CN107400240A - 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用 - Google Patents

一种用于双酚a检测的固相萃取富集材料及其制备方法和应用 Download PDF

Info

Publication number
CN107400240A
CN107400240A CN201710547542.4A CN201710547542A CN107400240A CN 107400240 A CN107400240 A CN 107400240A CN 201710547542 A CN201710547542 A CN 201710547542A CN 107400240 A CN107400240 A CN 107400240A
Authority
CN
China
Prior art keywords
bisphenol
phase extraction
solid
detection
template molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710547542.4A
Other languages
English (en)
Inventor
毕文韬
朱俊
杨小弟
顾正桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201710547542.4A priority Critical patent/CN107400240A/zh
Publication of CN107400240A publication Critical patent/CN107400240A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种用于双酚A检测的固相萃取富集材料,是以氨基硅烷为功能单体,以双酚A为模板分子,在硅烷偶联剂作用下形成的以模板分子为中心的分子印迹聚合物,包含模板分子洗脱后形成的与双酚A分子结构相似的空腔结构。采用水热法合成分子印迹模板,利用自组装法依次将功能单体和目标物分子进行组装。所述的固相萃取富集材料对双酚A具有特异性识别和选择性吸附性能,利用该材料可对环境中双酚A进行定性和定量分析。本发明的方法对双酚A具有很好的吸附和检测效果,还可适用于其他内分泌干扰物的检测。

Description

一种用于双酚A检测的固相萃取富集材料及其制备方法和 应用
技术领域
本发明涉及一种用于双酚A检测的固相萃取富集材料及其制备方法和应用,将分子印迹技术与高效液相色谱/质谱结合,利用所述的固相萃取富集材料可对环境中内分泌干扰物双酚A进行定量和定性分析。
背景技术
如今,随着社会科技的不断发展,人们的生活水平不断提高,癌症的发病率也随之增加;同时,癌症的预防和治疗也引起了社会大众的热切关注。而食品更是与人类的健康密切相关,尤其是癌症的发病与预防[1]。流行病学研究表明一个国家癌症的发病率与其水果蔬菜的消耗量成正比[2]。双酚A(BPA)是一种典型的内分泌干扰物[3],自然界中本不存在,是一种人工合成的化学物质。双酚A作为一种苯酚丙酮的重要衍生物,广泛用于生产聚碳酸酯,环氧树脂,也用于生产增塑剂、阻燃剂和抗氧化剂等[4]。双酚A的加入可以使得材料无色透明、轻巧、耐用,尤其是防止酸性蔬菜和水果内部侵蚀金属容器。由于双酚A的广泛使用,大量的有害物质进入环境介质当中,并通过多种途径不断的释放到自然环境当中,大量的研究报道了双酚A存在于空气、水、土壤以及环境生物中[5]。在已有的报道中BPA造成生殖系统、胚胎发育、神经系统的损害,以及对遗传物质等影响[6]。因此对内分泌干扰物的检测不容忽视。现在BPA的检测方法主要为色谱分析法,其中又以高效液相色谱法(HPLC)、超高效液相色谱法(UPLC)和固相萃取法(SPE)为主[7,8]
分子印迹聚合物[9](Molecular Imprinted Polymer,MIP)一般指的是当模板分子(印迹分子)与聚合物单体接触时会形成多重作用点,通过聚合过程这种作用就会被记忆下来,当模板分子除去后,聚合物中就形成了与模板分子空间构型相匹配的具有多重作用点的空穴,这样的空穴将对模板分子及其类似物具有选择识别特性。一般情况下分子印迹要经过模板分子与单体的聚合、本体的聚合、以及除去模板分子这样三个步骤。当模板分子被除去后,会留下一些空穴,再遇到模板分子时,由于分子的大小、结构、官能团和模板具有互补性,从而形成选择性的吸附。如今,分子印迹技术饱受关注,广泛的应用于生物传感器、样品前处理、生物受体等方面。
参考文献
[1]T.H.Tseng,J.D.Hsu,M.H.Lo,C.Y.Chu,etal.Inhibitory effect ofHibiscus protocatechuic acid on tumor promotion in mouse skin[J].Cancer Lett,1998,126(2):199-207.
[2]Jansen RJ,Robinson DP,Stolzenberg-Solomon RZ,Bamlet WR,etal.Fruitand vegetable consumption is inversely associated with having pancreaticcancer[J].Cancer Causes Control,2011,22(12):1613-1625.
[3]Tsao R,Deng Z.Separation procedures for naturally occurringantioxidant phytochemicals[J].J CHROMATOGR B,2004,812(1-2):85-99.
[4]Masella R,Santangelo C,D′Archivio M,LiVolti G,Giovannini C,etal.Protocatechuic Acidand Human Disease Prevention:Biological Activitiesand Molecular Mechanisms[J].Curr.Med.Chem.2012,19(18):2901-2917.
[5]Pyrzynska K,Biesaga M.Analysis of phenolic acids and flavonoids inhoney[J].Trac-Trends Anal Chem,2009,28(7):893-902.
[6]Hartkopt,J.,Pahlke,C.,Ludmann,G.,&Erbersdobler,H.F.(1994).Determination of Ne-carboxymethyllysine by reversed-phase highperformanceliquid chromatography method.Journal of Chromatography A,672,242-246.
[7]Hull,G.L.J.,Woodside,J.V.,Ames,J.M.,&Cuskelly,G.J.(2012).Ne-(carboxymethyl)lysine content of foods commonly consumed in a western stylediet.Food Chemistry,131,170-174.
[8]Kempe,M.,&Mosbach,K.(1995).Separation of amino acids,peptides andproteins on molecularly imprinted stationary phases.Journal of ChromatographyA,691,317-323.
[9]Pietrzyk,A.,Suriyanarayanan,S.,Kutner,W.,Chitta,R.,Zandler,M.E.,&D’Souza,F.(2010).Molecularly imprinted polymer(MIP)based piezoelectricmicrogravimetry chemosensorfor selective determination of adenine.Biosensorsand Bioelectronics,25,2522-2529.
发明内容
本发明的目的是为解决环境中内分泌干扰物双酚A的检测这一技术问题,将分子印迹技术利与HPLC或HPLC-MC结合,从而提供一种适用于双酚A检测的固相萃取富集材料及其制备方法,所述的固相萃取富集材料是一种分子印迹聚合物,化学性质稳定,对双酚A有着选择性吸附,可以直接检测溶液中的BPA。
本发明的另一目的还在于提供一种基于所述的固相萃取富集材料的检测双酚A的方法,该方法操作简单,用量少、灵敏度高,对BPA的检出限低于常用的高效液相色谱等方法,为环境内分泌干扰物的检测提供了新的思路和技术。
为实现上述发明目的,本发明采用如下技术方案:
一种用于双酚A检测的固相萃取富集材料,其特征在于,所述材料是以氨基硅烷(如3-氨丙基三甲氧基硅烷,3-氨丙基三乙氧基硅烷等)为功能单体,以双酚A为模板分子,在硅烷偶联剂(如正硅酸四乙酯)作用下形成的以模板分子为中心的分子印迹聚合物,包含模板分子洗脱后形成的与双酚A分子结构相似的空腔结构。
所述的固相萃取富集材料为一种分子印迹聚合物,对双酚A具有特异性识别和选择性吸附性能。
所述的固相萃取富集材料采用以下方法制备,包括:
1)将氨基硅烷与模板分子双酚A混合后搅拌反应,加入硅烷偶联剂搅拌均匀后,加碱进行催化反应,反应产物经过水洗、醇洗、真空干燥得到印迹分子聚合物;
2)将上述所得分子印迹聚合物用酸性混合醇溶液超声洗涤以除去模板分子,重复数次直至用紫外检测器无法检测到洗脱液中的BPA,再用无水乙醇和/或蒸馏水超声洗净,室温下自然晾干。
上述方法中,所述的氨基硅烷优选为3-氨丙基三甲氧基硅烷或3-氨丙基三乙氧基硅烷。
上述方法中,所述的硅烷偶联剂优选为硅酸四乙酯。
上述方法中,所述的氨基硅烷与模板分子双酚A的用量为1∶2-1∶2.25(摩尔比)。
上述方法中,所述的碱包括但不限于氨水、NaOH等无机碱。
本发明还涉及所述的固相萃取富集材料在双酚A检测中的应用,即一种双酚A的检测方法,其特征在于,所述的方法采用HPLC或HPLC-MC方法检测目标物双酚A,以所述的固相萃取富集材料为填料制备固相萃取柱,将所述的固相萃取柱连接到HPLC装置中,作为前置柱设置在HPLC的进样器和分析柱之间;首先将含有双酚A的待检测样品连续循环注入固相萃取柱,双酚A经固相萃取柱萃取富集和净化后,切换进样器使流动相经过固相萃取柱后进入HPLC装置进行分析检测。
所述的方法中,固相萃取柱中的填料既可以紧密填充于固相萃取柱中,也可以松散地分布于固相萃取柱中以减小液体泵压力。而且硅胶和聚合物基体的填料还可以以不同形态填充于固相萃取柱中,如颗粒、整体柱、内壁涂层和纤维等,这些不同形态可以有效提高萃取效率。
所述的方法用于双酚A的定性或定量检测,其最小检测限可达0.01ug/mL。
有益效果:本发明利用双酚A作为模板分子合成得到一种用于双酚A检测的固相萃取富集材料,所得到固相萃取富集材料为一种分子印迹聚合物,对双酚A具有特异性识别和选择性吸附性能。将所得材料装料填柱,所得固相萃取柱与高效液相色谱联用,检测环境中的双酚A。经过该固相萃取柱后,可以有效的对双酚A进行富集,有效的减少环境基质的干扰,提高检测的灵敏度和准确度。该方法操作简单、耗时短、用量少、成本低、准确度高。本发明在双酚A检测中首次将分子印迹技术与高效液相色谱和质谱结合,为环境中内分泌干扰物的检测提供了新的思路。
附图说明
图1为本发明制备的分子印迹聚合物洗脱前后的傅里叶红外光谱图;
图2为本发明制备的分子印迹聚合物的透射电镜(TEM)图;
图3为分子印迹柱的不同形式;
图4采用分子印迹柱萃取富集双酚A的装置图;
图5分子印迹柱作为前置柱用于HPLC或HPLC-MC的装置图;
图6双酚A液相色谱检测图谱;
图7双酚A质谱检测图。
具体实施方式
下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。
根据本发明,所述的技术方案包括分子印迹聚合物的制备、分子印迹聚合物表征、分子印迹聚合物固相萃取柱的制备,以及利用分子印迹技术结合HPLC或HPLC-MC方法检测BPA等步骤,具体内容包括:
(1)分子印迹聚合物
将一定量的氨基硅烷(如3-氨丙基三甲氧基硅烷,3-氨丙基三乙氧基硅烷等)与模板分子双酚A加入到玻璃反应内一起搅拌一段时间,加入硅烷偶联剂(如正硅酸四已酯),并在碱(如氨水)的催化下进行反应,持续搅拌数分钟。经过水洗、醇(乙醇)洗、真空干燥得到印迹分子聚合物。
将上述所得分子印迹聚合物置于烧杯中用酸性混合醇溶液(乙酸+甲醇,1/9、V/V)超声洗涤。以除去模板分子。该过程需要重复数次,直至用紫外检测器无法检测到洗脱液中的BPA。再用无水乙醇超声5min,最后用蒸馏水洗净,重复三次,最后于室温下自然晾干。
可采用傅里叶红外光谱和透射电镜(TEM)对所制备分子印迹聚合物进行表征,如图1中红外光谱所示,上方谱线图表示分子印迹聚合物的红外谱图,下方谱线表示洗除模板分子后的红外谱图。对比洗脱前后,在2200-2600cm-1有明显的峰位变化,代表模板分子双酚A已经被洗除。结合透射电镜,发现该材料颗粒分散性较好,洗脱模板分子后,在c、d图中能够明显的观察到黑色阴影部分,表明模板分子洗脱后,在聚合物表面留下一些空腔结合位点。
(2)分子印迹柱的制备
取所得材料进行填柱,采用不锈钢为基体的固相萃取柱,在两端有筛板,将适当的填料填充到固相萃取柱中,根据需要,固相萃取柱尺寸可以为(4.6mm*20-50mm)。
固相萃取柱可以反复利用,由于需要较大进样体积进行待测物的富集,所以要求固相萃取小柱能够兼容100%水相,同时可以耐受比较宽的pH范围。固相萃取柱中的吸附剂是实现对目标物选择性和富集效率的关键,也是影响分析灵敏度和准确度的核心因素,所以对新型固相萃取剂的研发是固相萃取领域中最为重要、最为活跃的研究部分。化学键合硅胶,有C8键合硅胶、C18键合硅胶、离子液体和表面分子印迹改性硅胶等,这些填料的官能团主要通过疏水、氢键、π-π等作用力吸附目标物。具有化学强度稳定、热稳定性好、吸附性能高及机械强度高等优点,所以在萃取材料中运用较广泛。相比于硅胶基体的固相萃取剂,有机聚合物树脂也是十分重要的一类填料。如聚乙基苯乙烯一二乙烯苯、聚二乙烯基苯-N-乙烯基毗咯烷酮等树脂。与常规硅胶基质固相萃取小柱相比,这类固相萃取小柱对水的保留少,可以耐受较宽的pH使用条件,样品回收率高,化学稳定性好。当分析物或干扰物是可离子化的化合物时,可以充分利用pH条件对样品中各组分的保留能力的影响,从而获得高选择性的净化与富集效果。
这些材料既可以紧密填充于固相萃取柱中,也可以松散地分布于固相萃取柱中以减小液体泵压力。而且硅胶和聚合物基体的填料还可以以不同形态填充于固相萃取柱中,如颗粒、整体柱、内壁涂层和纤维等,这些不同形态可以有效提高萃取效率(参见图3)。
(3)HPLC或HPLC-MC方法检测BPA
上述制备的分子印迹柱可用于BPA的检测,采用HPLC或HPLC-MC方法,其装置如图5所示(只包括HPLC系统),将所述的固相萃取柱连接到HPLC装置中,作为前置柱设置在HPLC的进样器和分析柱之间;首先将含有双酚A的待检测样品连续循环注入固相萃取柱,双酚A经固相萃取柱萃取富集和净化后,切换进样器使流动相经过固相萃取柱后进入HPLC装置进行分析检测。
双酚A的萃取富集可以在实验室或野外进行,其装置如图4所示。在外出取样的时候携带多种固相萃取小柱,将初步过滤后的样品通过液体泵连续循环注入到固相萃取小柱上,水样中的目标物由于与固相萃取柱的填料产生非共价作用而吸附在填料上并不断富集,这一过程用于样品的萃取富集和净化;在将这些固相萃取柱带回实验室后,可以直接将这些固相萃取柱连接到液相色谱或液相色谱-质谱分析系统上,选用合适的流动相将样品洗脱进行分析。
液相色谱分析采用的高效液相色谱为Waters系列,其中自动进样器为Warers2707(20.0uL样品环)、双波长紫外检测器(Detector 2498)和二进制Waters152高效液相色谱泵。数据处理是有Millennium 3.2惠普工作站组成。其中高效液相色谱分析条件为C18柱(赛默飞世尔科技有限公司,规格4.6x150mm,5.0um v/v),流动相组成(乙腈/水/三氟乙酸=35/65/0.1%),检测波长(370nm),流速为0.5ml/min,柱温(25℃)。
实施例1
将一定量的3-氨丙基三甲氧基硅烷化合物与模板分子双酚A以1∶2-1∶2.25(摩尔)比例加入到玻璃反应釜内一起搅拌一段时间,加入硅烷偶联剂正硅酸四已酯300-500微升,待搅拌均匀后,逐滴加入10-15mL氨水,在碱性条件下催化硅烷偶联剂进行水解反应,并与其他物质反应生成交联聚合物。持续搅拌数分钟。经过水洗、醇(乙醇)洗、真空干燥得到印迹分子聚合物。
将上述所得分子印迹聚合物置于烧杯中用酸性混合醇溶液(乙酸+甲醇,1/9、V/V)超声洗涤以除去模板分子。该过程需要重复数次,直至用紫外检测器无法检测到洗脱液中的BPA。再用无水乙醇超声5min,最后用蒸馏水洗净,重复三次,最后于室温下自然晾干。
实施例2
将一定量的3-氨丙基三乙氧基硅烷化合物与模板分子双酚A以1∶2-1∶2.23(摩尔)比例在反应釜中混合,加热搅拌5-10min后向釜内加入300-500微升正硅酸四已酯作为硅烷偶联剂,持续搅拌加热3-5min后,逐滴加入20-30mL NaOH溶液(0.2mol/L),在碱性条件下催化硅烷偶联剂进行水解反应,并与其他物质反应生成交联聚合物。持续搅拌数分钟。经过水洗、醇(乙醇)洗、真空干燥得到印迹分子聚合物。
将上述所得分子印迹聚合物置于烧杯中用酸性混合醇溶液(乙酸+甲醇,1/9、V/V)超声洗涤以除去模板分子。该过程需要重复数次,直至用紫外检测器无法检测到洗脱液中的BPA。再用无水乙醇超声5min,最后用蒸馏水洗净,重复三次,最后于室温下自然晾干。
实施例3
将800uL3-氨丙基三乙氧基硅烷与1.25g双酚A乙醇液混合,加入硅烷偶联剂(正硅酸四已酯)200-500微升,待搅拌均匀后,逐滴加入10-15mL NaOH(0.1M),在加热(50℃)下持续反应(3-5小时),离心收集所得产物,超声洗涤除去模板分子后,将其作为固相萃取柱填料。利用装柱后的预处理柱,对混合液(双酚A与二联苯1∶1混合液,0.5M)进行检测,结果显示,分子印迹材料对双酚吸附效率达到95.6%。
实施例4
根据本发明,采用HPLC-MC方法对双酚A进行定量和定性分析。以安捷伦C18(150×5.0mm)为作为液相分析柱,流动相水和乙腈(7/3,V/V),流速为1.0mL/min。将预先配制好的双酚A标准样品至于自动进样器中,当样品流过固相萃取柱时,双酚A被印迹材料吸附固定于空腔之内,改变流动相酸性后即可将其洗脱,富集后的双酚A通过进样器进入HPLC-MC直接检测。其谱图如图6、图7所示。
采用一组标准样品进行分析,表明该方法富集倍数高,灵敏度好,最小检测限可达0.01ug/mL,相对偏差小(R2<5.6%),误差小(RSD<5.6%)。本发明的方法为环境其他类型污染物的检测提供了一种新的思路。

Claims (8)

1.一种用于双酚A检测的固相萃取富集材料,其特征在于,所述材料是以氨基硅烷为功能单体,以双酚A为模板分子,在硅烷偶联剂作用下形成的以模板分子为中心的分子印迹聚合物,包含模板分子洗脱后形成的与双酚A分子结构相似的空腔结构。
2.根据权利要求1所述的固相萃取富集材料,其特征在于,所述的氨基硅烷为3-氨丙基三甲氧基硅烷或3-氨丙基三乙氧基硅烷。
3.根据权利要求1所述的固相萃取富集材料,其特征在于,所述的硅烷偶联剂为硅酸四乙酯。
4.一种用于双酚A检测的固相萃取富集材料的制备方法,包括以下步骤:
1)将氨基硅烷与模板分子双酚A混合后搅拌,加入硅烷偶联剂搅拌均匀后,加碱进行催化反应,反应产物经过水洗、醇洗、真空干燥得到印迹分子聚合物;
2)将上述所得分子印迹聚合物用酸性混合醇溶液超声洗涤以除去模板分子,重复数次直至用紫外检测器无法检测到洗脱液中的双酚A,再用无水乙醇和/或蒸馏水超声洗净,室温下自然晾干。
5.根据权利要求4所述的制备方法,其特征在于,上述方法中,所述的氨基硅烷为3-氨丙基三甲氧基硅烷或3-氨丙基三乙氧基硅烷。
6.根据权利要求4所述的制备方法,其特征在于,上述方法中,所述的硅烷偶联剂为硅酸四乙酯。
7.根据权利要求4所述的制备方法,其特征在于,上述方法中,所述的氨基硅烷与模板分子双酚A用量的摩尔比为1∶2~1∶2.25。
8.一种双酚A的检测方法,其特征在于,所述的方法采用HPLC或HPLC-MC方法检测目标物双酚A,以所述的固相萃取富集材料为填料制备固相萃取柱,将所述的固相萃取柱连接到HPLC装置中,作为前置柱设置在HPLC的进样器和分析柱之间;首先将含有双酚A的待检测样品连续循环注入固相萃取柱,双酚A经固相萃取柱萃取富集和净化后,切换进样器使流动相经过固相萃取柱后进入HPLC装置进行分析检测。
CN201710547542.4A 2017-07-06 2017-07-06 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用 Pending CN107400240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710547542.4A CN107400240A (zh) 2017-07-06 2017-07-06 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710547542.4A CN107400240A (zh) 2017-07-06 2017-07-06 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN107400240A true CN107400240A (zh) 2017-11-28

Family

ID=60404981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710547542.4A Pending CN107400240A (zh) 2017-07-06 2017-07-06 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107400240A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109894081A (zh) * 2019-02-21 2019-06-18 浙江大学 一种磁固相萃取材料及其制备与检测内分泌干扰物的方法
CN110527131A (zh) * 2019-08-13 2019-12-03 丽水学院 一种双酚类替代模板半共价分子印迹介孔硅材料及其制备方法和应用
CN111036181A (zh) * 2019-12-26 2020-04-21 南京师范大学 一种分子印迹硅胶聚合物及其制备方法与应用
CN111122555A (zh) * 2018-10-31 2020-05-08 华中科技大学 一种四溴双酚a印记复合材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919843A (zh) * 2006-09-19 2007-02-28 天津大学 硅质无机黄酮类分子印迹微球的制备方法
CN101543765A (zh) * 2009-03-26 2009-09-30 南京医科大学 一种酚类纳米硅胶表面分子印迹材料的制备方法
EP2938654B1 (en) * 2012-12-26 2016-08-24 L'oreal Molecularly imprinted polymer of sol-gel type for selectively trapping odorous molecules
US20170108520A1 (en) * 2015-10-20 2017-04-20 The Florida International University Board Of Trustees Materials and methods for the detection of trace amounts of substances in biological and environmental samples

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919843A (zh) * 2006-09-19 2007-02-28 天津大学 硅质无机黄酮类分子印迹微球的制备方法
CN101543765A (zh) * 2009-03-26 2009-09-30 南京医科大学 一种酚类纳米硅胶表面分子印迹材料的制备方法
EP2938654B1 (en) * 2012-12-26 2016-08-24 L'oreal Molecularly imprinted polymer of sol-gel type for selectively trapping odorous molecules
US20170108520A1 (en) * 2015-10-20 2017-04-20 The Florida International University Board Of Trustees Materials and methods for the detection of trace amounts of substances in biological and environmental samples

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕运开等: "基于分子印迹聚合物微球的在线固相萃取-液相色谱联用技术测定牛奶中酰胺醇类药物残留", 《食品科学》 *
张朝晖等: "溶胶-凝胶法制备红霉素印迹固相萃取材料及其选择性吸附", 《高分子学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122555A (zh) * 2018-10-31 2020-05-08 华中科技大学 一种四溴双酚a印记复合材料及其应用
CN109894081A (zh) * 2019-02-21 2019-06-18 浙江大学 一种磁固相萃取材料及其制备与检测内分泌干扰物的方法
CN110527131A (zh) * 2019-08-13 2019-12-03 丽水学院 一种双酚类替代模板半共价分子印迹介孔硅材料及其制备方法和应用
CN110527131B (zh) * 2019-08-13 2021-10-26 丽水学院 一种双酚类替代模板半共价分子印迹介孔硅材料及其制备方法和应用
CN111036181A (zh) * 2019-12-26 2020-04-21 南京师范大学 一种分子印迹硅胶聚合物及其制备方法与应用
CN111036181B (zh) * 2019-12-26 2022-02-22 南京师范大学 一种分子印迹硅胶聚合物及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN107400240A (zh) 一种用于双酚a检测的固相萃取富集材料及其制备方法和应用
Song et al. Recent advances in molecularly imprinted polymers in food analysis
Sun et al. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography
Moein et al. Solid phase microextraction and related techniques for drugs in biological samples
Li et al. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from Herba Artemisiae Scopariae
Meyer et al. Ion-pair RP-HPLC determination of sugars, amino sugars, and uronic acids after derivatization with p-aminobenzoic acid
CN101543765B (zh) 一种酚类纳米硅胶表面分子印迹材料的制备方法
Song et al. Molecularly imprinted solid‐phase extraction combined with high‐performance liquid chromatography for analysis of trace olaquindox residues in chick feeds
CN102372821A (zh) 一种邻苯二甲酸二丁酯分子印迹聚合物及其制备方法
CN102371084A (zh) 一种邻苯二甲酸二丁酯分子印迹固相萃取小柱及其制备方法和应用
Thongchai et al. Synthesis of curcuminoid-imprinted polymers applied to the solid-phase extraction of curcuminoids from turmeric samples
Brüggemann Molecularly imprinted materials—receptors more durable than nature can provide
CN103193898A (zh) L-苯丙氨酸衍生β-环糊精键合硅胶的合成及其对丙氨酸对映体的分离应用
Li et al. Current analytical strategies for the determination of resveratrol in foods
CN102974327B (zh) 氨基糖苷类药物分子印迹固相萃取柱
CN106596742A (zh) 采用超高效液相色谱-串联质谱法测定乌洛托品含量
Ma et al. Selective removal of caffeine from tea extracts using macroporous crosslinked polyvinyl alcohol adsorbents
CN207913283U (zh) 苯基键合硅胶固相萃取柱
Prasad et al. Separation and preconcentration of copper and cadmium ions from multielemental solutions using Nostoc muscorum-based biosorbents
Liu et al. High extraction efficiency fiber coated with calix [4] open‐chain crown ether for solid‐phase microextraction of polar aromatic and aliphatic compounds
CN1451961A (zh) 一种杯芳烃键合硅胶固定相的制备方法
Cardinael et al. Sample derivatization in separation science
AlSalem et al. Enantio‐separation of (±)‐ibuprofen racemic mixture using functionalized molecularly imprinted resorcinol formaldehyde resin
CN102565243B (zh) 有机胂类分子印迹整体柱的制备及应用
CN105601789A (zh) 芦丁-Cu2+配位分子印迹聚合物及其制法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171128

WD01 Invention patent application deemed withdrawn after publication