CN107408999B - 在无线通信系统中执行测量的方法及用户设备 - Google Patents

在无线通信系统中执行测量的方法及用户设备 Download PDF

Info

Publication number
CN107408999B
CN107408999B CN201680016457.9A CN201680016457A CN107408999B CN 107408999 B CN107408999 B CN 107408999B CN 201680016457 A CN201680016457 A CN 201680016457A CN 107408999 B CN107408999 B CN 107408999B
Authority
CN
China
Prior art keywords
drs
subframe
transmission
opportunity
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680016457.9A
Other languages
English (en)
Other versions
CN107408999A (zh
Inventor
李润贞
安俊基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN107408999A publication Critical patent/CN107408999A/zh
Application granted granted Critical
Publication of CN107408999B publication Critical patent/CN107408999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0083Multi-mode cell search, i.e. where several modes or systems can be used, e.g. backwards compatible, dual mode or flexible systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于在无线通信系统中执行测量的方法和装置。用户设备(UE)在其中预期UE在未经授权的载波中接收同步信号的子帧中同时接收未经授权的发现参考信号(U‑DRS)和数据突发二者,并且通过使用所述U‑DRS执行测量。在其中预期UE接收同步信号的子帧可以是具有0和5的索引的子帧。

Description

在无线通信系统中执行测量的方法及用户设备
技术领域
本发明涉及无线通信,更具体地,涉及一种用于在无线通信系统中执行授权辅助接入(LAA)载波中的数据速率匹配的方法和装置。
背景技术
第三代合作伙伴计划(3GPP)长期演进(LTE)是一种用于能够实现高速分组通信的技术。针对LTE目标已经提出了许多方案,包括旨在降低用户和提供商成本、提高服务质量、以及扩展和提高覆盖范围和系统容量的那些方案。由于高层要求,3GPP LTE需要降低的每比特成本、提高的服务可用性、灵活使用频带、简单的结构、开放的接口、和功耗足够的终端。
高级LTE(LTE-A)提供甚至比初始版本的LTE高得多的数据速率。虽然已经提高了频谱使用效率,但是这无法单独提供LTE-A所标注的所需要的数据速率。为了实现这些非常高的数据速率,需要增加超过可由单个载波或信道支持的带宽的传输带宽。所提出的方法称为载波聚合(CA)或有时称为信道聚合。使用LTE-A CA,可以利用一个以上的载波,并且以这种方式增加总的传输带宽。
此外,随着对数据速率的要求不断增加,对新频谱和/或更高数据速率的利用/探索至关重要。作为有前景的候选之一,正在考虑利用诸如5GHz未经授权的国家信息基础设施(U-NII)无线电频带这样的未经授权的频谱。由于它是未经授权的,所以为了成功,期望进行必要的信道获取以及竞争/冲突处置和避免。该技术可被称为授权辅助接入(LAA)或未经授权频谱中的LTE(LTE-U)。
为了能够高效地支持UE小区关联和小区间干扰等,预期UE需要对服务小区和相邻小区二者执行频内测量和频间测量二者。通常,LTE中的测量基于诸如主同步信号(PSS)/辅同步信号(SSS)和小区特定参考信号(CRS)这样的测量/同步信号的周期性传输。然而,由于未经授权的频谱的性质,针对LAA可能需要一些改进。
发明内容
技术问题
本发明提供了一种用于在无线通信系统中执行授权辅助接入(LAA)载波(或者,未经授权的频谱中的长期演进(LTE-U)载波)中的数据速率匹配的方法和装置。本发明提供一种用于利用发现参考信号(DRS)传输来执行LAA载波中的数据速率匹配的方法和装置。本发明讨论了在周期/非周期性DRS传输以及周期/非周期性信道状态信息参考信号(CSI-RS)传输的情况下的LAA载波中的数据速率匹配。
技术方案
在一方面,提供一种用于在无线通信系统中由用户设备(UE)执行测量的方法。该方法包括以下步骤:在其中预期UE在未经授权的载波中接收同步信号的子帧中同时接收未经授权的发现参考信号(U-DRS)和数据突发二者;以及使用该U-DRS执行测量。
在其中预期UE接收同步信号的子帧可以是具有0和5的索引的子帧。
在另一方面,提供一种无线通信系统中的用户设备(UE)。UE包括:存储器;收发器;以及处理器,处理器联接至存储器和收发器。处理器被配置为:控制收发器,以在其中预期UE在未经授权的载波中接收同步信号的子帧中同时接收未经授权的发现参考信号(U-DRS)和数据突发二者;以及使用该U-DRS执行测量。
有益效果
可在LAA载波中高效地执行数据速率匹配。
附图说明
图1示出了无线通信系统。
图2示出了3GPP LTE的无线帧的结构。
图3示出了一个下行链路时隙的资源网格。
图4示出了下行链路子帧的结构。
图5示出了上行链路子帧的结构。
图6示出了根据本发明的实施方式的U-DRS传输的示例。
图7示出了根据本发明的实施方式的U-DRS传输的另一示例。
图8示出了根据本发明的实施方式的U-DRS传输的另一示例。
图9示出了根据本发明的实施方式的U-DRS传输的另一示例。
图10示出了根据本发明的实施方式的U-DRS传输的另一示例。
图11示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的示例。
图12示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的另一示例。
图13示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的另一示例。
图14示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的另一示例。
图15示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的另一示例。
图16示出了根据本发明的实施方式的用于U-DRS的数据速率匹配的另一示例。
图17示出了根据本发明的实施方式的用于执行测量的方法。
图18示出了实现本发明的实施方式的无线通信系统。
具体实施方式
本文所描述的技术、装置和系统可用在诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等的各种无线接入技术中。可以用诸如通用地面无线电接入(UTRA)或CDMA 2000这样的无线电技术来实现CDMA。可以用诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/增强数据速率GSM演进(EDGE)这样的无线电技术来实现TDMA。可以用诸如电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20和演进UTRA(E-UTRA)等的无线电技术来实现OFDMA。UTRA是通用移动电信系统(UMTS)的一部分。第3代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路(DL)中采用OFDMA,而在上行链路(UL)中采用SC-FDMA。高级LTE(LTE-A)是3GPP LTE的演进。为了清晰起见,本申请聚焦于3GPP LTE/LTE-A。然而,本发明的技术特征不限于此。
图1示出了无线通信系统。无线通信系统10包括至少一个演进节点B(eNB)11。各个eNB 11向特定地理区域15a、15b和15c(通常称为小区)提供通信服务。每个小区可被划分成多个区域(称为扇区)。用户设备(UE)12可以是固定的或移动的,并且可由诸如移动台(MS)、移动终端(MT)、用户终端(UT)、订户站(SS)、无线设备、个人数字助理(PDA)、无线调制解调器、手持设备这样的其它名称来指代。eNB 11通常是指与UE 12通信的固定站,并且可被命名为诸如基站(BS)、基站收发器系统(BTS)、接入点(AP)等的其它名称。
通常,UE属于一个小区,并且UE所属的小区被称为服务小区。向服务小区提供通信服务的eNB被称为服务eNB。无线通信系统是蜂窝系统,因此存在与服务小区相邻的不同小区。与服务小区相邻的不同小区称为相邻小区。向相邻小区提供通信服务的eNB被称为相邻eNB。服务小区和相邻小区基于UE相对地确定。
此技术可被用于DL或UL。通常,DL是指从eNB 11到UE 12的通信,UL是指从UE 12到eNB 11的通信。在DL中,发送器可以是eNB 11的一部分,并且接收器可以是UE 12的一部分。在UL中,发送器可以是UE 12的一部分,并且接收器可以是eNB 11的一部分。
无线通信系统可以是多输入多输出(MIMO)系统、多输入单输出(MISO)系统、单输入单输出(SISO)系统、和单输入多输出(SIMO)系统中的任意一个。MIMO系统使用多个发送天线和多个接收天线。MISO系统使用多个发送天线和单个接收天线。SISO系统使用单个发送天线和单个接收天线。SIMO系统使用单个发送天线和多个接收天线。在下文中,发送天线是指用于发送信号或流的物理天线或逻辑天线,而接收天线是指用于接收信号或流的物理天线或逻辑天线。
图2示出了3GPP LTE的无线电帧的结构。参照图2,无线电帧包括10个子帧。一个子帧在时域中包括两个时隙。将用于发送一个子帧的时间定义为传输时间间隔(TTI)。例如,一个子帧可具有1ms的长度,一个时隙可具有0.5ms的长度。一个时隙在时域中包括多个正交频分复用(OFDM)符号。由于3GPP LTE在DL中使用OFDMA,所以OFDM符号用于表示一个符号周期。根据多址方案,OFDM符号可被称为其它名称。例如,当SC-FDMA被用作UL多址方案时,OFDM符号可被称为SC-FDMA符号。资源块(RB)是资源分配单元,并且在一个时隙中包括多个连续子载波。仅出于示例性目的示出无线电帧的结构。因此,可按照各种方式修改包括在无线电帧中的子帧的数目或包括在子帧中的时隙的数目或包括在时隙中的OFDM符号的数目。
帧结构类型1仅适用于频分双工(FDD)。对于FDD,在每个10ms间隔中,10个子帧可用于DL传输,并且10个子帧可用于UL传输。UL和DL传输在频域中分离。在半双工FDD操作中,UE不能同时进行发送和接收,而在全双工FDD中没有这样的限制。
帧结构类型2仅适用于时分双工(TDD)。小区中的UL-DL配置可在帧之间改变并且控制UL或DL传输可发生在当前帧中的哪些子帧中。所支持的UL-DL配置如表1所示。
[表1]
UL-DL配置 DL至UL切换点周期 0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
在表1中,对于无线电帧中的每个子帧,“D”表示针对DL传输而预留的DL子帧,“U”表示针对UL传输而预留的UL子帧,“S”表示具有下行链路导频时隙(DwPTS)、保护周期(GP)和上行链路导频时隙(UpPTS)这三个字段的特殊子帧。
支持具有5 ms和10 ms DL至UL切换点周期的UL-DL配置。在5 ms DL至UL切换点周期的情况下,特殊子帧存在于两个半帧中。在10 ms的DL至UL切换点周期的情况下,特殊子帧仅存在于第一个半帧中。子帧0和5以及DwPTS始终被预留以用于DL传输。UpPTS和紧接在特殊子帧之后的子帧始终被预留以用于UL传输。
图3示出了用于一个下行链路时隙的资源网格。参照图3,DL时隙在时域中包括多个OFDM符号。作为示例,本文描述了一个DL时隙包括7个OFDM符号,并且一个RB在频域中包括12个子载波。然而,本发明不限于此。资源网格上的每个元素都被称为资源元素(RE)。一个RB包括12×7个资源元素。包括在DL时隙中的RB的数目NDL取决于DL发送带宽。UL时隙的结构可与DL时隙的结构相同。OFDM符号的数目和子载波的数目可根据CP的长度、频率间距等变化。例如,在正常循环前缀(CP)的情况下,OFDM符号的数目为7,并且在扩展CP的情况下,OFDM符号的数目为6。可选择性地使用128、256、512、1024、1536和2048中的一个作为一个OFDM符号中的子载波的数目。
图4示出下行链路子帧的结构。参照图4,位于子帧内的第一时隙的前部的最多三个OFDM符号与要分配以控制信道的控制区域对应。剩余的OFDM符号与要分配以物理下行链路共享信道(PDSCH)的数据区域对应。在3GPP LTE中使用的DL控制信道的示例包括物理控制格式指示信道(PCFICH)、物理下行链路控制信道(PDCCH)、物理混合自动重传请求(HARQ)指示信道(PHICH)等。PCFICH在子帧的第一OFDM符号处被发送,并且承载与用于子帧内的控制信道的传输的OFDM符号的数目有关的信息。PHICH是UL传输的响应,并承载HARQ确认(ACK)/非确认(NACK)信号。通过PDCCH发送的控制信息被称为下行链路控制信息(DCI)。DCI包括UL或DL调度信息,或者包括用于任意UE群组的UL发送(Tx)功率控制命令。
PDCCH可承载下行链路共享信道(DL-SCH)的传输格式和资源分配,上行链路共享信道(UL-SCH)的资源分配信息,寻呼信道(PCH)上的寻呼信息,DL-SCH上的系统信息,诸如在PDSCH上发送的随机接入响应、对于任意UE群组内的各个UE的Tx功率控制命令的集合、Tx功率控制命令、IP语音(VoIP)的激活等的上层控制消息的资源分配。可在控制区域内发送多个PDCCH。UE可监控多个PDCCH。在一个或若干个连续的控制信道单元(CCE)的聚合上发送PDCCH。CCE是用于基于无线电信道的状态向PDCCH提供编码速率的逻辑分配单元。CCE对应于多个资源元素组。
根据CCE的数目与CCE提供的编码速率之间的相关性来确定PDCCH的格式和可用PDCCH的比特数。eNB根据要发送到UE的DCI来确定PDCCH格式,并将循环冗余校验(CRC)附接至控制信息。用根据PDCCH的所有者或用途的独有标识符(称为无线电网络临时标识符(RNTI))对CRC进行加扰。如果PDCCH用于特定UE,则可将UE的独有标识符(例如,小区RNTI(C-RNTI))加扰至CRC。另选地,如果PDCCH用于寻呼消息,则可将寻呼指示标识符(例如,寻呼RNTI(P-RNTI))加扰至CRC。如果PDCCH用于系统信息(更具体地,下面要描述的系统信息块(SIB)),则可将系统信息标识符和系统信息RNTI(SI-RNTI)加扰至CRC。为了指示作为传输UE的随机接入前导码的响应的随机接入响应,可将随机接入RNTI(RA-RNTI)加扰至CRC。
图5示出了上行链路子帧的结构。参照图5,UL子帧可在频域中划分为控制区域和数据区域。控制区域分配有用于承载UL控制信息的物理上行链路控制信道(PUCCH)。数据区域分配有用于承载用户数据的物理上行链路共享信道(PUSCH)。当由较高层指示时,UE可支持PUSCH和PUCCH的同时传输。用于一个UE的PUCCH在一个子帧中被分配给RB对。属于RB对的RB在相应的两个时隙中占用不同的子载波。这就是所说的分配给PUCCH的RB对在时隙边界跳频。这就是说,分配给PUCCH的一对RB在时隙边界跳频。UE可通过根据时间经由不同的子载波发送UL控制信息来获得频率分集增益。
在PUCCH上发送的UL控制信息可包括HARQ ACK/NACK、指示DL信道状态的信道质量指示符(CQI)、调度请求(SR)等。PUSCH被映射到UL-SCH、传输信道。在PUSCH上发送的UL数据可以是在TTI期间发送的用于UL-SCH的数据块、传输块。传输块可以是用户信息。或者,UL数据可以是复用数据。复用数据可以是通过对UL-SCH的传输块和控制信息进行复用而获得的数据。例如,复用到数据的控制信息可包括CQI、预编码矩阵指示符(PMI)、HARQ、秩指示符(RI)等。或者UL数据可仅包括控制信息。
现在描述载波聚合(CA)。在CA中,将两个或更多个分量载波(CC)进行聚合,以便支持高达100MHz的较宽传输带宽。UE可根据其能力在一个或更多个CC上同时进行接收或发送。具有用于CA的单个定时提前(TA)能力的UE可在与共享相同定时提前的多个服务小区(分组在一个定时提前群组(TAG)中的多个服务小区)对应的多个CC上同时进行接收和/或发送。具有用于CA的多个TA能力的UE可在与具有不同TA的多个服务小区(分组在多个TAG中的多个服务小区)对应的多个CC上同时进行接收和/或发送。E-UTRAN确保每个TAG包含至少一个服务小区。不具有CA能力的UE可在仅与单个服务小区对应的单个CC上进行接收和发送。对于连续的和不连续的CC都支持CA,其中每个CC在频域中限于最多110个资源块。
可以将UE配置为在UL和DL中聚合源自相同eNB的不同数目的、并可能具有带宽的CC。可配置的DL CC的数目取决于UE的DL聚合能力。可配置的UL CC的数目取决于UE的UL聚合能力。不可配置UE具有与DL CC相比更多的UL CC。在TDD部署中,UL和DL中的CC的数目和每个CC的带宽相同。可配置的TAG的数目取决于UE的TAG能力。源自相同eNB的CC不需要提供相同的覆盖范围。
当配置CA时,UE仅具有与网络的一个RRC连接。在RRC连接建立/重建/切换时,一个服务小区提供非接入层(NAS)移动性信息(例如,跟踪区域标识(TAI)),并且在RRC连接重建/切换时,一个服务小区提供安全输入。该小区被称为主小区(PCell)。在DL中,与PCell对应的载波是DL主CC(DL PCC),而在UL中,与PCell对应的载波是UL主CC(UL PCC)。
根据UE能力,可配置辅小区(SCell)以与PCell一起形成一组服务小区。在DL中,与SCell对应的载波是DL辅CC(DL SCC),而在UL中,与SCell对应的载波是UL辅CC(UL SCC)。
因此,针对UE所配置的一组服务小区总是由一个PCell和一个或更多个SCell组成。对于每个SCell,可配置除了DL资源之外的由UE使用的UL资源(因此,所配置的DL SCC的数目总是大于或等于UL SCC的数目,并且可不将SCell配置为仅用于UL资源的使用)。从UE的角度来看,每个UL资源仅属于一个服务小区。可配置的服务小区的数目取决于UE的聚合能力。PCell可仅通过切换过程(即,具有安全密钥改变和随机接入信道(RACH)过程)来改变。PCell用于PUCCH的传输。与SCells不同,PCell不能被停用。在PCell经历无线电链路故障(RLF)时而不是在SCell经历RLF时触发重建。NAS信息取自PCell。
描述授权辅助接入(LAA)(或者未经授权的频谱中的LTE(LTE-U))。LAA是指具有在未经授权的频谱中操作的至少一个SCell的CA。在LAA中,针对UE所配置的一组服务小区因此总是包括在未经授权的频谱中操作的至少一个SCell,也称为LAA SCell。除非另有规定,否则LAA Scell用作常规SCell并被限于DL传输。通过引入LAA,可聚合两个或更多个CC,以便支持高达640MHz的较宽传输带宽。
由于未经授权的频谱的性质,预期使用未经授权的频谱的每个设备应该应用一种不垄断介质并且不干扰正在进行的传输的礼貌接入机制。作为LAA设备与Wi-Fi设备之间共存的基本规则,可假设正在进行的传输不应该被中断或应该通过适当的载波感测机制进行保护。换句话说,如果介质被检测为繁忙,则潜在的发送器应该等待直到介质变得空闲。空闲的定义可取决于载波感测范围的阈值。由于LTE是基于UE可在任何给定时刻预期来自网络的DL信号(即,独占使用)的假设来设计的,所以需要对LTE协议进行修剪以按照非独占方式来使用。根据非独占方式,总共可考虑两种方法。一种是以半静态或静态的方式分配时间(例如,在白天,独占使用,以及在夜间,不被LTE使用),另一种是动态竞争以获取信道。竞争的原因是为了处置其它无线电接入技术(RAT)设备/网络以及其它运营商的LTE设备/网络。
因此,LAA eNB在执行LAA SCell上的传输之前应用对话前侦听(LBT)。当应用LBT时,发送器侦听/感测信道以确定该信道是空闲还是繁忙。如果信道被确定为空闲,则发送器可执行传输。否则,发送器不执行传输。如果LAA eNB出于LAA信道接入的目的使用其它技术的信道接入信号,则它应当继续满足LAA最大能量检测阈值要求。
在LTE设备可与其它无线电接入技术(RAT)(诸如Wi-Fi、蓝牙等)设备共存的未经授权的频谱中,需要使UE的行为适应各种场景。在LAA中,用于上述3GPP LTE的各个方面可能不适用于LAA。例如,帧结构3可仅适用于LAA SCell操作。无线电帧内的10个子帧可用于DL传输。DL传输占用一个或更多个连续子帧,始于子帧内的任何位置,并终结于完全占用的或遵循DwPTS持续时间之一的最后一个子帧。对于另一示例,上述TTI可不用于LAA载波,其中可根据调度和/或载波感测结果使用可变或浮置TTI。对于另一示例,在LAA载波中,可使用基于调度的动态DL/UL配置,而不利用固定DL/UL配置。然而,由于UE特性,有时可发生DL或UL传输。对于另一示例,也可使用不同数目的子载波以用于LAA载波。
由于未经授权频谱的应该由多个用户共享的性质,导致假设持续周期性传输任何类型的信号变得有些挑战性。此外,也难以假设将以特定概率发送信号或者将信号传输的频率保持为特定值。鉴于用未经授权的频谱发送周期性信号的挑战,可需要对于未经授权频谱中的UE测量的一些修剪/修改。
用于小区的发现信号时机由具有用于帧结构类型1的1至5个连续子帧、用于帧结构类型2的2至5个连续子帧、用于帧结构类型3的一个非空子帧内的12个OFDM符号的持续时间的周期组成。DL子帧中的UE可假设存在由以下信号组成的发现信号:周期内的所有DL子帧和所有特殊子帧的DwPTS中的天线端口0上的小区特定参考信号(CRS)、用于帧结构类型1和3的周期的第一子帧或用于帧结构类型2的周期的第二子帧中的主同步信号(PSS)、周期的第一子帧中的辅同步信号(SSS)、和周期中的零个或更多个子帧中的非零功率信道状态信息参考信号(CSI RS)。对于帧结构1和2,UE可假设每dmtc周期一次发现信号时机。对于帧结构类型3,UE可假设发现信号时机可出现在发现信号测量定时配置(DMTC)内的任何子帧中。
为了支持各种类型的测量,可在未经授权的频谱中发送一种发现信号。为了方便起见,该发现信号可被称为未经授权的发现参考信号(U-DRS)。由于监管限制,U-DRS的传输可能不会像在小小区场景中的DRS传输中所假设的那样周期性地发生。在一些情况下,可允许U-DRS传输而不需要载波感测和/或LBT,然而,在一些情况下,甚至U-DRS也可应用载波感测和/或LBT。
在下文中,本发明讨论在假设与在传输之前进行载波感测和/或LBT操作的情况下的U-DRS传输有关的详细选项,并且还讨论了在数据传输(在下文中,称为D-Burst)和U-DRS传输在时间上彼此部分或完全交叠时的数据速率匹配。
首先,根据本发明的实施方式描述与在假定在传输之前进行载波感测和/或LBT操作的情况下的U-DRS传输有关的详细选项。当执行LBT时,可考虑以下选项中的至少一个,以用于U-DRS传输。
(1)可周期性地发送U-DRS。在U-DRS传输开始时,可执行LBT。可在每个DRS时机处执行LBT。如果信道此时繁忙,则可丢弃(即,不发送)U-DRS。
图6示出了根据本发明的实施方式的U-DRS传输的示例。参照图6,在第一U-DRS传输开始时,经由LBT检测到Wi-Fi站(STA)不发送信号。因此,LTE-U eNB1发送U-DRS。在第二U-DRS传输开始时,经由LBT检测到Wi-Fi STA发送信号。由于该信道繁忙,因此LTE-U eNB1不发送U-DRS,并丢弃U-DRS。
(2)可周期性地发送DRS。UE可配置有DMTC窗口。DMTC窗口的持续时间可固定为6ms,或者可由更高层进行配置。U-DRS可在DMTC窗口中被发送。DMTC窗口的起始点与U-DRS之间的间隙对于给定小区而言可以是固定的。在DMTC窗口开始时,可执行LBT。也就是说,可在每个DMTC窗口处执行LBT。如果该信道此时繁忙,则可不在DMTC窗口中发送U-DRS。如果该信道此时空闲,则可发送预留信号直到U-DRS的传输开始。该预留信号可与用于占用数据传输的信道的预留信号不同。此预留信号也可被也可发送U-DRS的其它小区读取。换句话说,可从信号的检测或载波感测阈值中排除此预留信号。实际上,也可认为此预留信号保证了也用于其它小区的U-DRS传输的介质。这可应用于属于同一运营商的小区。
图7示出了根据本发明的实施方式的U-DRS传输的另一示例。参照图7,在第一DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。由于该信道繁忙,因此LTE-U eNB1不发送U-DRS,并丢弃U-DRS。在第二DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。由于该信道繁忙,因此LTE-U eNB1不发送U-DRS,并丢弃U-DRS。
(2-1)对于上述选项(2)的一个变型,可在DMTC窗口内允许U-DRS传输。例如,DMTC窗口可被配置为6ms,并且U-DRS时机持续时间可被配置为1ms。U-DRS时机可基于LBT而在DMTC窗口内的任何时间出现。只要在DMTC窗口内发送U-DRS的至少一个完整子帧(或者配置的最小DRS时机的持续时间),则其可认为是有效U-DRS传输。也就是说,可在每个DMTC窗口处执行LBT,并且可在DMTC窗口内执行灵活的U-DRS传输。
图8示出了根据本发明的实施方式的U-DRS传输的另一示例。参照图8,在第一DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。即使该信道此时繁忙,由于U-DRS可在第一DMTC窗口内被发送,所以LTE-U eNB1在信道空闲之后的第一DRS时机处发送U-DRS。在第二DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。即使该信道此时繁忙,由于U-DRS可在第二DMTC窗口内被发送,所以LTE-U eNB1在信道空闲之后发送U-DRS。由于信道在第二DRS时机处繁忙,因此第二DMTC窗口中的U-DRS的传输在信号空闲之后被移位。
(2-2)对于上述选项(2)的另一变型,可在DMTC窗口开始时执行LBT。如果信道繁忙,则可持续地执行LBT直到U-DRS的传输开始。如果信道此时空闲,则可发送U-DRS。否则,可丢弃U-DRS。也就是说,可在每个DMTC窗口处执行LBT,并且可在DMTC窗口内执行固定的U-DRS传输。
图9示出了根据本发明的实施方式的U-DRS传输的另一示例。参照图9,在第一DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。LTE-U eNB1持续地执行LBT直到U-DRS的传输开始。由于在U-DRS的传输开始时信道空闲,所以LTE-U eNB1发送U-DRS。在第二DMTC窗口开始时,经由LBT检测到Wi-Fi STA发送信号。LTE-U eNB1持续地执行LBT直到U-DRS的传输开始。由于在U-DRS的传输开始时信道仍然繁忙,所以LTE-U eNB1不发送U-DRS。
(2-3)对于上述选项(2)的另一变型,可在DMTC窗口期间执行LBT。如果信道变为空闲,并且确保至少一个完整子帧(或者配置的最小DRS时机的持续时间),则可发送U-DRS。否则,可丢弃U-DRS。也就是说,可在每个DMTC窗口处执行LBT,并且可在DMTC窗口内执行具有U-DRS的部分传输的固定U-DRS传输。
图10示出了根据本发明的实施方式的U-DRS传输的另一示例。参照图10,在第一DMTC窗口期间,经由LBT检测到Wi-Fi STA发送信号。在信道变为空闲之后,LTE-U eNB1发送U-DRS。在第二DMTC窗口期间,经由LBT检测到Wi-Fi STA发送信号。在信道变为空闲之后,LTE-U eNB1发送部分U-DRS。
从测量角度和传输角度来看,上述每个选项都各有利有弊。更具体地,当采用选项(2-1)或选项(2-3)时,有可能不在一个DMTC窗口内发送整个持续时间的U-DRS。例如,如果U-DRS的持续时间被配置为5ms并且DMTC窗口被配置为6ms,并且如果信道在DMTC窗口开始2ms之后变为空闲,则最多只能发送4ms的U-DRS。在任一选项中,可附加地定义最小DRS持续时间。最小DRS时机是如果在DMTC窗口内已经发送超过最小DRS持续时间的U-DRS则UE认为所发送的U-DRS是有效U-DRS时机的阈值。对于不需要测量间隙的UE,可将DMTC窗口配置或假设为与DMTC间隔/周期相同。这可仅适用于选项(2-1)。通常,UE可预期来自小区的、持续时间在最小DRS持续时间与最大DRS持续时间之间的U-DRS传输。如果仅给出一个配置,则在使用选项(2-1)或选项(2-3)时UE可假设该配置为最小DRS时机持续时间而不是最大或固定DRS时机持续时间。在这种情况下,最大DRS时机可以是DMTC窗口的持续时间。为此,测量的性能基于最小DRS持续时间而不是基于固定或最大DRS持续时间。
本发明主要关注选项(2-1)和/或选项(2-3),并且主要从速率匹配角度讨论U-DRS传输与D-Burst传输之间的关系。
在小小区DRS传输中,可在DMTC窗口内周期性地发送DRS。换句话说,从小区角度来看,DMTC窗口的开始与DRS传输之间的偏移或间隙是固定的,并且UE可预期周期性的DRS传输。另外,在小小区DRS传输中,可在子帧#0或#5处发送SSS。换句话说,无论来自服务小区的DMTC/DRS配置如何,都可仅在子帧#0或#5处发送SSS。因此,通常在小小区DRS传输中,每个子帧处的数据速率匹配可以在一定程度上是确定性的。例如,SSS可在子帧#0或#5中进行速率匹配,并且PBCH可在子帧#0中进行速率匹配等。在LAA中,根据D-Burst传输(即,发送什么信号以及在何处发送信号),根据CSI-RS传输,并且还根据U-DRS传输机制,每个子帧的速率匹配可受到影响。
在子帧索引方面,LAA单元的子帧索引可与PCell或主SCell(pSCell)对齐。在LAA用作pSCell的情况下,子帧索引可被确定为在其中发送类似PBCH的主信息块(MIB)的#0。或者,子帧索引可由类似PBCH的MIB传输来确定。系统帧号(SFN)也可与PCell或pSCell对齐。另选地,子帧索引#0可用于每个D-Burst。如果D-burst大于10个子帧,则可重复子帧索引。换句话说,可仅使用子帧索引#0至#9。然而,也可使用更大数目的子帧索引。例如,可使用子帧索引#0至#39来容纳无线电帧内的40个子帧/微型子帧。
无论子帧索引/SFN如何,每个子帧内发送哪些信号可遵循下面描述的选项之一。
(1)选项1:可在D-Burst的第一子帧或第一微型子帧中发送同步信号。可至少在D-Burst的第一子帧或第一微型子帧中发送参考信号。在这种情况下,UE必须检测到D-Burst的第一子帧/微型子帧。为了检测到D-Burst的第一子帧/微型子帧,UE可检测应该一直在D-Burst之前发送的前导码。或者,UE可检测被支持以在D-Burst的第一子帧/微型子帧中发送的同步信号。
(2)选项2:可在子帧#0或#5,或者在相关联的L-Cell中发送传统同步信号的子帧中发送同步信号。换句话说,可与相关联的授权载波对齐地发送同步信号。
(3)选项3:可以仅在U-DRS时机中发送同步信号。在D-Burst中,除非与U-DRS时机交叠,否则不可预期同步信号。
与小小区DRS传输类似,U-DRS也可由多个信号(即,同步信号和参考信号)组成。因此,当U-DRS时机与D-Burst彼此交叠时,UE数据速率匹配会变模糊。例如,由于速率匹配用于服务小区,所以可存在如下U-DRS时机与D-Burst之间交叠的三种情况。
(1)U-DRS时机早于D-Burst开始
(2)U-DRS时机晚于D-Burst开始
(3)L-Cell和U-Cell对齐子帧索引
在下文中,根据本发明的实施方式描述假设L-Cell和U-Cell可未对准子帧索引,那么在每种情况下当U-DRS传输和D-Burst在时间上彼此部分或全部交叠时与数据速率匹配相关的问题。
(1)U-DRS时机早于D-Burst开始
图11示出了根据本发明的实施方式的U-DRS的数据速率匹配的示例。参照图11,U-DRS时机早于D-Burst开始。如果针对U-DRS传输执行LBT并且使用上述选项(2-3),则可在U-Cell的子帧#1处发生部分U-DRS传输,并且不可发送子帧#0和#1,这是因为在U-Cell的子帧#1的中间之前信道是繁忙的。
由于在U-DRS中发送的参考信号也可具有与子帧索引或微型子帧索引相关联的加扰序列,所以也可需要在其中发送U-DRS的子帧的子帧索引。例如,如果使用上述选项(2-3),则子帧索引#0可以是U-DRS时机的第一子帧,然而,在图11的实施方式中,由于第一子帧和第二子帧可因信道繁忙而未被发送,所以子帧索引#2可以是U-DRS时机的第一子帧。在这种情况下,不可发送同步信号。换句话说,可在第一子帧#0或#5处发送同步信号。同时,当D-Burst开始时,需要改变子帧索引。在这种情况下,从子帧索引的角度来看,第五子帧(从U-DRS角度的子帧#4,而从D-Burst角度的子帧#0)可具有冲突。因此,为了避免这种冲突,UE需要假设D-Burst使用的子帧索引具有比U-DRS使用的子帧索引更高的优先级。因此,在这种情况下,第五子帧可被指定为子帧#0,并且如果在D-Burst的第一子帧中发送同步信号,则可在该子帧中发送同步信号。
换句话说,在D-Burst之前,UE可遵循用于RS传输的U-DRS配置,并且从D-Burst开始,速率匹配可遵循D-Burst配置。然而,这会对相邻小区测量造成一定的混淆问题。例如,如果子帧索引在U-DRS传输的中间改变,则不可容易地对RS进行解码。在这种情况下,UE不可使用具有不同子帧索引的那些子帧。或者,可独立于子帧或微型子帧索引对RS进行加扰。在RS传输方面,无论是否在D-Burst内发送了相同的RS,可在U-DRS时机持续时间内发送用于U-DRS的RS。例如,如果在U-DRS时机期间发送CRS并且在D-Burst中不发送CRS,则在U-DRS时机持续时间期间,UE可假设CRS将被发送。因此,对于数据速率匹配,UE可在U-DRS时机期间假设关于CRS的数据速率匹配。
图12示出了根据本发明的实施方式的U-DRS的数据速率匹配的另一示例。参照图12,U-DRS时机早于D-Burst开始,并且使用上述选项(2-1)。也就是说,U-DRS传输在信道变得空闲之后被移位。在这种情况下,UE需要在每个子帧处执行盲解码,以确定在该子帧中发送哪个(或哪些)RS。更具体地,如果U-DRS传输被移位并在DRS时机的中间开始,则除非UE一直在检测U-DRS传输的起始子帧,否则UE不可知晓在D-Burst开始之前已发送了DRS时机的多少个子帧。
例如,在图12的实施方式中,U-DRS传输的第三子帧与D-Burst的第一子帧冲突。然而,如果UE未检测到U-DRS传输的起始子帧,则UE不知晓在D-Burst的子帧#0/#1/#2中可发送哪个子帧以及什么RS。如果在U-DRS时机内的不同子帧中可以进行同步信号和RS的不同组合,则除非UE一直检测服务小区的U-DRS的第一传输,否则UE必须执行多个候选的盲检测。如果UE必须检测服务小区的U-DRS传输的起始子帧,则在当前测量间隙配置之后执行对相邻小区的测量和频间测量变得具有挑战性。至少,具有可能的D-Burst配置的UE必须检测U-DRS传输的起始子帧,以避免在数据速率匹配方面可能的模糊性。此外,UE也可假设用于D-Burst的任何RS/同步信号也被发送,因此,还假设关于这些信号的速率匹配。
因此,如果D-Burst从子帧#0开始(或者从承载特殊信号的特殊子帧开始),则选项(2-3)可比选项(2-1)更可取。
(2)U-DRS时机晚于D-Burst开始
图13示出了根据本发明的实施方式的U-DRS的数据速率匹配的另一示例。参照图13,U-DRS时机晚于D-Burst开始。在这种情况下,与上述第一情况类似,为了能够支持D-Burst的浮置的子帧索引,可以与子帧索引无关地对U-DRS进行发送/加扰,或者U-DRS时机可具有比D-Burst高的优先级。当U-DRS时机开始时,子帧索引可重新启动。当D-Burst开始时,由于U-DRS传输不需要附加的LBT,所以UE可安全地假设只要整个持续时间可满足监管要求,就可发送来自服务小区的U-DRS。如果D-Burst持续时间不能延长,则U-DRS时机可在中间停止。尽管这种情况与选项(2-3)不同,但是可也应用相同的原理,即,在不能保证U-DRS传输超过最小DRS时机的情况下,网络不可发送U-DRS。在这种情况下,也可认为D-Burst的起始子帧也在U-DRS时机的第一子帧中发送同步/参考信号,以使得UE可至少对服务小区执行测量。
图14示出了根据本发明的实施方式的U-DRS的数据速率匹配的另一示例。参照图14,U-DRS时机晚于D-Burst开始。UE可知晓D-Burst的潜在持续时间,从而UE知晓是否将发送来自服务小区的U-DRS。在这种情况下,DRS时机(重复)可发生在U-Cell开始时。换句话说,如果D-Burst在少于U-DRS传输之前的m个子帧处开始,则网络可从第一子帧开始发送U-DRS,并且实际的U-DRS时机也从所配置的U-DRS时机开始。此外,UE也可假设用于D-Burst的任何RS/同步信号也被发送,因此,也假设关于这些信号的速率匹配。
(3)L-Cell和U-Cell对齐子帧索引
只要U-DRS时机的第一子帧和D-Burst的第一子帧使用相同的RS/同步信号传输,那么从速率匹配的角度,这种情况不会产生任何问题。在使用不同配置的情况下,UE可假设针对D-Burst或U-DRS时机发送所有RS/同步信号。因此,用于U-DRS和D-Burst二者的所有RS/同步信号将被速率匹配,。
图15示出了根据本发明的实施方式的U-DRS的数据速率匹配的另一示例。参照图15,L-Cell和U-Cell对齐子帧索引并使用选项(2-3)。UE可假设RS/同步信号遵循子帧索引。例如,如果U-DRS时机晚于D-Burst开始,则可在子帧#0或#5中发送同步信号。如果U-DRS时机早于D-Burst开始,则可在子帧#5中发送同步信号。此外,如果U-DRS与D-Burst之间的RS/同步信号配置不同,则可发送附加U-DRS。例如,可在子帧#5处发送U-DRS。
图16示出了根据本发明的实施方式的U-DRS的数据速率匹配的另一示例。参照图16,L-Cell和U-Cell对齐子帧索引并使用选项(2-1)。在这种情况下,也可在U-DRS的第一子帧(即,子帧#4)中发送附加同步信号。在这种情况下,UE必须一直对U-DRS的第一子帧进行盲检测。在UE不能执行盲检测以发现U-DRS传输的起始子帧的情况下,为了速率匹配,UE可不假设U-DRS传输。这可通过网络不同时调度U-DRS和D-Burst,或者在二者在相同子帧中冲突的情况下经由对用于U-DRS的RS RE进行穿孔(puncturing)来实现。
总的来说,可考虑以下方法中的至少一种。
(1)与当前系统类似,如果网络发送任意信号(D-Burst或U-DRS等),则UE可假设将在子帧#0或#5中发送同步信号(例如,SSS)。在这种情况下,在其它子帧中,UE可假设不发送同步信号。
(2)无论U-DRS传输如何,D-Burst的第一子帧可发送同步信号。当U-DRS和D-Burst彼此交叠时,可假设存在来自U-DRS和D-Burst二者的信号/RS以用于数据速率匹配的目的。在UE不知晓U-DRS传输的位置的情况下,对于数据速率匹配,可不发送U-DRS。
(3)仅在U-DRS中发送同步信号,因此除非D-Burst与U-DRS交叠,否则不可在D-Burst中发送同步信号。
图17示出了根据本发明的实施方式的用于执行测量的方法。
在步骤S100中,UE在其中预期UE在未经授权的载波中接收同步信号的子帧中同时接收U-DRS和数据突发二者。预期UE接收同步信号的子帧可以是具有0和5的索引的子帧。未经授权的载波的子帧索引和授权载波的子帧索引可彼此对齐。可在DRS时机中接收U-DRS。DRS时机可比数据突发的接收的开始更早开始,或比数据突发的接收的开始更晚开始。UE还可在DRS时机开始时执行LBT。不可在未经授权的载波中的具有除0和5以外的索引的子帧中同时接收U-DRS和数据冲突二者。U-DRS可由PSS、SSS、CRS或CSI-RS中的至少一个组成。
在步骤S110中,UE通过使用U-DRS来执行测量。
同时,在引入短TTI的情况下,速率匹配可不同。在不具有任何DRS(在传统子帧中作为TTI被发送)的短TTI中,如果CSI-RS未被配置为在该持续时间内被发送和/或在该持续时间内未配置零功率(ZP)-CSI-RS配置,则RS可被用于例如具有2个OFDM符号长度(映射到第二时隙中的OFDM符号#2/#3)的短TTI的数据传输。换句话说,用于指示传统子帧中可存在哪个RS的公共信令可被用于短TTI中的数据传输。或者,UE可对传统TTI下的RS/信号传输做出安全假设。
图18示出了实现本发明的实施方式的无线通信系统。
网络800可包括处理器810、存储器820和收发器830。处理器810可被配置为实现在本说明书中描述的所提出的功能、过程和/或方法。无线电接口协议的各层可在处理器810中实现。存储器820与处理器810可操作地联接并存储各种信息以操作处理器810。收发器830与处理器810可操作地联接,并发送和/或接收无线电信号。
UE 900可包括处理器910、存储器920和收发器930。处理器910可被配置为实现在本说明书中描述的所提出的功能、过程和/或方法。无线电接口协议的各层可在处理器910中实现。存储器920与处理器910可操作地联接并存储各种信息以操作处理器910。收发器930与处理器910可操作地联接,并发送和/或接收无线电信号。
处理器810、910可包括专用集成电路(ASIC)、其它芯片组、逻辑电路和/或数据处理设备。存储器820、920可包括只读存储器(ROM)、随机存取存储器(RAM)、闪速存储器、存储卡、存储介质和/或其它存储设备。收发器830、930可包括用于处理射频信号的基带电路。当实施方式以软件实现时,本文所描述的技术可通过执行本文描述的功能的模块(例如,过程、功能等)来实现。模块可存储在存储器820、920中并由处理器810、910执行。存储器820、920可在处理器810、910内或处理器810、910的外部实现,在后一种情况下,存储器820、920可经由本领域已知的各种手段通信地联接至处理器810、910。
鉴于本文所描述的示例性系统,已经参照几个流程图描述了可根据所公开的主题实现的方法。虽然为了简单起见,将方法示出并描述为一系列步骤或块,但是应当理解并领会的是,所要求保护的主题不受这些步骤或块的顺序的限制,这是由于一些步骤可按照与本文所描绘和描述的步骤不同的顺序发生或者与其它步骤同时发生。此外,本领域技术人员将理解的是,流程图中所示的步骤不是排他性的,并且在不影响本公开的范围和精神的情况下,可包括其它步骤或者可删除示例流程图中的一个或更多个步骤。

Claims (13)

1.一种用于在无线通信系统中由用户设备UE执行测量的方法,该方法包括以下步骤:
在其中预期所述UE在未经授权的载波中接收同步信号的子帧中同时接收未经授权的发现参考信号U-DRS和数据突发二者;以及
基于所述U-DRS执行所述测量,
其中,在其中预期所述UE接收所述同步信号的子帧是具有0和5的索引的子帧。
2.根据权利要求1所述的方法,其中,所述未经授权的载波的子帧索引和授权载波的子帧索引彼此对齐。
3.根据权利要求1所述的方法,其中,在DRS时机中接收所述U-DRS。
4.根据权利要求3所述的方法,其中,所述DRS时机比所述数据突发的接收的开始更早地开始。
5.根据权利要求3所述的方法,其中,所述DRS时机比所述数据突发的接收的开始更晚地开始。
6.根据权利要求3所述的方法,该方法还包括在所述DRS时机开始时执行对话前帧听LBT。
7.根据权利要求1所述的方法,其中,在所述未经授权的载波中的具有除0和5之外的索引的子帧中不同时接收所述U-DRS和所述数据突发二者。
8.根据权利要求1所述的方法,其中,所述U-DRS包括主同步信号PSS、辅同步信号SSS、小区特定参考信号CRS或者信道状态信息参考信号CSI-RS中的至少一个。
9.一种在无线通信系统中的用户设备UE,所述UE包括:
存储器;
收发器;以及
处理器,所述处理器联接至所述存储器和所述收发器,
其中,所述处理器被配置为:
控制所述收发器,以在其中预期所述UE在未经授权的载波中接收同步信号的子帧中同时接收未经授权的发现参考信号U-DRS和数据突发二者;以及
基于所述U-DRS执行测量,
其中,在其中预期所述UE接收所述同步信号的子帧是具有0和5的索引的子帧。
10.根据权利要求9所述的UE,其中,所述未经授权的载波的子帧索引和授权载波的子帧索引彼此对齐。
11.根据权利要求9所述的UE,其中,在DRS时机中接收所述U-DRS。
12.根据权利要求11所述的UE,其中,所述DRS时机比所述数据突发的接收的开始更早地开始。
13.根据权利要求11所述的UE,其中,所述DRS时机比所述数据突发的接收的开始更晚地开始。
CN201680016457.9A 2015-03-17 2016-03-17 在无线通信系统中执行测量的方法及用户设备 Active CN107408999B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562134532P 2015-03-17 2015-03-17
US62/134,532 2015-03-17
PCT/KR2016/002731 WO2016148530A1 (en) 2015-03-17 2016-03-17 Method and apparatus for performing data rate matching in licensed assisted access carrier in wireless communication system

