcga aacgatgaga tttccttcaa tttttactgc tgttttattc 1560
gcagcatcct ccgcattagc tgctccagtc aacactacaa cagaagatga aacggcacaa 1620
attccggctg aagctgtcat cggttactca gatttagaag gggatttcga tgttgctgtt 1680
ttgccatttt ccaacagcac aaataacggg ttattgttta taaatactac tattgccagc 1740
attgctgcta aagaagaagg ggtatctctc gagaaaagag aggctgaagc tgaattcatg 1800
acattaatct acgtgccttc aatatttaca atggtcccct caatcacacg gattgtactg 1860
gttaacattc tgttggcgac gttggttttg ggagctgcag tccttccacg agacaacaga 1920
actgtttgcg ggagtcaact ctgcacatgg tggcacgact ccggcgagat aaacaccggt 1980
actcctgtac aggcaggaaa cgttcgacaa tcccgaaagt actctgtcca tgtgagcctg 2040
gcagaccgta accaattcta cgactctttc gtatatgaat cgatacctag gaacggcaat 2100
ggcagaattt attctcccac cgacccacct aacagcaata cattgaatag tagcattgac 2160
gacggtatat caatcgaacc atctctcggc atcaacatgg cttggtccca gttcgaatat 2220
agacgagatg tcgacattaa gattactaca atcgatggct caatattgga tggccctttg 2280
gacattgtta ttcggccgac ttctgttaag tactcagtca aaagatgtgt gggtggtatc 2340
attattagag tcccttatga tcccaatggt cgaaaattct ctgttgagtt aaagagtgac 2400
ctttacagtt acctctccga cggttcgcaa tatgtgacct ctggagggag cgtggttggt 2460
gtggagccaa aaaatgccct ggtgatcttt gccagccctt tcttgccacg ggatatggtt 2520
cctcatatga caccacacga cacccagaca atgaagccgg gcccaatcaa taatggggac 2580
tggggttcaa agcctatact ctacttcccg cctggcgtat actggatgaa cgaggatacc 2640
tctggtaacc ccgggaagct cggctcaaat catatgcggc tggatcccaa tacctactgg 2700
gtccatctag ccccaggagc ctatgtgaaa ggagccattg agtatttcac gaagcaaaat 2760
ttctatgcaa cgggtcatgg cgttctctca ggtgagaact atgtttatca ggccaatgca 2820
gctgataact actatgccgt caagagtgat ggcacaagct tgagaatgtg gtggcacaac 2880
aaccttggag gcggtcaaac atggttttgc atggggccca ccattaatgc accgccgttt 2940
aatacgatgg acttcaacgg aaactctaat atttccagcc ggattagtga ctataagcag 3000
gttggcgctt attttttcca aacagacgga ccggagatct acgaggacag tgttgtccat 3060
gacgtcttct ggcatgttaa tgatgatgcc atcaagacat attattccgg agcttcaatt 3120
tcacgagcaa ccatctggag gtgtcacaat gacccgatca tacagatggg ctggacgtca 3180
cgaaatctca ccggaatcag cattgataac ctgcacgtca tccacacgag atatttcaaa 3240
tctgaaacag tggttccttc agcaatcatt ggagcgtctc cattctacgc aagtggaatg 3300
actgttgatc ccagcgagtc catcagcatg accatctcta acgtggtgtg tgagggtcta 3360
tgcccctcac tgttccgtat cactccgctt cagagctaca acaaccttgt tgtcaagaac 3420
gtggcctttc ccgatggact gcagacaaat ccaatcggaa taggagagag cattatacca 3480
gcagcttccg gctgtacaat ggacttggaa atcacaaact ggaccgtcaa aggacaaaaa 3540
gtcaccatgc aaaactttca gtccgggtca cttggccagt tcgatatcga tggttcatac 3600
tggggtcaat ggtccataaa ctaatctaga acaaaaactc atctcagaag aggatctgaa 3660
tagcgccgtc gaccatcatc atcatcatca ttgagtttgt agccttagac atgactgttc 3720
ctcagttcaa gttgggcact tacgagaaga ccggtcttgc tagattctaa tcaagaggat 3780
gtcagaatgc catttgcctg agagatgcag gcttcatttt tgatactttt ttatttgtaa 3840
cctatatagt ataggatttt ttttgtcatt ttgtttcttc tcgtacgagc ttgctcctga 3900
tcagcctatc tcgcagctga tgaatatctt gtggtagggg tttgggaaaa tcattcgagt 3960
ttgatgtttt tcttggtatt tcccactcct cttcagagta cagaagatta agtgagacct 4020
tcgtttgtgc gga 4033

Claims (10)

1. the preparation method of uracil auxotrophy multiple-shaped nuohan inferior yeast, including:Knock out in multiple-shaped nuohan inferior yeast starting strain Gene or gene in uracil route of synthesis is reduced described in the multiple-shaped nuohan inferior yeast starting strain in uracil route of synthesis The content of encoding proteins matter makes described in the multiple-shaped nuohan inferior yeast starting strain gene code egg in uracil route of synthesis White matter inactivates, and obtains uracil auxotrophy multiple-shaped nuohan inferior yeast;The multiple-shaped nuohan inferior yeast starting strain contains the urine Gene in pyrimidine synthesis pathway.
2. according to the method for claim 1, it is characterised in that:The multiple-shaped nuohan inferior yeast starting strain is the inferior ferment of the multiform Chinese Mother (Hansenula polymorpha) HP20110424, it is in China Committee for Culture Collection of Microorganisms's common micro-organisms The preserving number at center is CGMCC No.7.89.
3. method according to claim 1 or 2, it is characterised in that:In the uracil route of synthesis gene be orotidine- 5 '-phosphate decarboxylase gene.
4. according to the method for claim 3, it is characterised in that:The orotidine -5 '-phosphate decarboxylase gene is as follows A1) or A2) or A3) or A4):
A1) coded sequence is the DNA molecular of sequence 1 in sequence table;
A2) coded sequence is the DNA molecular of the 634-1425 positions of sequence 1 in sequence table;
A3) and A1) or A2) nucleotide sequence that limits has 75% or more than 75% homogeneity, and the coding orotidine- The DNA molecular of 5 '-phosphate decarboxylase;
A4) under strict conditions with A1) or the A2) nucleotide sequence hybridization that limits, and encode orotidine -5 '-phosphoric acid and take off The DNA molecular of carboxylic acid;
And/or
Gene is following M1 in uracil route of synthesis in the knockout multiple-shaped nuohan inferior yeast starting strain) and/or M2):
M1 the coding of gene in the uracil route of synthesis) is made to terminate in advance;
M2) exogenous dna fragment is inserted in gene in the uracil route of synthesis.
5. according to the method for claim 4, it is characterised in that:M1) by the multiple-shaped nuohan inferior yeast starting strain institute The 5-6 interdigits insertion adenylic acid for stating orotidine -5 '-phosphate decarboxylase encoding gene coded sequence is realized;
And/or the restriction enzyme that the insertion position of the exogenous dna fragment is gene in the uracil route of synthesis is known Between other sequence.
6. the uracil auxotrophy multiple-shaped nuohan inferior yeast that in claim 1-5 prepared by any described method.
7. the method for express express target protein, including:The expression vector of encoding gene containing destination protein is imported into claim 6 In described uracil auxotrophy multiple-shaped nuohan inferior yeast, obtain recombinating multiple-shaped nuohan inferior yeast, realize the destination protein Expression.
8. according to the method for claim 7, it is characterised in that:The expression vector contains any institute in claim 1-4 State gene in uracil route of synthesis.
9. application of the uracil auxotrophy multiple-shaped nuohan inferior yeast in marking protein described in claim 6.
10. it is following 1) or 2):
1) reagent set, as in the uracil auxotrophy multiple-shaped nuohan inferior yeast described in claim 6 and claim 8 or 9 Described expression vector composition;
2) multiple-shaped nuohan inferior yeast (Hansenula polymorpha) HP20110424, it is in Chinese microorganism strain preservation management The preserving number of committee's common micro-organisms center is CGMCC No.7.89.
CN201710338267.5A 2017-04-01 2017-05-15 Uracil auxotroph hansenula polymorpha and preparation method and application thereof Active CN107418967B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710338267.5A CN107418967B (en) 2017-04-01 2017-05-15 Uracil auxotroph hansenula polymorpha and preparation method and application thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2017102128874 2017-04-01
CN201710212887 2017-04-01
CN201710338267.5A CN107418967B (en) 2017-04-01 2017-05-15 Uracil auxotroph hansenula polymorpha and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN107418967A true CN107418967A (en) 2017-12-01
CN107418967B CN107418967B (en) 2020-09-11

Family

ID=60425590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710338267.5A Active CN107418967B (en) 2017-04-01 2017-05-15 Uracil auxotroph hansenula polymorpha and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN107418967B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651570A (en) * 2004-09-30 2005-08-10 天津博荟生物技术有限公司 Recombinated multi shape ttansenula yeast, its structural method and application
CN101560475A (en) * 2009-03-31 2009-10-21 元昊 Uracil auxotroph Hansenula yeast, construction method thereof and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651570A (en) * 2004-09-30 2005-08-10 天津博荟生物技术有限公司 Recombinated multi shape ttansenula yeast, its structural method and application
CN101560475A (en) * 2009-03-31 2009-10-21 元昊 Uracil auxotroph Hansenula yeast, construction method thereof and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MERCKELBACH A等: "Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorphaand its use for the generation of a deletion by gene replacement", 《APPL MICROBIOL BIOTECHNOL》 *
MERCKELBACH,A.等: "H.polymorpha URA3 gene,GenBank: X69461.1,933bp DNA linear", 《NCBI GENBANK》 *

Also Published As

Publication number Publication date
CN107418967B (en) 2020-09-11

Similar Documents

Publication Publication Date Title
CN106085984B (en) A kind of novel phospholipase D and its method for preparing phosphatidic acid, phosphatidylserine
CN103502431B (en) There is the filamentous fungi of viscosity-modifying phenotype
CN103468581B (en) A kind of Mortierella alpina uracil auxotrophy and construction process thereof being knocked out ura5 gene by homologous recombination
CN107828671A (en) For producing the composition and method of 3 hydracrylic acids
CN102498209A (en) Transformant and process for production thereof, and process for production of lactic acid
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
JP7544351B2 (en) A novel strain of Pseudozyma antarctica
CN111534527B (en) Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
CN106715679A (en) Method for producing acetoin
US20180195052A1 (en) Method for increasing citric acid production by Aspergillus niger fermentation
CN110804561B (en) Saccharomyces cerevisiae with high yield of C6-C10 ethyl ester and construction method and application thereof
CN104593407B (en) Pichia stipitis gene expression system and its structure and application
CN101983240A (en) Flocculent yeast and method for production thereof
Miura et al. High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis
CN108220219A (en) A set of lactobacillus plantarum food-grade expression system and its application in heterologous protein expression
CN104583396A (en) Transformant and method for producing same, and method for producing lactic acid
CN107257851A (en) Positive influences are natural or combination of bacterial chaperonin of physiology of eukaryotic of engineering
CN107881140A (en) The Leuconostoc mesenteroides mutant strain of one plant height production mannitol and its application process
CN102234620A (en) DNA sequence, recombinant vector, single and double auxotrophic Hansenula polymorpha, and preparation method thereof
CN108558992A (en) The transcription factor PDD1 and its encoding gene of regulation and control needle mushroom fruit body development and application
CN105349441B (en) High sporogenic Trichoderma T23-Ovel1 bacterial strain and its construction method
KR102026934B1 (en) A Novel host stain Leuconostoc citreum EFEL2701 for production of recombinant target protein and uses thereof
CN101948857B (en) Recombinant lactobacillus casei engineering strain and preparation method thereof
CN107418967A (en) Uracil auxotrophy multiple-shaped nuohan inferior yeast and preparation method and application
CN107778365A (en) The recombinant-protein expression that a kind of multiple spot is integrated

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant