TW201714834A - 高效率海水淡化 - Google Patents
高效率海水淡化 Download PDFInfo
- Publication number
- TW201714834A TW201714834A TW105106387A TW105106387A TW201714834A TW 201714834 A TW201714834 A TW 201714834A TW 105106387 A TW105106387 A TW 105106387A TW 105106387 A TW105106387 A TW 105106387A TW 201714834 A TW201714834 A TW 201714834A
- Authority
- TW
- Taiwan
- Prior art keywords
- heat
- heat pipe
- microns
- distillation
- transfer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/0011—Heating features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/007—Energy recuperation; Heat pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/06—Flash distillation
- B01D3/065—Multiple-effect flash distillation (more than two traps)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/08—Thin film evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/10—Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
- C02F1/12—Spray evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/14—Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
- F28D5/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/447—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/142—Solar thermal; Photovoltaics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Geometry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本發明之實施例提供用於在20℃至800℃之範圍內之溫度下之熱轉移系統的系統及方法。該等系統包含熱管,該等熱管經構形使得其裝配於習用熱交換器內部,且自熱流體較有效地轉移或回收熱並且在長時間段內、在無使用者介入之情況下操作。
Description
本發明係關於藉由習用技術之鹽溶液自高度濃縮海水至半鹹水之海水淡化之領域,該等習用技術係介於自逆滲透及正滲透至熱蒸餾系統、隔膜蒸餾系統、電氧化及透析之範圍內。特定而言,本發明之實施例係關於使用熱管、脈衝熱管、先進熱管及熱虹吸管以供熱轉移及回收,藉此達成整體能量效率之顯著優點。
本申請案主張於2015年12月、3月2日提出申請之美國臨時專利申請案第62/126,991號之優先權,該臨時專利申請案之全部內容以引用之方式併入本文中。
兩個技術群組在水之海水淡化應用中佔主導地位:一個技術群組係基於滲透現象且一個技術群組係基於在部分真空下之蒸餾現象。在第一群組下,就現有工業工廠而言,逆滲透(RO)係支配性的,但正滲透(FO)系統正接受增加之注意力(儘管存在該技術在商業上較不發達之事實)。在蒸餾系統之情形中,多效蒸餾(MED)似乎提供優於多閃蒸系統(MSF)之能量效率,尤其結合進一步減小能量消耗之蒸汽壓縮。
然而,當在高於周圍操作溫度下採用時,基於滲透之系統提供增加之效率。因此,將高效熱轉移技術提供至此等系統以便增加其效
能係有利的。由於大多數海水淡化工廠在具有可容易獲得之顯著廢熱源之區中操作,因此諸多此等工廠利用熱交換器來再利用此等廢熱源。然而,熱交換器基於導熱性而操作,其中熱流體跨越金屬板將熱能轉移至較低溫度流體。因此,習用熱交換器由需要顯著表面積及諸多度之熱流體與冷流體之間的相當大溫度差來表徵。需要可在較低溫度差之情況下操作且利用廢熱源以供海水淡化之經改良熱轉移裝置。
本發明之實施例提供用於在若干個工業應用中高效轉移熱之經改良方法,包含使用基於滲透之技術、熱蒸餾系統、隔膜蒸餾系統、電氧化或電透析系統之鹽水溶液之海水淡化。本發明提供由先進熱管替換包含薄膜蒸發器之習用熱交換器之實施例,該等先進熱管由提供最小溫度差及顯著高熱轉移係數之小於1毫米至2毫米之極薄壁及優越管芯(wick)材料來表徵。
本發明之某些實施例提供一種熱管理系統,其包括熱管、熱虹吸管或先進熱管,該等熱管、熱虹吸管或先進熱管替換包含薄膜蒸發器之習用熱交換器、在於周圍溫度以上操作之蒸餾系統中實現熱轉移且可在20℃至800℃之範圍內之溫度下自多種熱源轉移熱。
本發明之某些實施例提供熱管理系統,其中該蒸餾系統可為MED、MSF、蒸汽壓縮、隔膜蒸餾、電氧化或電透析系統或者諸如此類。
本發明之某些實施例提供熱管理系統,其中熱管、熱虹吸管或先進熱管可在正滲透系統及逆滲透系統或諸如此類中替換習用熱交換器。
習用熱管通常由具有通常在1/16"至¼"之範圍內之壁厚度之商業金屬管子製造。先進熱管依賴於金屬篩網支架來獲得機械完整性且可具有小於1毫米至2毫米且偶爾低至零點幾毫米之壁厚度,因此極大增
強囊封材料之導熱性。熱管可具有約0.1毫米、0.2毫米、0.3毫米、0.4毫米、0.5毫米、0.6毫米、0.7毫米、0.8毫米、0.9毫米、1.0毫米、1.1毫米、1.2毫米、1.3毫米、1.4毫米、1.5毫米、1.6毫米、1.7毫米、1.8毫米、1.9毫米、2.0毫米、2.1毫米、2.2毫米、2.3毫米、2.4毫米、2.5毫米或更多之壁厚度。同樣,習用管芯可包含凹槽、金屬篩網及具有良好開孔孔隙度之經燒結金屬粒子。金屬經燒結管芯可包含在大小上係幾微米或在特殊情形中係亞微米且已燒結在一起之金屬(例如,銅、鋼、鈦或各種金屬合金或者諸如此類)之微球體。金屬之微球體可為約0.1微米、0.2微米、0.3微米、0.4微米、0.5微米、0.6微米、0.7微米、0.8微米、0.9微米、1.0微米、1.1微米、1.2微米、1.3微米、1.4微米、1.5微米、1.6微米、1.7微米、1.8微米、1.9微米、2.0微米、2.1微米、2.2微米、2.3微米、2.4微米、2.5微米、2.6微米、2.7微米、2.8微米、2.9微米、3.0微米、3.1微米、3.2微米、3.3微米、3.5微米、4.0微米、4.5微米、5.0微米或更多。儘管此等管芯材料可幫助內部工作流體之相態改變,但其亦可表示對熱轉移之熱障壁。優越管芯材料可包含凹槽、篩網以及具有較小孔隙大小(大約60奈米至數百奈米(舉例而言,約60奈米、75奈米、100奈米、125奈米、150奈米、175奈米、200奈米、225奈米、250奈米、275奈米、300奈米、325奈米、350奈米、375奈米、400奈米或更多))及較薄整體厚度(大約數微米(舉例而言,約1微米、1.2微米、1.4微米、1.6微米、1.8微米、2.0微米、2.2微米、2.4微米、2.6微米、2.8微米、3.0微米、3.2微米、3.4微米、3.6微米、3.8微米、4.0微米或更多))之經燒結金屬。另一選擇係,優越管芯材料可包含可沿著熱管之中心軸向放置之多孔材料,以便不促成對熱轉移之障壁。
1‧‧‧熱流體
2‧‧‧熱交換器/熱轉移容器
3‧‧‧點
4‧‧‧較冷流體
5‧‧‧半體
6‧‧‧點
7‧‧‧熱管
8‧‧‧金屬板/金屬板材料
10‧‧‧低溫水蒸汽/水蒸汽
11‧‧‧水平管子
12‧‧‧液體產物/所冷凝液體
13‧‧‧噴嘴/噴射噴嘴
14‧‧‧鹽溶液/預處理鹽水
15‧‧‧液滴
16‧‧‧溶液/濃縮鹽溶液
17‧‧‧多效蒸餾級/蒸餾級/級/預加熱容器
18‧‧‧半滲透性隔膜/正滲透隔膜/正滲透容器/正滲透系統
19‧‧‧汲取溶液/汲取溶液容器/溶液
20‧‧‧汲取溶液回收系統
21‧‧‧熱源
22‧‧‧水產物/產物水
23‧‧‧重廢鹵水
24‧‧‧高壓泵
25‧‧‧逆滲透隔膜
圖1A至圖1F圖解說明使用熱管之熱轉移之數個實例
圖2A及圖2B圖解說明在水平薄膜蒸發系統中使用熱管
圖3A及圖3B圖解說明正滲透圖
圖4圖解說明逆滲透圖
圖5圖解說明多效蒸餾系統
本文中(在某些情形中)以例示性形式或藉由參考一或多個圖揭示本發明之實施例。然而,特定實施例之任何此揭示內容僅係例示性的,且未必指示本發明之完全範疇。
熱蒸餾系統(諸如MED)使用水平薄膜蒸發管子來轉移及再使用熱能。然而,此等系統具有數個操作問題,諸如導致鹽之局部結晶之乾斑、由水平管子內部之液體之冷凝導致之低熱效率及由水平管子內部之漸進蒸汽冷凝導致之溫度損失。需要克服此等問題之熱轉移裝置。
隔膜蒸餾系統依賴於由液體/蒸汽界面處之極小彎月面之曲率導致之蒸汽壓力之增加。給水液體中之較高溫度可自然增加界面處之蒸汽壓力,因此使系統變得較熱高效。儘管可存在增加系統之溫度之多種方式,但在轉移熱能方面,熱管可為最高效的且因此可用於增加此等蒸餾系統之整體效率。
電氧化系統藉由藉助於帶電電極氧化經溶解污染物而操作。再次,液相中之較高溫度可增加液體中之分子之動能,因此可改良電極之熱效能且熱管可為提供所需額外熱能之最佳方式。
在透析中、尤其在電透析中,雜質跨越半滲透性隔膜之擴散藉由電磁位而增強。如在其他液體系統中,較高溫度可顯著增加分子及離子擴散。熱管可良好適於提供必需熱能。
本文中所闡述之本發明之重要優點係藉由使用熱管之熱轉移機制。如本申請案中所闡述,熱管可提供近似熱力學可逆之轉移熱之手段(亦即,在幾乎無效率損失之情況下轉移焓之系統)。
在某些實施例中,其實施例揭示於本文中之用於熱轉移之系統可與其他系統及裝置組合以提供進一步有益特徵。舉例而言,該系統可結合以下專利案中所揭示之裝置或方法中之任一者使用:2005年5月2日提出申請之標題為SOLAR ALIGNMENT DEVICE之美國臨時專利申請案第60/676870號;2005年7月6日提出申請之標題為VISUAL WATER FLOW INDICATOR之美國臨時專利申請案第60/697104號;2005年7月6日提出申請之標題為APPARATUS FOR RESTORING THE MINERAL CONTENT OF DRINKING WATER之美國臨時專利申請案第60/697106號;2005年7月6日提出申請之標題為IMPROVED CYCLONE DEMISTER之美國臨時專利申請案第60/697107號;2004年12月1日提出申請之標題為AN IMPROVED SELF-CLEANING WATER PROCESSING APPARATUS之PCT申請案第US2004/039993號;2004年12月1日提出申請之標題為FULLY AUTOMATED WATER PROCESSING CONTROL SYSTEM之PCT申請案第US2004/039991號;2006年10月13日提出申請之標題為WATER PURIFICATION SYSTEM之PCT申請案第US2006/040103號;2008年9月3日提出申請之標題為CONTAMINANT PREVENTION之美國專利申請案第12/281,608號;2008年3月21日提出申請之標題為WATER PURIFICATION SYSTEM之PCT申請案第US2008/03744號;2003年12月2日提出申請之標題為SELF-CLEANING WATER PROCESSING APPARATUS之美國臨時專利申請案第60/526,580號;2011年9月09日提出申請之標題為INDUSTRIAL WATER PURIFICATION AND DESALINATION之Sylvan Source,Inc.的美國臨時專利申請案第61/532,766號;2013年7月23日提出申請之標題為EFFECTIVE DEWATERING FOR BIOFUEL PRODUCTION之PCT申請案第US2013/51730號;2014年8月25日提出申請之標題為ENERGY
EFFICIENT EOR之美國臨時專利申請案第62/041,556號;2014年12月03日提出申請之標題為ENERGY EFFICIENT WATER PURIFICATION AND DESALINATION之美國臨時專利申請案第62/087,122號;及2011年6月01日提出申請之標題為LARGE-SCALE WATER PURIFICATION AND DESALINATION之美國專利第8,771,477號,前述申請案及專利中之每一者據此以全文引用之方式併入。
圖1展示使用熱管來替換習用熱交換器之熱轉移裝置之數個實例。圖1(f)圖解說明習用熱交換器,其中熱流體(1)進入熱交換器(2)且跨越金屬板(8)將熱轉移至在相反方向上亦進入熱交換器之較冷流體(4)。由於跨越金屬板(8)之熱傳導,熱自熱流體(1)流動至較冷流體(4)中,且因此,熱流體(1)在其於點(3)處離開裝置時損失溫度,而較冷流體(4)獲得較高溫度且於點(6)處離開。所轉移之總熱量與金屬板(8)之表面積成正比,與彼金屬板之厚度成反比,與金屬板材料(8)之導熱性成正比且與熱流體與冷流體之間的溫度差異成正比。
基於導熱性之任何熱轉移之常見問題係跨越導熱材料之熱流動速率相當緩慢(其需要相當大表面積),此直接影響裝置之成本。依賴於傳導性之習用熱轉移之另一問題係隨著流體轉移熱,該流體必定冷卻,藉此減小跨越轉移熱之材料之溫度差。因此,直接影響熱轉移之表面積及溫度差兩者受僅僅依賴於導熱性之機制影響。相比而言,熱管主要透過相態改變及已揮發之工作流體之質量轉移而轉移熱。因此,習用熱管可展現係銀金屬之約一千倍大的導熱性(「Heat Pipes or Heat Exchangers」,Ivan Catton,UCLA,2014年9月12日),且先進熱管可具有係銀之傳導性之幾乎30,000倍之傳導性(「Thermal Property Analysis of the Qu Supertube」,Michael McKubre,SRI國際,1999年7月)。
另外,由於熱交換器有意建立流體與金屬件之間的直接接觸,
因此該等熱交換器可積垢,而係密封管子之熱管可保護內工作流體免遭結垢或積垢,且該等熱管之外表面可為平滑的且容易清潔。
圖1(a)圖解說明用熱管替換熱交換器之簡單構形。在此圖中,熱流體(1)進入被劃分成兩個半體之熱轉移容器(2)。隨著熱流體(1)進入,其將熱轉移至熱管(7),藉此變得較冷且最終於點(3)處離開系統。熱管(7)以幾乎聲速將基本上全部此熱轉移至熱轉移容器之另一半體(5),在該另一半體中,較冷流體(4)進入、自熱管(7)獲得熱且於點(6)處以顯著較高溫度離開。
圖1(a)以圖形方式圖解說明熱管在與習用熱交換器相比時之數個基本優點。第一,針對圖1(a)及圖1(f)假定類似尺寸,熱管之針對導熱性之熱轉移表面可為熱交換器之大約3.14(Pi之值)倍高,此乃因熱管之直徑可極接近於熱轉移容器(2),不管彼容器係圓柱形還是矩形的。因此,針對熱管之熱轉移之導熱性部分可為顯著較佳的。第二,由於傳導性係對熱管中之整體熱轉移之微小貢獻因素;因此主要機制可基於在內工作流體在部分真空下蒸發且幾乎瞬時行進穿過熱管之軸時之相態改變。第三,由於透過熱管之熱轉移如此快,因此使熱管之熱側與冷側之間的溫度差最小化;通常,商業熱管可展現幾攝氏度之溫度差異,而商業熱交換器可介於自數攝氏度至數十攝氏度或更多之範圍內。第四,由於在熱管之較冷側上,工作流體之冷凝遞送冷凝熱(其與蒸發熱相同);因此除相對不顯著之壁損失(給定熱轉移容器之兩個半體之間的最小分離)之外,熱轉移可為幾乎絕熱的。且第五,由於在工作流體之冷凝之後,熱轉移可藉由導熱性而再次發生且熱管之較大表面積可提供另一優點。
圖1(b)展示針對使用熱管之熱轉移之垂直而非水平構形,且圖解說明此類型之技術之另一主要優點:使用毛細管傳送熱管內部之工作流體之優點,其可允許裝置在任何方向上及在任何定向上操作。內毛
細管(稱作管芯)可包含允許工作流體自冷凝點抵抗重力行進至蒸發點而不管定向如何之經燒結微觀球體或篩網。具有在數微米之範圍內或在亞微米範圍內之個別大小之微觀球體可在各種金屬及合金中商業獲得。微觀球體可散佈於金屬管子之內表面上且燒結在一起,因此其可提供互連孔隙度。金屬篩網可呈各種大小(通常由網目大小表示,網目(Mesh)係定義為方孔篩網中每單位線性英吋之嵌絲方孔之數目之標準單位)。用作內部管芯之金屬篩網可具有60網目至300網目之大小。網目大小可為約60網目、100網目、150網目、200網目、250網目、300網目或更多。圖1(c)、圖1(d)及圖1(e)展示多個熱管而非單個熱管,且圖解說明可藉由簡單地在任何定向上使用多個熱管來增強針對熱管中之導熱性之表面積優點。
圖2(a)圖解說明多效蒸餾系統中之習用級,及使用熱管之類似構形(圖2b)。圖2(a)展示單個MED級(17)(稱作「效應」)。在圖2(a)中,若干個噴嘴(13)將鹽溶液(14)噴射於填充有來自稍微較高溫度下之先前效應之低溫水蒸汽(10)之水平管子(11)上方。隨著水蒸汽(10)行進穿過水平管子(11),該水蒸汽可冷凝成液體產物(12)且冷凝熱可用於使自頂部噴射之更多鹽溶液(14)蒸發。隨著鹽溶液蒸發,其可吸收來自水平管子之外表面之熱,因此可增加自一個水平管子降落至下一水平管子之液滴(15)之鹽度,且因此亦可增加隨後進給至下一效應之溶液(16)之鹽度。
管子束之下部部分中之水平管子有效性可受來自上面之薄膜影響,如圖2(a)中所圖解說明。上部管子可以極有效液滴模式且下部管子可以較不高效薄片模式。由於水蒸汽冷凝沿著管子束之整個長度發生,因此可在管子束內部存在顯著熱阻(由於淤積)以及存在沿著管子束長度之溫度損失。另外,已知積垢係由於在管子束之外側表面上形成之熱斑而發生於水平薄膜蒸發器中。此外,在諸多冷凝程序中,非
冷凝性氣體(NCG)可成為問題。由於習用蒸餾系統在部分真空下操作,因此所發出之非冷凝性氣體(例如,氮氣、氧氣)可顯著減小水平薄膜冷凝器中之熱轉移,此僅係由於該等氣體收集於冷凝表面上且彼等氣體之導熱性可為相當差的,從而阻礙熱轉移。
若由熱管替換MED之水平薄膜管子(如圖2(b)中所圖解說明),則會遇到上述問題中的極少問題(若存在)。在圖2(b)中,來自先前效應之水蒸汽(10)進入蒸餾級(17)且冷凝於熱管(7)上,藉此將冷凝熱轉移至彼等熱管。在熱管可將熱迅速轉移至其中發生蒸發之毗鄰容器同時,可在級(17)之底部處收集所冷凝液體(12)。在蒸發側中,噴射噴嘴(13)可用可部分蒸發之鹽溶液噴淋熱管,且濃縮鹽溶液(16)可在底部處離開,同時所產生之水蒸汽可轉移至下一效應。此類型之構形之明顯優點在於熱管之優越熱轉移,其可需要與習用MED級相比用於冷凝之顯著較小體積。類似地,蒸發側亦可需要較小體積,因此導致材料之節省及較小佔用面積。可在其他熱蒸餾系統(諸如MSF(多級閃蒸)蒸餾或VC(蒸汽壓縮)系統)中類似地利用熱管之此等優越熱轉移性質。
在熱管及習用薄膜熱交換器兩者中皆可存在對熱轉移之障壁。最重要障壁中之一者係熱管表面層與蒸發器室流體相之間的界面(其通常成為「雙層」)處之熱阻。此雙層係由與流體相之塊體中相比較濃縮且較有序之分子組成,且係由靜電力與離子濃度之組合產生。因此,此障壁之強度隨鹽度而降低。習用薄膜熱交換器可在其於高鹽度下操作之能力上受限制(由於積垢及熱斑),而熱管可在超過200,000百萬分率之鹽度下操作(由於核態池沸騰(nucleate pool boiling))。因此,針對工業實踐中通常遇到之鹽度範圍及濃度比率,在使用熱管時此障壁可變得相當微小,但對於薄膜熱交換器此障壁仍顯著。
熱管可在經裁適以滿足熱轉移要求之同時以自數微米至數米之
大小來製造。存在在2cm且多達100米長之範圍內之熱虹吸管之實例。舉例而言,熱虹吸管可為約2cm、50cm、100cm、500cm、750cm、1米、25米、50米、75米或100米。將熱管移除或添加至操作交換器之能力允許精細調諧系統以確保最佳熱回收。類似地,針對長距離熱轉移設計在幾米且多達幾千米之範圍內之脈動熱管;其通常在不具有內部管芯之情況下操作且具有確保僅在一個方向上流動之選用內部閥。熱管可為約2米、10米、50米、100米、200米、250米、500米、750米、1000米、2000米、3000米、4000米、5000米或更多。先進熱管可包含位於中心之軸向管芯、可最佳化熱轉移且可包裹金屬篩網以獲得結構強度之超薄金屬箔(具有低於1mm之壁厚度)。金屬篩網可與工作流體化學相容,且用於此等篩網之金屬可包含銅、鋼、鈦及其他基底金屬以及其合金或諸如此類。此等特徵完全為熱管回收單元所特有。
熱管中不具有移動機械部分產生具有異常高可靠性之裝置。存在可被使用而不隨時間積垢或降級之諸多可靠材料與流體組合;諸如銅/水熱管。此係最常見組合中之一者,如同鋁/氨水及氨水/鋼。每一個別熱管可獨立操作,因此單個管故障將不會使系統失去能力。故障的熱管可在下一定期維護事件時被替換。熱管系統之獨立操作亦可意味著管之間的零交叉污染。
圖3圖解說明泛用正滲透系統。在正滲透中,鹽溶液(14)跨越半滲透性隔膜(18)與另一溶液接觸,該另一溶液含有顯著較高位準之鹽度且通常藉由添加可相對容易地分離及回收以供再利用之可溶性鹽(溶質)而製成。跨越隔膜之滲透壓力可使水跨越該隔膜朝向較高鹽度溶液遷移,因此稀釋溶質溶液同時濃縮原始鹽溶液。稀釋溶質溶液可隨後藉由沈澱或蒸餾處理以回收原始溶質,因此回收溶質鹽以供再利用,同時分離出相對清潔水產物(22)。
熱可以兩種個別方式用於正滲透中。第一,跨越半滲透性隔膜之擴散之滲透速率可在高於周圍之溫度下加快。第二,蒸餾及某些形式之沈澱需要熱,且因此能夠使用低溫形式之熱能可變為顯著經濟優點。此處之關鍵概念係在類似於圖1(a)至圖1(e)中所圖解說明之構形或類似於圖2(b)之構形的構形中使用熱管以便增加正滲透之操作溫度之能力。在圖3(a)中,鹽水進入預加熱容器(17),其中熱管(7)自熱源(21)提供熱。熱源可包含水蒸汽、燃燒氣體、太陽能、地熱能或任何形式之廢熱。一旦經加熱,鹽溶液便可進入正滲透隔膜(18),其中滲透將水傳送至通常稱作「汲取溶液(19)」之較濃縮鹽溶液中,因此稀釋該汲取溶液。離開正滲透容器(18),稀釋汲取溶液可流動至汲取溶液回收系統(20)中,其中可分離及回收產物水(22)及汲取溶液(19)。汲取溶液可流動至汲取溶液容器(19)中且自此流動至正滲透系統(18)中,因此完成循環。
圖3(b)圖解說明類似構形,其中熱管(7)亦用於提供熱能以用於將溶液(19)與產物水分離。如先前所指示,熱源可包含水蒸汽、燃燒氣體、太陽能、地熱能或任何形式之廢熱。
圖4圖解說明逆滲透系統,其中預處理鹽水(14)在進入RO模組陣列(僅展示其中之一個模組)之前被加壓。再次,如在正滲透之情形中,當鹽溶液處於高於周圍之溫度時,RO系統之效率改良。出於此目的,在類似於圖1(a)至圖1(e)中所圖解說明之構形或類似於圖2(b)之構形之構形中使用熱管(7)以便增加逆滲透之操作溫度之能力可為關鍵優點。在圖4中,鹽水進入預加熱容器(17),其中熱管(7)自寬廣範圍之熱源(諸如水蒸汽、燃燒氣體、地熱、太陽或各種源之廢熱)轉移熱。一旦經加熱,鹽溶液便在進入逆滲透隔膜(25)(其中水可跨越該隔膜透過,因此產生產物水(22)及重廢鹵水(23))之前用高壓泵(24)來加壓。
圖5圖解說明以垂直構形之MED系統。如同水平構形之情形,個別效應可由較小體積之冷凝器及蒸發器容器替換,類似於圖2之構形但具有垂直配置。
可在不存在本文中未具體揭示之任一或任何要素、一或若干限制之情況下實踐本文中適合地以說明性方式闡述之本發明。本文所採用之術語及表達係作為說明之術語及表達使用且並非具有限制性,且在此等術語及表達之使用中並非意欲指示排除所展示及所闡述特徵之任何等效物或其部分。認識到,可在所揭示之本發明之範疇內做出各種修改。因此,應理解,雖然已藉由較佳實施例及選用特徵來具體揭示本發明,但熟習此項技術者亦可採取本文所揭示概念之修改及變化形式,且此等修改及變化形式視為在由本揭示內容界定之本發明之範疇內。
熟習此項技術者認識到,本文中所陳述之本發明之態樣及實施例可彼此單獨實踐或彼此組合實踐。因此,單獨實施例之組合在如本文中所揭示之本發明之範疇內。
所有專利及出版物皆以引用之方式併入本文中,其併入程度如同每一個別出版物具體且個別地指示為以引用之方式併入一般。
7‧‧‧熱管
10‧‧‧低溫水蒸汽/水蒸汽
11‧‧‧水平管子
12‧‧‧液體產物/所冷凝液體
13‧‧‧噴嘴/噴射噴嘴
14‧‧‧鹽溶液/預處理鹽水
15‧‧‧液滴
16‧‧‧溶液/濃縮鹽溶液
17‧‧‧多效蒸餾級/蒸餾級/級/預加熱容器
Claims (3)
- 一種熱管理系統,其包括熱管、熱虹吸管或先進熱管,該等熱管、熱虹吸管或先進熱管替換包含薄膜蒸發器之習用熱交換器,在於周圍溫度以上操作之蒸餾系統中實現熱轉移且可在20℃至800℃之範圍內之溫度下自多種熱源轉移熱。
- 如請求項1之熱管理系統,其中該蒸餾系統係選自由以下各項組成之群組:MED、MSF、蒸汽壓縮、隔膜蒸餾、電氧化及電透析系統。
- 如請求項1之熱管理系統,其中熱管、熱虹吸管或先進熱管在正滲透系統及逆滲透系統中替換習用熱交換器。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562126991P | 2015-03-02 | 2015-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201714834A true TW201714834A (zh) | 2017-05-01 |
Family
ID=56848592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105106387A TW201714834A (zh) | 2015-03-02 | 2016-03-02 | 高效率海水淡化 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20180051937A1 (zh) |
EP (1) | EP3265737A4 (zh) |
CN (1) | CN107407530A (zh) |
TW (1) | TW201714834A (zh) |
WO (1) | WO2016140994A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10677536B2 (en) * | 2015-12-04 | 2020-06-09 | Teledyne Scientific & Imaging, Llc | Osmotic transport system for evaporative cooling |
CN106288896B (zh) * | 2016-11-17 | 2019-03-05 | 河北工业大学 | 外波纹热管换热器及海水淡化装置 |
WO2018148247A1 (en) * | 2017-02-07 | 2018-08-16 | Sylvan Source, Inc. | Water treatment and desalination |
CN109385642B (zh) * | 2017-08-04 | 2021-04-13 | 林信涌 | 气体产生器 |
CN110563234B (zh) * | 2019-09-02 | 2021-12-03 | 衡阳远通物流有限公司 | 一种低耗能海水淡化系统及方法 |
CN111285549B (zh) * | 2020-03-07 | 2021-02-02 | 山西大学 | 一种浸没式膜蒸馏组件及其污水生物处理系统 |
CN111870977B (zh) * | 2020-08-03 | 2021-11-12 | 天津城建大学 | 利用太阳能进行电解质溶液浓缩淡化的装置 |
AU2022306867A1 (en) | 2021-07-08 | 2024-02-22 | Maybell Quantum Industries, Inc. | Integrated dilution refrigerators |
CN113623627B (zh) * | 2021-09-14 | 2023-02-07 | 西安热工研究院有限公司 | 一种适应负荷变化的蒸汽发生装置和方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3047632A1 (de) * | 1980-12-17 | 1982-07-22 | Studiengesellschaft Kohle mbH, 4330 Mülheim | Verfahren und vorrichtung zur optimierten waermeuebertragung von traegern reversibler, heterogener verdampfungsvorgaenge |
US4660132A (en) * | 1986-04-03 | 1987-04-21 | Pindar Development Corporation | Cooling device for mounting and protecting an optical element |
US4827733A (en) * | 1987-10-20 | 1989-05-09 | Dinh Company Inc. | Indirect evaporative cooling system |
US4887438A (en) * | 1989-02-27 | 1989-12-19 | Milton Meckler | Desiccant assisted air conditioner |
US6684648B2 (en) * | 2000-07-26 | 2004-02-03 | Fakieh Research & Development Center | Apparatus for the production of freshwater from extremely hot and humid air |
US6679318B2 (en) * | 2002-01-19 | 2004-01-20 | Allan P Bakke | Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability |
US20070068791A1 (en) * | 2003-12-02 | 2007-03-29 | Thom Douglas M | Automated water processing control system |
CN101076701A (zh) * | 2004-10-12 | 2007-11-21 | Gpm股份有限公司 | 冷却组件 |
WO2007047674A2 (en) * | 2005-10-14 | 2007-04-26 | Sylvan Source, Inc. | Energy-efficient distillation system |
ES2296503B1 (es) * | 2006-02-06 | 2009-03-16 | Desalacion Integral Systems, S.L. | Planta desaladora-depuradora de aguas salobres y residuos industriales con descarga liquida cero. |
US7731854B1 (en) * | 2007-02-15 | 2010-06-08 | H2O Tech, Inc. | Situ system and method for treating an oil and gas well drilling fluid |
BRPI0810023A2 (pt) * | 2007-04-20 | 2017-06-06 | Freedom Water Company Ltd | destilador para purificar água, evaporador, e, método para purificar água |
EP3335776A1 (en) * | 2008-09-17 | 2018-06-20 | Sylvan Source Inc. | Large-scale water purification and desalination |
EP2417070A4 (en) * | 2009-04-10 | 2012-08-22 | Sylvan Source Inc | METHOD AND REDUCED BOILER SYSTEM FOR CLEANING AQUEOUS SOLUTIONS |
US9464837B2 (en) * | 2012-03-21 | 2016-10-11 | Mahle International Gmbh | Phase change material evaporator charging control |
US11408681B2 (en) * | 2013-03-15 | 2022-08-09 | Nortek Air Solations Canada, Iac. | Evaporative cooling system with liquid-to-air membrane energy exchanger |
KR101543426B1 (ko) * | 2013-07-25 | 2015-08-11 | 한국환경정책평가연구원 | 히트파이프와 워터콘이 결합된 막 증류 수처리 장치 |
US10099154B2 (en) * | 2015-04-06 | 2018-10-16 | King Saud University | Multi-effects desalination system |
-
2016
- 2016-03-02 TW TW105106387A patent/TW201714834A/zh unknown
- 2016-03-02 EP EP16759375.5A patent/EP3265737A4/en not_active Withdrawn
- 2016-03-02 WO PCT/US2016/020318 patent/WO2016140994A1/en active Application Filing
- 2016-03-02 CN CN201680011665.XA patent/CN107407530A/zh active Pending
- 2016-03-02 US US15/554,824 patent/US20180051937A1/en not_active Abandoned
-
2021
- 2021-05-09 US US17/315,327 patent/US20210262736A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3265737A4 (en) | 2019-03-06 |
WO2016140994A1 (en) | 2016-09-09 |
US20210262736A1 (en) | 2021-08-26 |
US20180051937A1 (en) | 2018-02-22 |
EP3265737A1 (en) | 2018-01-10 |
CN107407530A (zh) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210262736A1 (en) | High-efficiency desalination | |
Alkhudhiri et al. | Membrane distillation—Principles, applications, configurations, design, and implementation | |
Ullah et al. | Energy efficiency of direct contact membrane distillation | |
Chung et al. | Multistage vacuum membrane distillation (MSVMD) systems for high salinity applications | |
Al-Obaidani et al. | Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation | |
CN103080013B (zh) | 蒸气压缩膜蒸馏系统和方法 | |
AU2012376269B2 (en) | A vacuum air gap membrane distillation system for desalination | |
JP5295952B2 (ja) | 浸透圧性溶質を回収するため溶質回収システムおよび回収方法 | |
Geng et al. | Experimental study of hollow fiber AGMD modules with energy recovery for high saline water desalination | |
Singh et al. | Desalination by air gap membrane distillation using a two hollow-fiber-set membrane module | |
US20090218210A1 (en) | Energy-efficient distillation system | |
US9718709B2 (en) | Multi-stage membrane distillation process | |
Hassan et al. | Review and assessment of the newly developed MD for desalination processes | |
Sanmartino et al. | Desalination by membrane distillation | |
Baghel et al. | A review on membrane applications and transport mechanisms in vacuum membrane distillation | |
US20170361277A1 (en) | Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes | |
JP2009539584A6 (ja) | 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法 | |
WO2010081077A2 (en) | Liquid filtration using pressure difference across a hydrophobic membrane | |
Pangarkar et al. | Performance evaluation of vacuum membrane distillation for desalination by using a flat sheet membrane | |
Bahar et al. | Desalination: conversion of seawater to freshwater | |
Pangarkar et al. | Vacuum membrane distillation for desalination of ground water by using flat sheet membrane | |
Baghbanzadeh et al. | Membrane distillation | |
JP6160864B2 (ja) | ナノファイバー膜蒸留装置 | |
Al-Mutaz et al. | Variation of distillate flux in direct contact membrane distillation for water desalination | |
Patil et al. | Membrane distillation review and flux prediction in direct contact membrane distillation process |