CN107407530A - 高效脱盐 - Google Patents

高效脱盐 Download PDF

Info

Publication number
CN107407530A
CN107407530A CN201680011665.XA CN201680011665A CN107407530A CN 107407530 A CN107407530 A CN 107407530A CN 201680011665 A CN201680011665 A CN 201680011665A CN 107407530 A CN107407530 A CN 107407530A
Authority
CN
China
Prior art keywords
heat
heat pipe
thermal
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680011665.XA
Other languages
English (en)
Inventor
尤金·梯也尔
加里·卢姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi Erwan Resource Co
Sylvan Source Inc
Original Assignee
Xi Erwan Resource Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi Erwan Resource Co filed Critical Xi Erwan Resource Co
Publication of CN107407530A publication Critical patent/CN107407530A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • C02F1/12Spray evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明的实例提供了用于20C到800C温度范围内热传递系统的系统和方法。所述系统由配置的热管组成,使得其适合常规热交换器内部,更有效地从热流体中传递或回收热,且能够在没有用户干预的情况下运行非常长的时间。

Description

高效脱盐
本发明涉及使用常规技术(包括反向渗透、正向渗透、热蒸馏系统、膜蒸馏系统、电氧化和透析)从盐溶液(从高浓度海水到淡盐水)脱盐领域。尤其是,本发明的实施例涉及用于热交换和回收的热管、脉冲热管、先进热管(advanced heat pipes)、热虹吸管(thermosiphons)的使用,从而实现整体能效的显著提升。
相关申请的交叉引用
本申请要求于2015年3月2日递交的美国临时专利申请No.62/126,991的优先权,该申请的全部内容通过引用并入本申请中。
背景技术
在水脱盐应用中的两类主要技术:一类基于渗透现象,另一类基于部分真空下的蒸馏现象。在第一类技术中,尽管正向渗透(FO)系统正逐渐被关注,但该技术商业化发展不足,现有工厂中反向渗透(RO)仍然占主导。在蒸馏系统中,相对于多闪蒸系统(MSF),多效蒸馏(MED)似乎提供了更高的能效,尤其是与进一步降低能量消耗的蒸汽压缩结合时。
但是,在高于室温的运行温度使用时,基于渗透的系统提供了增加的效率。因此,为该系统提供有效的热转换技术是有优势的,以提升的它们的性能。由于大部分脱盐设备是在具有大量容易获取的废热能源的区域中运行的,许多这样的设备利用热交换以对废热能源再次利用。但是,热交换是基于热传导性,其中热流体通过金属板将热传导到低温流体。因此,常规的热交换的特征是需要大的面积以及热流体和冷流体之间相对大的温差。需要改进的热交换设备,其可以在更低的温差下运行,且能够将废热能源用于脱盐。
发明内容
本发明的实例提供了一种改进的在多个工业应用中高效地传热的方法,包括利用基于渗透的技术、热蒸馏系统、膜蒸馏系统、电氧化或电透析系统中的某一种进行盐水溶液脱盐。本发明提供了用先进热管取代常规热交换器(包括薄膜式蒸馏器)的实例,先进热管的特征是非常薄的管壁(低于1-2毫米)和优良的管芯(wick)材料,该材料可提供非常小的温差和极高的热传导系数。
本发明的一些实例提供了一种热管理系统,包括取代常规热交换器(包括薄膜式蒸馏器)的热管、热虹吸管或先进热管,在高于室温下操作的蒸馏系统中实现热交换,且在20-800C的温度范围内可以从多种热源中传热。
本发明的一些实例提供了一种热管理系统,其中蒸馏系统可以是MED、MSF、蒸汽压缩、膜蒸馏、电氧化或电透析系统等。
本发明的一些实例提供了一种热管理系统,其中热管、热虹吸管或先进热管可以取代正向渗透/反向渗透等系统中的常规热交换器。
常规的热管通常是由商业化购买的金属管制备的,且壁厚通常在1/16”至1/4”的范围内。先进热管依靠金属筛网支架(metal screen scaffolds),以保持机械完整性,其壁厚低于1-2毫米,偶尔会低到一毫米以内,因此显著增强了包封材料的热传导性。热管的壁厚可以约为0.1,0.2,0.3.,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5毫米或更高。类似地,常规的管芯(wick)包括凹槽、金属网以及具有良好开孔孔隙率的烧结金属颗粒。金属烧结管芯包括大小为几微米烧结在一起的金属(例如,铜、钢、钛或各种不同的金属合金)微球(在特定的情况下,大小为亚微米)。金属微球可以为约0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.5,4.0,4.5,5.0微米或更大。虽然这些管芯材料有助于内部工作流体的相变,它们也形成了热交换的热障。优良的管芯材料包括凹槽、筛网和更小孔径(从60纳米至几百纳米,例如,60,75,100,125,150,175,200,225,250,275,300,325,350,375,400纳米或更高)的烧结金属以及更薄的整体厚度(几微米,例如,1,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0微米或更高)。可选地,优良的管芯材料可以包括沿着热管中心轴向放置的多孔材料,从而不会成为热交换的障碍。
附图说明
图1描述了几个利用热管的热交换实施例。
图2描述了在水平薄膜蒸发系统中使用热管。
图3描述了正向渗透图解。
图4描述了反向渗透图解。
图5描述了多效蒸馏系统。
具体实施方式
本文公开了实施例,在某些情况下以示例性的方式或通过参考一幅或多图附图的形式。但是,特定实施例的任何公开内容都仅仅是示例性的,不能被视为本发明的全部范围。
热蒸馏系统,例如MED,使用水平薄膜蒸馏管传递和回收热能。然而,这种系统具有几个操作问题,例如,引起盐局部结晶的热点(dry-spots),水平管内液体的冷凝造成的低效率,水平管蒸汽逐渐冷凝造成的温度损失。需要能够克服这些问题的热交换装置。
膜蒸馏系统依赖在液/气界面由非常小的弯(月)液面的弯曲引起的蒸汽压的增加。供液中更高的温度自然会增加界面上的蒸汽压力,从而使得该系统热效率更高。尽管有多种方式增加系统的温度,热管在交换热能方面是最有效的,因此,可以用于增加这样的蒸馏系统的整体效率。
电氧化系统利用带电正极氧化溶解的污染物而运行。另外,液相中更高的温度可以增加液体中分子的动能,从而改善电极的电气性能,热管是一种提供额外的所需热能的可选方式。
在透析中,尤其是在电透析中,杂质通过半渗透膜的扩散被电池势增强。正如在其他的液体系统中,高温可以显著地增加分子和离子扩散。热管非常适合提供所需的热能。
本发明的一个重要优势是利用热管的热交换机制。如本发明所述,热管能够提供一种交换热的装置,其几乎是热力学可逆的,即一种迁移晗时几乎没有效率损失的系统。
在一些实施例中,用于热交换的系统(其实施例在本文中有描述)与其他系统和装置结合,以提供更有利的特征。例如,该系统可以与以下专利中公开的任意装置或方法联用:2005年5月2日递交的美国临时专利申请No:60/676870(名称为“太阳能整列装置(SOLARALIGNMENT DEVICE)”),2005年7月6日递交的美国临时专利申请No:60/697104(名称为“可视的水流指示器(VISUAL WATER FLOW INDICATOR)”),2005年7月6日递交的美国临时专利申请No:60/697106(名称为“恢复饮用水的矿物含量的装置(APPARATUS FOR RESTORINGTHE MINERAL CONTENT OF DRINKING WATER)”),2005年7月6日递交的美国临时专利申请No:60/697107(名称为“改进的旋风除雾器(IMPROVED CYCLONE DEMISTER)”),2004年12月1日递交的PCT申请No:US2004/039993(名称为“改进的自净水处理装置(IMPROVED SELF-CLEANING WATER PROCESSING APPARATUS)”),2004年12月1日递交的PCT申请No:US2006/040103(名称为“水净化系统(WATER PURIFICATION SYSTEM)”),2008年12月3日递交的美国专利申请No:12/281,608(名称为“污染预防(CONTAMINANT PREVENTION)”),2008年3月21日递交的PCT申请No.US2008/03744(名称为“水净化系统(WATER PURIFICATION SYSTEM)”),2003年12月2日递交的美国临时专利申请No:60/526,580(名称为“自净水处理装置(SELF-CLEANING WATER PROCESSING APPARATUS)”),2011年12月9日由Sylvan Source,Inc递交的美国临时专利申请No:61/532,766(名称为“工业水净化和脱盐(INDUSTRIAL WATERPURIFICATION AND DESALINATION)”),2013年7月23日递交的PCT申请No:US2013/51730(名称为“用于生物燃料生产的有效脱水作用(EFFECTIVE DEWATERING FOR BIOFUELPRODUCTION)”),2014年8月5日递交的美国临时专利申请No:62/041,556(名称为“节能EOR(ENERGY EFFICIENT EOR)”),2014年12月3日递交的美国临时专利申请No:62/087,122(名称为“节能水净化和脱盐(ENERGY EFFICIENT WATER PURIFICATION ANDDESALINATION)”),以及2011年6月1日递交的美国专利No.8,771,477(名称为“大规模水净化和脱盐(LARGE-SCALE WATER PURIFICATION AND DESALINATION)”),以上申请和专利的每一项的全部内容以引用的方式并入本文。
图1显示了热交换装置的几个实施例,其利用热管取代常规的热交换器。图1(f)描述了常规的热交换器,其中热流体(1)进入热交换器(2),通过金属板(8)转移热量至冷流体(4),冷流体(4)从相反的方向也进入到热交换器中。由于通过金属板(8)进行热传递,来自热流体(1)的热量流到冷流体(4)中,因此,当热流体(1)到达装置的位点(3)时,热流体(1)会失去温度,而冷流体(4)获得更高的温度,到达位点(6)。转移的热量的总量与金属板(8)的表面积成正比,与金属板的厚度成反比,与金属材料(8)的导热系数成正比,与热流体和冷流体之间的温差成正比。
基于导热系数的任何热交换一个普遍的问题是热流体流过导热材料的速率非常低,这就需要相当大的表面积,直接影响了装置的成本。依赖于导热性的常规热传递的另一个问题是:当流体传递热时,其必然会冷却,从而降低了传递热的材料的温差。因此,直接影响热传递的表面积和温差均受到仅依赖于传热系数的机制的影响。相反,热管主要通过相变和已经挥发的工作流体的质量转移传热。结果,常规的热管能够展现出比金属银高约1000倍的热导率(“Heat Pipes or Heat Exchangers”.Ivan Catton,UCLA,September 12,2014),且先进热管的导热率是银的将近30000倍(“Thermal Property Analysis of theQu Supertube”.Michael McKubre,SRI International,July 1999)。
此外,由于热交换器特意建立了流体和金属片之间的直接接触,流体可能会被污染,而热管,由于是密封的管道,能够防止内部工作流体扩大(scaling up)或污染,且热管的外表面是光滑的,容易清洁。
图1(a)描述了用热管取代热交换器的简单结构。在该图中,热流体(1)进入热交换管道(2),热交换管道(2)被分成两半。当热流体(1)进入时,其将热传递到热管(7),从而变得更冷,最终在位点(3)排出系统。热管(7)以接近声速的速率将几乎所有的热传递到热交换管道(5)的另一半,冷流体(4)进入其中,获得来自热管(7)的热量,以明显更高的温度存在于位点(6)。
图1(a)示例性描述了热管与常规的热交换器相比的几个基本优点。首先,假设图1(a)和1(f)具有类似的尺寸,热管用于热传导的热交换表面积大约是热交换器的3.14倍(Pi值),因为热管的直径非常接近热交换管道(2),不管管道是圆柱形的还是矩形的。因此,热管的热传导的热导率方面更佳。第二,由于热导率对于热管的整体热交换的贡献较小,主要的机制是基于内部工作流体在部分真空下蒸发且几乎瞬间穿过热管的轴线时的相变。第三,由于穿过热管的热传递如此之快,热管热的那一侧和冷的那一侧之间的温差被最小化,通常,商业化热管展现出的温差只有几摄氏度,而商业化热交换器的温差范围为几摄氏度到几十摄氏度,甚至更高。第四,由于在热管较冷的一侧工作流体的冷凝传递冷凝热,其等同于蒸发热,所以除了壁损失(在热交换管道两侧之间温差最小化的情况下,壁损失几乎可以忽略),热交换几乎是绝热的。第五,由于工作流体冷凝之后热交换又通过热传导发生,热管的更大的表面积又提供了另一大优势。
图1(b)显示了使用热管的热交换装置的立式结构,而不是水平结构,且描述了该技术的另一个主要优势,在热管内利用工作流体的毛细管转移的优势,其使得该装置可以在任何方向任何方位运行。内部毛细管(也称为管芯(wick))包括烧结微球体或筛网,其能够使得工作流体在冷凝位点到蒸发位点运行时克服重力,无论什么方位。微球体在几微米或几亚微米的范围内大小不一,可以在金属和合金中商业化获取。微球体可以在金属管的内表面铺设,烧结在一起,所以它们能够提供互相连接的多孔结构。金属筛网可以是不同的尺寸(通常由筛目尺寸表示,筛目是定义为“每单元线性英寸方筛内金属围起来的方形的数目”的标准单元)。作为内部管芯起作用的金属筛网的尺寸为60-300筛目。筛尺寸可以是约60,100,150,200,250,300筛目或更多。图1(c),1(d)和1(e)显示了多个热管,而不是单一热管,描述了热管热导率的表面积优势可以简单地通过在任何方位使用多个热管而增强。
图2(a)描述了多效蒸馏系统常规阶段,利用热管的类似结构(图2b)。图2(a)显示了单一MED阶段(17)(被称为“效应”)。在图2(a)中,多个喷嘴(13)沿着水平管(14)喷射盐水溶液(14),水平管(14)充满低温蒸汽(10),低温蒸汽(10)来自上一个温度略高的效应。当蒸汽(10)沿着水平管(11)运行时,其可冷凝成液体产物(12),冷凝的热可以用于蒸发更多从顶部喷射出的盐水溶液(14)。当盐水溶液蒸发时,其可以吸收来自水平管外表面的热量,因此能够增加液滴(15)的盐度,液滴(15)从一个水平管滴落到下一个水平管,因此,也能够增加溶液(16)的盐度,溶液(16)随后被供给到下一个效用。
在水平管束下部分的水平管效率受到上方薄膜的影响,如图2(a)所示。上部分的管道处于非常有效的液滴模式,而下部分的管道处于效率低得多的片状模式(sheetmode)。因为蒸汽冷凝沿着管道束的整个长度发生,在管道束内部有明显的热阻(由于合并(pooling)),沿着管道束长度还有温度损失。此外,由于在管道束外表面上形成的热点,污染发生在水平薄膜蒸发器上。同样地,非冷凝性气体(NGG)在许多冷凝进程中是个难题。由于常规的蒸馏系统是在部分真空下操作的,逐步形成的非冷凝性气体(例如,氮气、氧气)能够显著降低水平薄膜冷凝器中的热传导,仅仅因为气体聚集在冷凝表面,且这些气体的热导率相当低,阻碍了热传递。
如果MED的水平薄膜管被热管取代,几乎不会遇到上述问题,如图2(b)所示。在图2(b)中,来自上一个效用的蒸汽(10)进入蒸馏阶段(17),在热管(7)上冷凝,从而将冷凝热传递到那些热管。冷凝的液体(12)在阶段(17)的底部聚集,而热管迅速将这些热量传递到蒸发发生的临近管道。在蒸发一侧,喷雾嘴(13)用盐水溶液淋浴热管,盐水溶液会部分蒸发,浓缩的盐水溶液(16)在底部排出,而产生的蒸汽转移到下一个效用。这种结构的明显的优势取决于热管优良的热转换,相比常规的MED阶段,热管需要的用于冷凝的体积明显更少。类似地,蒸发一侧也需要更少的体积,因此,能够节省材料,且具有更小的占地面积。热管这些优良的热传递属性同样可用于其他的热蒸馏系统,例如,MSF(多阶段闪蒸)或VC系统(蒸气压缩)。
在热管和常规薄膜热交换器中,均有一些热交换的障碍。最重要的障碍之一是热管表面层和蒸发器腔室流体阶段(其通常被称为“双层”)之间的界面上的热阻。“双层”是由比大部分流体阶段更加浓缩和更加有序的分子组成的,由静电作用力和离子浓度相结合造成。结果是,障碍的强度随着盐度而减弱。由于污染和热点,常规的薄膜式热交换器受限于在高盐度下操作的能力,而由于池内核沸腾,热管能够在超过百万分之200000的盐度下运行。因此,针对盐度范围和工业实践中经常遭遇的污染,利用热管时,这些障碍变得非常微小,但对于薄膜式热交换器,这些障碍依然非常明显。
当量身定做以满足热交换的需求时,热管的制备尺寸可以从微米到米。热虹吸管(thermosyphons)的实例的范围为2cm直到100米长。例如,热虹吸管可为约2cm,50cm,100cm,500cm,750cm,1米,25米,50米,75m米或100米。在运行的交换器上去除或增加热管的能力使得系统很好调整,以保证最佳的热回收。类似地,脉冲热管被设计成长距离热交换,范围从几米直到几千米,它们通常在没有内部管芯的情况下运行,具有可选择的内部阀,内部阀保证仅在一个方向流动。热管可以为约2,10,50,100,200,250,500,750,1000,2000,3000,4000,5000米或更长。先进热管包括位于中心的轴向管芯,能够优化热传导以及环绕金属筛网以增强结构的超薄金属薄片(壁厚低于1mm)。金属筛网与工作流体化学兼容,可用于筛网的金属包括铜、钢铁、钛和其他的基底金属以及它们的合金等。这些特征对于热管回收单元是完全独一无二的。
热管内没有移动的机械部件产生了具有超高可靠性的装置。有许多可靠的材料和流体结合(例如,铜/水热管),使用它们不会随着时间而产生污染或降解。最普遍的结合之一是铝/氨和氨/钢。每个单独的热管可以独立运行,因此,单一的管的故障不会连累系统。故障热管可以在下一次例行的维修中被替换掉。热管系统的独立运行也意味着热管之间的零交叉污染。
图3描述了通用的正向渗透系统。在正向渗透中,盐水溶液(16)通过半渗透膜(18)与另一种含有明显更高盐度的溶液(通常是通过加入可溶性盐(溶质)制备的,该可溶性盐相对容易分离,且可以回收重复利用)接触。膜的渗透压使得水穿过膜向更高盐度溶液迁移,因此,稀释盐水溶液而浓缩原始的盐水溶液。稀释的溶质溶液随后通过沉淀或蒸馏方式处理,以回收原始的溶质,从而回收用于重复利用的溶质盐,同时分离出相对干净的水产物(22)。
在正向渗透中热量可以以两种独立的方式利用。首先,穿过半渗透膜的扩散渗透率可以被高于室温的温度增强。第二,蒸馏和某些形式的沉淀需要热,因此,能够利用低温形式的热能的能力是一个显著的经济优势。在此关键的概念是类似如图1(a)至(e)或图2(b)的结构中利用热管的能力,以增加正向渗透的运行温度。在图3(a)中,盐水进入预热管道(17),在此热管(7)提供来自热源(21)的热量。热源包括蒸汽、燃气、太阳能、地热能或任何形式的废热。一旦被加热,盐水溶液进入正向渗透膜(18),在此渗透转移水到更加浓缩的盐水溶液(通常被称为“提取液(19)”,从而稀释所述提取液。在正向渗透管道(18)排出,稀释的提取液能够流到提取液回收系统(20),在此产物水(22)和提取液(19)能够被分离和回收。提取液能够流到提取液管道(19),然后从液管道(19)流到渗透系统(18),因此完成循环。
图3(b)描述了类似的结构,其中热管(7)也被用于提供分离提取液(19)和产物水的热源。如前所述,热源包括蒸汽、燃气、太阳能、地热能或任何形式的废热。
图4描述了反向渗透系统,其中预处理的盐水(14)在进入到一批RO模块(仅仅只有一个模块被显示出)前被加压。如正向渗透情况一样,当盐水溶液处于高于室温的温度时,RO系统的效率会改善。由于该目的,在类似如图1(a)至(e)或图2(b)的结构中利用热管以增加运行温度的能力成为关键的优势。在图4中,盐水进入预处理管道(17),其中热管(7)从广泛的热源(例如,蒸汽、燃气、太阳能、地热能或各种废热)转移热量。一旦被加热,盐水溶液在进入反向渗透膜(25)前被高压泵(24)加压,在反向渗透膜(25)中水渗透穿过该膜,从而产生产物水(22)和重废盐水(23)。
图5描述了立式结构的MED系统。与水平结构的情况一样,单独的效用可以被更小体积的冷凝器和蒸发管道取代,类似于图2的结构,但是是立式设置的。
本文所描述的发明可以在缺少任何本文没有具体公开的要素、限制的情况下进行。本文所使用的术语或表达仅仅是为了描述,而不是限制,术语或表达的使用并不意在排除所显示或描述的特征或部分特征的等同物。需要认识到的是,在本发明的范围内各种调整是可能的。因此,需要理解的是,尽管通过优选实施例和可选特征对本发明进行了具体公开,本文所公开的概念的调整和变体对于本领域所属技术人员来说是采取的手段或方法,因此,这些调整和变体被认为落在本发明公开内容定义的范围内。
本领域技术人员能够认识到本文所描述的本发明的方面和实施例可以单独实施,也可以彼此相结合实施。因此,单独实施例的结合也落在本发明公开内容的范围内。
所有的专利和出版物以引用的方式并入本文,正如单独的各个出版物被具体地和单独地指定以引用的方式并入。

Claims (3)

1.一种热管理系统,包括热管、热虹吸管或先进热管,所述热管、热虹吸管或先进热管取代包括薄膜式蒸发器在内的常规热交换器,所述热管、热虹吸管或先进热管在高于室温的温度下运行的蒸馏系统中实现热传递,所述热管、热虹吸管或先进热管可以在20C到800C的温度范围内传递来自多种热源的热量。
2.如权利要求1所述的热管理系统,其中所述蒸馏系统选自由MED、MSF、蒸汽压缩、膜蒸馏、电氧化和电透析系统构成的组。
3.如权利要求1所述的热管理系统,其中所述热管、热虹吸管或先进热管在正向和反向渗透系统中取代常规热交换器。
CN201680011665.XA 2015-03-02 2016-03-02 高效脱盐 Pending CN107407530A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562126991P 2015-03-02 2015-03-02
US62/126,991 2015-03-02
PCT/US2016/020318 WO2016140994A1 (en) 2015-03-02 2016-03-02 High-efficiency desalination

Publications (1)

Publication Number Publication Date
CN107407530A true CN107407530A (zh) 2017-11-28

Family

ID=56848592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011665.XA Pending CN107407530A (zh) 2015-03-02 2016-03-02 高效脱盐

Country Status (5)

Country Link
US (2) US20180051937A1 (zh)
EP (1) EP3265737A4 (zh)
CN (1) CN107407530A (zh)
TW (1) TW201714834A (zh)
WO (1) WO2016140994A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563234A (zh) * 2019-09-02 2019-12-13 龚建国 一种低耗能海水淡化系统及方法
CN113623627A (zh) * 2021-09-14 2021-11-09 西安热工研究院有限公司 一种适应负荷变化的蒸汽发生装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677536B2 (en) * 2015-12-04 2020-06-09 Teledyne Scientific & Imaging, Llc Osmotic transport system for evaporative cooling
CN106288896B (zh) * 2016-11-17 2019-03-05 河北工业大学 外波纹热管换热器及海水淡化装置
WO2018148247A1 (en) * 2017-02-07 2018-08-16 Sylvan Source, Inc. Water treatment and desalination
CN109385642B (zh) * 2017-08-04 2021-04-13 林信涌 气体产生器
CN111285549B (zh) * 2020-03-07 2021-02-02 山西大学 一种浸没式膜蒸馏组件及其污水生物处理系统
CN111870977B (zh) * 2020-08-03 2021-11-12 天津城建大学 利用太阳能进行电解质溶液浓缩淡化的装置
US20230008279A1 (en) 2021-07-08 2023-01-12 Maybell Quantum Industries, Inc. Integrated dilution refrigerators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218210A1 (en) * 2005-10-14 2009-09-03 Laura Demmons Energy-efficient distillation system
CN101730662A (zh) * 2007-04-20 2010-06-09 自由供水有限公司 饮用水蒸馏器
CN102725236A (zh) * 2009-04-10 2012-10-10 纯净源公司 一种水溶液净化处理中减少结垢的方法及系统
US20140260369A1 (en) * 2013-03-15 2014-09-18 Venmar Ces, Inc Evaporative cooling system with liquid-to-air membrane energy exchanger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047632A1 (de) * 1980-12-17 1982-07-22 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren und vorrichtung zur optimierten waermeuebertragung von traegern reversibler, heterogener verdampfungsvorgaenge
US4660132A (en) * 1986-04-03 1987-04-21 Pindar Development Corporation Cooling device for mounting and protecting an optical element
US4827733A (en) * 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
US4887438A (en) * 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
US6684648B2 (en) * 2000-07-26 2004-02-03 Fakieh Research & Development Center Apparatus for the production of freshwater from extremely hot and humid air
US6679318B2 (en) * 2002-01-19 2004-01-20 Allan P Bakke Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability
US20070068791A1 (en) * 2003-12-02 2007-03-29 Thom Douglas M Automated water processing control system
CN101076701A (zh) * 2004-10-12 2007-11-21 Gpm股份有限公司 冷却组件
ES2296503B1 (es) * 2006-02-06 2009-03-16 Desalacion Integral Systems, S.L. Planta desaladora-depuradora de aguas salobres y residuos industriales con descarga liquida cero.
US7731854B1 (en) * 2007-02-15 2010-06-08 H2O Tech, Inc. Situ system and method for treating an oil and gas well drilling fluid
US8771477B2 (en) * 2008-09-17 2014-07-08 Sylvan Source, Inc. Large-scale water purification and desalination
US9464837B2 (en) * 2012-03-21 2016-10-11 Mahle International Gmbh Phase change material evaporator charging control
KR101543426B1 (ko) * 2013-07-25 2015-08-11 한국환경정책평가연구원 히트파이프와 워터콘이 결합된 막 증류 수처리 장치
US10099154B2 (en) * 2015-04-06 2018-10-16 King Saud University Multi-effects desalination system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218210A1 (en) * 2005-10-14 2009-09-03 Laura Demmons Energy-efficient distillation system
CN101730662A (zh) * 2007-04-20 2010-06-09 自由供水有限公司 饮用水蒸馏器
CN102725236A (zh) * 2009-04-10 2012-10-10 纯净源公司 一种水溶液净化处理中减少结垢的方法及系统
US20140260369A1 (en) * 2013-03-15 2014-09-18 Venmar Ces, Inc Evaporative cooling system with liquid-to-air membrane energy exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563234A (zh) * 2019-09-02 2019-12-13 龚建国 一种低耗能海水淡化系统及方法
CN110563234B (zh) * 2019-09-02 2021-12-03 衡阳远通物流有限公司 一种低耗能海水淡化系统及方法
CN113623627A (zh) * 2021-09-14 2021-11-09 西安热工研究院有限公司 一种适应负荷变化的蒸汽发生装置和方法

Also Published As

Publication number Publication date
WO2016140994A1 (en) 2016-09-09
US20180051937A1 (en) 2018-02-22
EP3265737A4 (en) 2019-03-06
TW201714834A (zh) 2017-05-01
US20210262736A1 (en) 2021-08-26
EP3265737A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
CN107407530A (zh) 高效脱盐
US8460551B2 (en) Solar membrane distillation system and method of use
Jamil et al. On thermoeconomic analysis of a single-effect mechanical vapor compression desalination system
Ma et al. Distributed solar desalination by membrane distillation: current status and future perspectives
Shen et al. Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors
US20090218210A1 (en) Energy-efficient distillation system
JP2009539584A6 (ja) 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法
WO2016103029A1 (en) Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes
CN107720863A (zh) 一种基于膜法蒸馏的槽式太阳能海水淡化装置
Roy et al. The effect of increased top brine temperature on the performance and design of OT-MSF using a case study
CN102765769A (zh) 低温多效热管式蒸发器
Bahar et al. Desalination: conversion of seawater to freshwater
Narayan et al. Status of humidification dehumidification desalination technology
CN106925124B (zh) 一种具有热回收功能的膜组件
CN106365227A (zh) 双潜多级循环膜蒸馏方法与系统
CN105731569B (zh) 一种用于低温海水净化的塔内式真空精馏系统
Liu et al. Study on the synergistic heat transfer of double boundary layers in the jacketed vacuum membrane distillation process
CN207632539U (zh) 一种基于膜法蒸馏的槽式太阳能海水淡化装置
CN103316588A (zh) 多效膜蒸馏装置与方法
Liu et al. Parameter optimization and economic analysis of a single-effect mechanical vapor compression (Mvc) distillation system
CN103241787B (zh) 热法超重力海水淡化方法
CN106629935B (zh) 一种废水处理方法和装置
CN201411381Y (zh) 一种海水预热工艺改进的海水淡化系统
Reali Solar barometric distillation for seawater desalting Part II: Analyses of one-stage and two-stage distillation technologies
CN106365228A (zh) 双潜膜蒸馏组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171128