Publications (2)

Publication Number Publication Date
CN107408999A CN107408999A (zh) 2017-11-28
CN107408999B true CN107408999B (zh) 2019-04-05

Family

ID=56919751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680016457.9A Active CN107408999B (zh) 2015-03-17 2016-03-17 在无线通信系统中执行测量的方法及用户设备

Country Status (3)

Country Link
US (1) US20180069660A1 (zh)
CN (1) CN107408999B (zh)
WO (1) WO2016148530A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330678A1 (en) * 2015-05-07 2016-11-10 Electronics And Telecommunications Research Institute Method and device for transmitting and receiving discovery reference signal through channel of unlicensed frequency band
US10123349B2 (en) * 2015-07-09 2018-11-06 Qualcomm Incorporated Low latency physical uplink control channel with scheduling request and channel state information
EP3335500B1 (en) * 2015-08-13 2020-11-04 Intel IP Corporation Discovery reference signal design for lte in unlicensed bands
CN106658584B (zh) * 2015-10-30 2022-02-15 北京三星通信技术研究有限公司 信号发送与接收和干扰测量的方法及设备
KR102363016B1 (ko) 2015-11-04 2022-02-16 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 비인가 대역에서 신호 전송 방법, 장치 및 시스템
US10958404B2 (en) * 2015-11-06 2021-03-23 Qualcomm Incorporated Discovery reference signal configuration and scrambling in licensed-assisted access
EP3384708B1 (en) * 2015-12-03 2022-08-24 Nokia Solutions and Networks Oy Idle-mode cell selection measurements
US10694410B2 (en) 2016-02-23 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Radio link monitoring in listen-before-talk communications
CN109076527A (zh) 2016-03-31 2018-12-21 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US10064174B2 (en) * 2016-06-08 2018-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Discovery signal measurement timing configuration for SCells in asynchronous networks
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US20180132242A1 (en) * 2016-11-04 2018-05-10 Mediatek Inc. Grouping of serving cells with shortened transmission time intervals
KR102074291B1 (ko) 2016-11-09 2020-02-06 엘지전자 주식회사 동기화 신호 전송 방법 및 이를 위한 장치
KR102225950B1 (ko) 2016-11-12 2021-03-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
TWI673986B (zh) * 2016-11-14 2019-10-01 瑞典商Lm艾瑞克生(Publ)電話公司 通信方法、無線器件、及網路節點
CA3029821C (en) 2017-06-15 2023-08-08 Lg Electronics Inc. Method for transmitting and receiving synchronization signal block and apparatus therefor
CN109803425B (zh) * 2017-11-17 2020-12-15 中国移动通信有限公司研究院 一种帧结构的配置方法、获取方法、基站及终端
CN107748741B (zh) 2017-11-20 2021-04-23 维沃移动通信有限公司 一种文本编辑方法及移动终端
KR102547937B1 (ko) 2018-08-08 2023-06-26 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
FI20216311A1 (en) * 2021-12-21 2023-06-22 Nokia Solutions & Networks Oy Dynamic spectrum sharing with reduced use of additional information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161508A1 (en) * 2013-04-04 2014-10-09 Huawei Technologies Co., Ltd. Device,network,and method for utilizing a downlink discovery reference signal
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135148A1 (en) * 2014-11-06 2016-05-12 Samsung Electronics Co., Ltd. Efficient operation of lte cells on unlicensed spectrum
EP3018938B1 (en) * 2014-11-07 2020-09-16 Panasonic Intellectual Property Corporation of America System for LTE licensed assisted access in unlicensed bands
US20160135179A1 (en) * 2014-11-07 2016-05-12 Sharp Laboratories Of America, Inc. Systems and methods for synchronization signal
US10623978B2 (en) * 2014-11-14 2020-04-14 Interdigital Patent Holdings, Inc. Methods and procedures for channel measurements and reporting mechanisms for long term evolution (LTE) operation in an unlicensed band
US20160242186A1 (en) * 2015-02-12 2016-08-18 Nokia Technologies Oy Dynamic Carrier Selection Via Auxiliary Carriers In Unlicensed Band
EP3272141B1 (en) * 2015-03-17 2018-12-26 Telefonaktiebolaget LM Ericsson (PUBL) Rssi measurement during lbt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161508A1 (en) * 2013-04-04 2014-10-09 Huawei Technologies Co., Ltd. Device,network,and method for utilizing a downlink discovery reference signal
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Design for LAA with DL only transmissions;Huawei, HiSilicon;《3GPP TSG RAN WG1 Meeting #80 R1-150045》;20150213;全文
DRS Design Options for LAA Downlink;Intel Corporation;《3GPP TSG RAN WG1 Meeting #80 R1-150506》;20150213;全文

Also Published As

Publication number Publication date
CN107408999A (zh) 2017-11-28
US20180069660A1 (en) 2018-03-08
WO2016148530A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
CN107408999B (zh) 在无线通信系统中执行测量的方法及用户设备
KR102124492B1 (ko) Rach 프리앰블 전송하는 방법, 사용자기기 및 장치
US10673671B2 (en) Method and apparatus for performing cell search in wireless communication system
US10027524B2 (en) Method and apparatus for transmitting reference signal
US9730240B2 (en) Communication method considering carrier type and apparatus for same
US9414339B2 (en) Method and apparatus for transmitting reference signal in wireless communication system
CN104205688B (zh) 用于在无线通信系统中聚合载波的方法和设备
CN104982073B (zh) 基于发现信号检测小型小区的方法
KR102238536B1 (ko) 무선 통신 시스템에서 신호 송수신방법 및 장치
CN106416108B (zh) 无线通信系统中指示过去子帧的开启/关闭状态的方法和设备
CN108028713A (zh) 在支持窄带物联网的无线电接入系统中接收下行链路物理广播信道的方法和装置
KR102225951B1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
JP2017519381A (ja) 無線通信システムにおいて信号を送受信する方法及びそのための装置
CN110383931B (zh) 无线通信系统中基于lte和nr发送和接收信号的方法及其设备
WO2014109566A1 (ko) 신호 수신 방법 및 사용자기기와 신호 전송 방법 및 기지국
WO2013125922A1 (ko) 무선 통신 시스템에서 랜덤 액세스 접속 절차 수행 방법 및 이를 위한 장치
CN105191192A (zh) 接收用于检测小尺寸小区的搜索信号的方法
CN105308888A (zh) 用于发送参考信号的方法
CN111096045A (zh) 在无线通信系统中执行初始接入的方法及其设备
CN105122753A (zh) 在支持新载波类型的无线接入系统中收发/发送下行链路数据的方法和装置
US9509482B2 (en) Receiving method for interference cancellation, and terminal
EP3190760B1 (en) Method for receiving data from amorphous mimic cell and terminal thereof
US10917188B2 (en) Method for performing communication using TDD frame in wireless communication system, and device therefor
US10587393B2 (en) Method for performing communication using TDD frame in wireless communication system, and device therefor
CN112492613B (zh) 在支持未授权带的无线接入系统中执行cca的方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant