CN107414073B - 硫化亚锡/金纳米颗粒复合物及其制备方法和应用 - Google Patents

硫化亚锡/金纳米颗粒复合物及其制备方法和应用 Download PDF

Info

Publication number
CN107414073B
CN107414073B CN201710680158.1A CN201710680158A CN107414073B CN 107414073 B CN107414073 B CN 107414073B CN 201710680158 A CN201710680158 A CN 201710680158A CN 107414073 B CN107414073 B CN 107414073B
Authority
CN
China
Prior art keywords
stannous sulfide
gold nano
nano grain
stannous
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710680158.1A
Other languages
English (en)
Other versions
CN107414073A (zh
Inventor
晏善成
宋海增
徐欣
王俊
吴建盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710680158.1A priority Critical patent/CN107414073B/zh
Publication of CN107414073A publication Critical patent/CN107414073A/zh
Application granted granted Critical
Publication of CN107414073B publication Critical patent/CN107414073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors

Abstract

本发明公开了硫化亚锡/金纳米颗粒复合物及其制备方法和应用,制备方法是:机械剥离硫化亚锡材料,产物厚度50‑100 nm,大小几微米到十几微米,氩气气氛中退火后备用;滴加氯金酸水溶液到机械剥离的硫化亚锡表面,沉积2‑5 min,氮气吹走多余的液体,120‑150℃反应时间2‑5;反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自取向性组装,所得金纳米颗粒尺寸几十纳米,结晶性好,在光电探测器件、生物传感等领域具有广泛重要的应用前景。

Description

硫化亚锡/金纳米颗粒复合物及其制备方法和应用
技术领域
本发明涉及的是一种硫化亚锡诱导生长金纳米颗粒的自组装方法,属于纳米材料制备领域。
背景技术
硫化亚锡是性能优良的P型半导体,在很多领域具有广泛的应用,可用作晶体管、传感器、太阳能电池、开关、电池电极等。不同于诸如石墨烯等零隙半导体的是,硫化亚锡有带隙,且为间接带隙,并且其带隙和原子层数有重要的联系,层数越薄带隙越大。也不同于过度金属二维材料如二硫化钼,硫化亚锡从块体到单层都是间接带隙。但目前硫化亚锡和金纳米颗粒的复合物制备方法还鲜有报道。
金纳米颗粒的合成一般采用溶液化学还原的方法,如用乙二醇或是硼氢化钠等作为还原剂,但是该方法不能使得金纳米颗粒在衬底材料上有序组装。因此开发一种简单有效的方法原位生长金纳米颗粒/硫化亚锡复合物就显得尤为必要。
发明内容
本发明的目的是提供硫化亚锡/金纳米颗粒复合物及其制备方法和应用,工艺简单,获得的金纳米颗粒的粒径范围是几纳米到几十纳米,结晶性好。
为了实现上述发明目的,本发明采用以下技术方案:
硫化亚锡/金纳米颗粒复合物,金纳米颗粒颗粒在硫化亚锡表面具有取向性排列,金纳米颗粒尺寸在15-25纳米。
硫化亚锡/金纳米颗粒复合物的制备方法,步骤如下:
(1)机械剥离硫化亚锡材料,产物厚度50-100 nm, 大小几微米到十几微米,氩气气氛中退火后备用。
(2)滴加氯金酸水溶液到机械剥离的硫化亚锡表面,沉积2-5 min, 氮气吹走多余的液体,置于烘箱中加热反应。
氯金酸水溶液的浓度为10%-26%,滴加量为1-3µL; 反应温度为120-150℃、反应时间2-5 min。
(3)反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自取向组装。得到金纳米颗粒在硫化亚锡自取向组装,金纳米颗粒大约几十纳米,结晶性好,该复合物在光电探测领域应用广泛。
本发明的原理说明如下:Au3+/Au0 的还原电势大约为5.5 eV(相对于真空而言),而硫化亚锡的导带小于5.5 eV,因此电子会从硫化亚锡转移到Au3+上,使得Au3+原位还原成Au0
本发明具有以下优点:(1)得到的产物金纳米颗粒粒径为几纳米到几十纳米,结晶性好,稳定性高;(2)工艺简单,而且成本低廉,时间较短,环境友好;(3)该方法制备的硫化亚锡/金纳米颗粒复合物性能优越,在光电探测器件、生物传感等领域具有广泛重要的应用前景。
附图说明
图1 为实施例1机械剥离的硫化亚锡样品的光学显微镜照片,从照片中可以看出该样品大小大约几个微米,厚度魏50-100 nm。
图2 为实施例1机械剥离的硫化亚锡样品的Raman图,曲线中出现了硫化亚锡的主要拉曼峰,同时还说明机械剥离所得硫化亚锡的结晶性良好。
图3 为实施例1制备得到的硫化亚锡/金纳米颗粒复合物的扫描电镜图,可知金纳米颗粒为几纳米到几十纳米,结晶性好,稳定性高,同时颗粒在硫化亚锡表面具有一定的取向排列。
具体实施方式
以下将结合实施例和附图具体说明本申请的技术方案。
硫化亚锡样品的剥离方法,参见文献(K.S. Novoselov, et al Science, 2004,306: 666-669)。
实施例1
一种硫化亚锡诱导生长金纳米颗粒的自组装方法,步骤如下:
(1)机械剥离得到硫化亚锡,其厚度大约70 nm, 大小几微米到十几微米,氩气气氛中退火后备用;
(2)将氯金酸粉末溶解到水中,得到26%的氯金酸水溶液,滴加2 µm的氯金酸水溶液到机械剥离的硫化亚锡表面,沉积2 min, 氮气吹走多余的液体,随后烘箱中反应温度为150℃、反应时间5 min;
(3)反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自组装,金纳米颗粒大约15-25纳米,结晶性好。
实施例2
一种硫化亚锡诱导生长金纳米颗粒的自组装方法,步骤如下:
(1)机械剥离得到硫化亚锡材料,其厚度大约85 nm, 大小几微米到十几微米,氩气气氛中退火后备用;
(2)将氯金酸粉末溶解到水中,稀释得到13%的氯金酸水溶液,滴加3 µm的氯金酸水溶液到机械剥离的硫化亚锡表面,沉积3 min, 氮气吹走多余的液体,随后烘箱中反应温度为120℃、反应时间5 min;
(3)反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自组装,金纳米颗粒大约10-15纳米,结晶性好。
实施例3
一种硫化亚锡诱导生长金纳米颗粒的自组装方法,步骤如下:
(1)机械剥离得到硫化亚锡材料,其厚度大约100 nm, 大小几微米到十几微米,氩气气氛中退火后备用;
(2)将氯金酸粉末溶解到水中,稀释得到19%的氯金酸水溶液,滴加2 µm的氯金酸水溶液到机械剥离的硫化亚锡表面,沉积4 min, 氮气吹走多余的液体,随后烘箱中反应温度为130℃、反应时间3 min;
(3)反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自组装,金纳米颗粒大约8-12纳米,结晶性好。
实施例4 实施例1所得复合物在光电探测领域应用案例
硫化亚锡自组装金纳米颗粒复合物可以应用于光电探测领域,将该复合物作为光电导型器件制作的材料,当光照波长和表面的金纳米颗粒耦合成表面等离子基元时,金纳米颗粒的表面电子会部分注入硫化亚锡表面,与硫化亚锡表面导电的空穴复合,抑制了光电流,因此,通过调控金纳米颗粒的大小调节和光耦合波长,就可以构建对光的波长探测器件。

Claims (1)

1.硫化亚锡/金纳米颗粒复合物的制备方法,该硫化亚锡/金纳米颗粒复合物的金纳米颗粒在硫化亚锡表面具有取向性排列,金纳米颗粒尺寸在15-25纳米,该硫化亚锡/金纳米颗粒复合物可用于光电探测领域,其特征在于,步骤如下:
(1)机械剥离硫化亚锡材料,产物厚度50-100 nm, 大小几微米到十几微米,氩气气氛中退火后备用;
(2)滴加氯金酸水溶液到机械剥离的硫化亚锡表面,沉积2-5 min, 氮气吹走多余的液体,置于烘箱中加热反应;
氯金酸水溶液的浓度为10%-26%,滴加量为1-3µL ;
反应温度为120-150℃、反应时间2-5 min;
反应结束后,快速取出样品,得到金纳米颗粒在硫化亚锡自取向组装。
CN201710680158.1A 2017-08-10 2017-08-10 硫化亚锡/金纳米颗粒复合物及其制备方法和应用 Active CN107414073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710680158.1A CN107414073B (zh) 2017-08-10 2017-08-10 硫化亚锡/金纳米颗粒复合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710680158.1A CN107414073B (zh) 2017-08-10 2017-08-10 硫化亚锡/金纳米颗粒复合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107414073A CN107414073A (zh) 2017-12-01
CN107414073B true CN107414073B (zh) 2019-09-10

Family

ID=60436922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710680158.1A Active CN107414073B (zh) 2017-08-10 2017-08-10 硫化亚锡/金纳米颗粒复合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107414073B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585527A (zh) * 2008-05-23 2009-11-25 中国人民解放军63971部队 一种富含中、大孔的炭材料的制备方法
WO2010048517A2 (en) * 2008-10-23 2010-04-29 Brigham Young University Data storage media containing inorganic nanomaterial data layer
CN104822477A (zh) * 2013-01-29 2015-08-05 Lg化学株式会社 用于太阳能电池的金属纳米粒子的制备方法,包含该金属纳米粒子的油墨组合物,以及使用该油墨组合物制备薄膜的方法
CN105478752A (zh) * 2015-12-14 2016-04-13 东华大学 一种微米级聚合物基复合导电金球的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585527A (zh) * 2008-05-23 2009-11-25 中国人民解放军63971部队 一种富含中、大孔的炭材料的制备方法
WO2010048517A2 (en) * 2008-10-23 2010-04-29 Brigham Young University Data storage media containing inorganic nanomaterial data layer
CN104822477A (zh) * 2013-01-29 2015-08-05 Lg化学株式会社 用于太阳能电池的金属纳米粒子的制备方法,包含该金属纳米粒子的油墨组合物,以及使用该油墨组合物制备薄膜的方法
CN105478752A (zh) * 2015-12-14 2016-04-13 东华大学 一种微米级聚合物基复合导电金球的制备方法

Also Published As

Publication number Publication date
CN107414073A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Zhu et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures
Samad et al. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy
Elías et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers
Gong et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers
Zhang et al. Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications
Chen et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices
Li et al. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS
Zhang et al. Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide
Liu et al. Vapor− solid growth and characterization of aluminum nitride nanocones
Kobayashi et al. Growth and optical properties of high-quality monolayer WS2 on graphite
Yuan et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus
Liu et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates
Westover et al. Photoluminescence, thermal transport, and breakdown in Joule-heated GaN nanowires
Yarema et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis
Eda et al. Coherent atomic and electronic heterostructures of single-layer MoS2
Sreeprasad et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties
Sim et al. Long-term stable 2H-MoS2 dispersion: Critical role of solvent for simultaneous phase restoration and surface functionalization of liquid-exfoliated MoS2
Hoa et al. Synthesis of porous CuO nanowires and its application to hydrogen detection
Kathiravan et al. Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors
Ahmad et al. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO nanowires
Huang et al. Field emission of a single in-doped ZnO nanowire
Li et al. Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides
Cook et al. Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection
Zhou et al. Size-and surface-dependent stability, electronic properties, and potential as chemical sensors: computational studies on one-dimensional ZnO nanostructures
Novak et al. Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant