CN107399722A - Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes - Google Patents
Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes Download PDFInfo
- Publication number
- CN107399722A CN107399722A CN201710695513.2A CN201710695513A CN107399722A CN 107399722 A CN107399722 A CN 107399722A CN 201710695513 A CN201710695513 A CN 201710695513A CN 107399722 A CN107399722 A CN 107399722A
- Authority
- CN
- China
- Prior art keywords
- barium
- selenium
- nonlinear optical
- silver
- sise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 76
- 230000003287 optical effect Effects 0.000 title claims abstract description 51
- ISHRBHSEOYRVQC-UHFFFAOYSA-N [Ba].[Ag].[Si].[Se] Chemical compound [Ba].[Ag].[Si].[Se] ISHRBHSEOYRVQC-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 8
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 8
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 7
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 5
- 238000003746 solid phase reaction Methods 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 239000010453 quartz Substances 0.000 claims description 18
- 239000011669 selenium Substances 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 238000002083 X-ray spectrum Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 7
- 238000000634 powder X-ray diffraction Methods 0.000 abstract description 3
- 238000010671 solid-state reaction Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- -1 oxygen halides Chemical class 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001144 powder X-ray diffraction data Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/002—Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/10—Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Glass Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及一种化合物硒硅银钡和硒硅银钡中远红外非线性光学晶体及制备方法和用途,其化学式为BaAg2SiSe4,分子量697.01,该晶体为四方晶系,空间群是非中心对称空间群,晶胞参数为a=b=7.066(3)Å,c=8.233(7)Å,α=β=γ=90°、Z=2,单胞体积V=411.1(5)Å3;该制备方法为单质钡、单质银、单质硅和单质硒在真空条件下的固相反应;本发明的化合物硒硅银钡及硒硅银钡中远红外非线性光学晶体的粉末XRD谱图与理论值吻合;在2090 nm的激光照射下,颗粒度为55‑88μm的BaAg2SiSe4倍频效应是同等颗粒度下硫镓银(AgGaS2)的2倍。
The present invention relates to a compound selenium silicon silver barium and selenium silicon silver barium mid-far infrared nonlinear optical crystal and its preparation method and application. Its chemical formula is BaAg 2 SiSe 4 and its molecular weight is 697.01. The crystal is tetragonal and its space group is noncentrosymmetric space group , the unit cell parameters are a = b =7.066(3)Å, c =8.233(7)Å, α = β = γ =90°, Z =2, unit cell volume V=411.1(5)Å 3 ; the preparation The method is a solid-state reaction of elemental barium, elemental silver, elemental silicon and elemental selenium under vacuum conditions; the powder XRD spectrum of the compound selenium-silicon-silver-barium and mid-far infrared nonlinear optical crystal of the present invention coincides with the theoretical value ; Under 2090 nm laser irradiation, the frequency doubling effect of BaAg 2 SiSe 4 with a particle size of 55‑88 μm is twice that of AgGaS 2 with the same particle size.
Description
技术领域technical field
本发明属于红外非线性光学晶体材料领域,具体涉及一种硒硅银钡和硒硅银钡中远红外非线性光学晶体及制备方法和用途。The invention belongs to the field of infrared nonlinear optical crystal materials, and specifically relates to a selenium-silicon-silver-barium and mid-far infrared nonlinear optical crystal, a preparation method and an application thereof.
背景技术Background technique
激光作为一种高强度、方向性好的相干单色光源广泛的应用于科研、工业、交通、国防和医疗卫生等相关领域。然而目前的各种激光器直接输出的激光波段有限,从紫外波段到红外波段尚存有激光空白波段。由于激光发生机理的特殊性,不可能为每一个波长都寻找到一种实用的激光介质。所以利用非线性光学晶体进行变频以获得宽调谐的各种激光光源已成为激光技术发展的前沿课题。As a high-intensity, coherent monochromatic light source with good directionality, laser is widely used in scientific research, industry, transportation, national defense, medical and health and other related fields. However, the laser wave bands directly output by various lasers at present are limited, and there are still blank laser wave bands from the ultraviolet band to the infrared band. Due to the particularity of the laser generation mechanism, it is impossible to find a practical laser medium for every wavelength. Therefore, the use of nonlinear optical crystals for frequency conversion to obtain various laser sources with wide tuning has become a frontier topic in the development of laser technology.
非线性光学效应起源于激光与介质的相互作用。当激光在具有非零二阶极化率的介质中传播时,会产生倍频、和频、差频、光参量放大等非线性光学效应。非线性光学晶体材料,根据其透过波段的范围可将其分为三大类:一、红外及中远红外非线性光学材料;二、可见光及近红外波段非线性光学材料;三、紫外及深紫外波段非线性光学材料。目前主要的非线性光学材料有:KDP(KH2PO4)、BBO(β-BaB2O4)、LBO(LiB3O5)、AGS(AgGaS2)等,但由于各种原因,尚未得到各波段均适用的各种非线性光学晶体。本发明的工作属于可见光及中远红外非线性光学材料。该波段的非线性光学晶体材料具有广泛的用途,如在制备激光制导、红外遥感器、环境监测器和红外激光雷达等器件中的应用Nonlinear optical effects originate from the interaction between laser and medium. When the laser propagates in a medium with non-zero second-order polarizability, nonlinear optical effects such as frequency doubling, sum frequency, difference frequency, and optical parametric amplification will occur. Nonlinear optical crystal materials can be divided into three categories according to their transmission range: 1. Infrared and mid-to-far infrared nonlinear optical materials; 2. Visible and near-infrared nonlinear optical materials; 3. Ultraviolet and deep Ultraviolet band nonlinear optical materials. At present, the main nonlinear optical materials are: KDP (KH 2 PO 4 ), BBO (β-BaB 2 O 4 ), LBO (LiB 3 O 5 ), AGS (AgGaS 2 ), etc., but due to various reasons, they have not been obtained yet. All kinds of nonlinear optical crystals applicable to all wave bands. The work of the present invention belongs to visible light and mid-far infrared nonlinear optical materials. Nonlinear optical crystal materials in this band have a wide range of applications, such as applications in the preparation of laser guidance, infrared remote sensors, environmental monitors, and infrared laser radars
红外非线性光学晶体作为激光频率转换技术的核心器件,是利用位相匹配技术实现对激光频率变换从而输出可调谐中远红外激光的一类单晶材料。由于两个重要的大气窗口(3-5 μm 和 8-14 μm)处于这个波段范围内,因此目前探索和发展红外非线性光学晶体一般都需要保证在这两个波段范围内具有高的透过能力。As the core device of laser frequency conversion technology, infrared nonlinear optical crystal is a type of single crystal material that uses phase matching technology to convert laser frequency and output tunable mid-to-far infrared laser. Since two important atmospheric windows (3-5 μm and 8-14 μm ) are in this wavelength range, the current exploration and development of infrared nonlinear optical crystals generally need to ensure high Through ability.
现今实用的红外非线性光学材料大多是ABC2型的黄铜矿类,如AgGaS2和ZnGeP2等商业化的晶体。但是该类晶体存在一些严重的不足,其中较低的激光损伤阈值、对近红外激光(如Nd:YAG 1064 nm)的双光子吸收问题、严重的各向异性热膨胀导致不易得到大尺寸高质量单晶等,都严重限制了它们的实际应用。Today's practical infrared nonlinear optical materials are mostly ABC 2 -type chalcopyrites, such as commercialized crystals such as AgGaS 2 and ZnGeP 2 . However, this type of crystal has some serious shortcomings, such as low laser damage threshold, two-photon absorption problem for near-infrared laser (such as Nd:YAG 1064 nm), and severe anisotropic thermal expansion, which make it difficult to obtain large-scale high-quality single crystals. Crystal, etc., have severely limited their practical applications.
目前国际上,虽然发现的一些氧化物非线性光学晶体已经很好的解决了近红外的频率转换问题,但是对于3-5 μm范围的激光,很多氧化物晶体的晶格振动频率与该波段的激光频率相当,从而引起无辐射弛豫与激光发射的强烈竞争,会引起激光的高被动损耗,很难输出4 μm以上的中远红外激光。因此目前探索有效的中远红外非线性光学晶体主要集中于非氧体系的卤化物、硫化物或磷化物等。At present, although some oxide nonlinear optical crystals discovered in the world have solved the problem of near-infrared frequency conversion, for lasers in the range of 3-5 μm , the lattice vibration frequency of many oxide crystals is different from that of this band. The laser frequency of the laser is equivalent, thereby causing the strong competition between the non-radiative relaxation and the laser emission, which will cause the high passive loss of the laser, and it is difficult to output the middle and far infrared laser above 4 μm . Therefore, the current exploration of effective mid- and far-infrared nonlinear optical crystals mainly focuses on non-oxygen halides, sulfides, or phosphides.
发明内容Contents of the invention
本发明的第一个目的,提供一种化合物硒硅银钡,该化合物的化学式为BaAg2SiSe4,分子量为697.01,为非中心对称结构单晶,属于四方晶系,空间群为,晶胞参数为a = b = 7.066(3) Å,c = 8.233(7) Å,α= β= γ= 90°、Z = 2,单胞体积V =411.1(5) Å3,采用固相反应法制成多晶粉末;The first object of the present invention is to provide a compound barium selenium silicon silver, the chemical formula of the compound is BaAg 2 SiSe 4 , the molecular weight is 697.01, it is a non-centrosymmetric single crystal, it belongs to the tetragonal crystal system, and the space group is , the unit cell parameters are a = b = 7.066(3) Å, c = 8.233(7) Å, α = β = γ = 90°, Z = 2, and the unit cell volume V =411.1(5) Å 3 . Phase reaction method to make polycrystalline powder;
本发明的第二个目的,提供一种硒硅银钡中远红外非线性光学晶体及制备方法,该晶体化学式为BaAg2SiSe4,分子量为697.01,为非中心对称结构单晶,属于四方晶系,空间群为,晶胞参数为a = b = 7.066(3) Å,c = 8.233(7) Å,α= β= γ= 90°、Z = 2,单胞体积V = 411.1(5) Å3。该制备方法为单质钡、单质银、单质硅和单质硒在真空条件下的固相反应;本发明的化合物硒硅银钡及硒硅银钡中远红外非线性光学晶体的粉末XRD谱图与理论值吻合;在2090 nm的激光照射下,颗粒度为55-88 μm 的BaAg2SiSe4倍频效应是同等颗粒度下硫镓银(AgGaS2)的2倍。The second object of the present invention is to provide a mid-far infrared nonlinear optical crystal of selenium silicon silver barium and its preparation method. The chemical formula of the crystal is BaAg 2 SiSe 4 and the molecular weight is 697.01. It is a non-centrosymmetric single crystal and belongs to the tetragonal crystal system. , the space group is , the unit cell parameters are a = b = 7.066(3) Å, c = 8.233(7) Å, α = β = γ = 90°, Z = 2, and the unit cell volume V = 411.1(5) Å 3 . The preparation method is a solid phase reaction of elemental barium, elemental silver, elemental silicon and elemental selenium under vacuum conditions; the powder XRD spectrum and theory of the compound selenium silicon silver barium and selenium silicon silver barium mid-far infrared nonlinear optical crystal of the present invention The values are consistent; under 2090 nm laser irradiation, the frequency doubling effect of BaAg 2 SiSe 4 with a particle size of 55-88 μm is twice that of silver gallium sulfide (AgGaS 2 ) with the same particle size.
本发明第三个目的提供硒硅银钡中远红外非线性光学晶体在制备红外通讯器件、红外波段激光倍频晶体以及红外激光制导器件中的用途。The third object of the present invention is to provide the use of selenium silicon silver barium mid-far infrared nonlinear optical crystals in the preparation of infrared communication devices, infrared band laser frequency doubling crystals and infrared laser guidance devices.
本发明所述的一种化合物硒硅银钡,其特征在于该化合物的化学式为BaAg2SiSe4,分子量为697.01,属于四方晶系,空间群为,晶胞参数为a = b = 7.066(3) Å,c =8.233(7) Å,α= β= γ= 90°、Z = 2,单胞体积V = 411.1(5) Å3,为多晶粉末。A compound of the present invention, barium selenium silicon silver, is characterized in that the chemical formula of the compound is BaAg 2 SiSe 4 , the molecular weight is 697.01, it belongs to the tetragonal crystal system, and the space group is , the unit cell parameters are a = b = 7.066(3) Å, c = 8.233(7) Å, α = β = γ = 90°, Z = 2, and the unit cell volume V = 411.1(5) Å 3 , which is multi Crystal powder.
所述的化合物硒硅银钡的制备方法,采用高温固相反应法,具体操作按下列步骤进行:The preparation method of the compound selenium-silicon-silver-barium adopts a high-temperature solid-state reaction method, and the specific operation is carried out according to the following steps:
a、在水含量和氧气含量为0.01-0.1 ppm的气密容器为充有惰性气体氮气的手套箱内按Ba:Ag:Si:Se摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In an airtight container with a water content and an oxygen content of 0.01-0.1 ppm, it is a glove box filled with inert gas nitrogen and mixed evenly according to the molar ratio of Ba:Ag:Si:Se 1:2:1:4, and then put it into a clean In a graphite crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and seal the quartz tube with the raw material after vacuuming at a vacuum of 10-5-10-3 Pa ;
b、将步骤a中封好的石英管以温度20-40℃/h的升温速率从室温升至400-700 ℃,保温30-60小时,再以温度20-40 ℃/h升温至800-1050 ℃,保温70-110小时;b. The sealed quartz tube in step a is raised from room temperature to 400-700°C at a temperature rise rate of 20-40°C/h, kept for 30-60 hours, and then heated to 800°C at a temperature of 20-40°C/h -1050 ℃, keep warm for 70-110 hours;
c、以温度2-7 ℃/h的速率冷却降至室温,取出样品放入研钵中捣碎,研磨,即得到化合物BaAg2SiSe4多晶粉末,将得到的化合物硒硅银钡多晶粉末进行X射线分析,所得X射线衍射谱图与用单晶结构解析的BaAg2SiSe4理论X射线谱图一致。c. Cool down to room temperature at a rate of 2-7 °C/h, take out the sample and put it in a mortar, crush it, and grind it to obtain the compound BaAg 2 SiSe 4 polycrystalline powder. The obtained compound selenium silicon silver barium polycrystalline The powder is analyzed by X-ray, and the obtained X-ray diffraction spectrum is consistent with the theoretical X-ray spectrum of BaAg 2 SiSe 4 analyzed by single crystal structure.
一种硒硅银钡中远红外非线性光学晶体,该晶体化学式为BaAg2SiSe4,分子量为697.01,为非中心对称结构单晶,属于四方晶系,空间群为,晶胞参数为a = b =7.066(3) Å,c = 8.233(7) Å,α= β= γ= 90°、Z = 2,单胞体积V = 411.1(5) Å3。A middle-far-infrared nonlinear optical crystal of barium selenium silicon silver, the crystal chemical formula is BaAg 2 SiSe 4 , the molecular weight is 697.01, it is a non-centrosymmetric single crystal, it belongs to the tetragonal crystal system, and the space group is , the unit cell parameters are a = b =7.066(3) Å, c = 8.233(7) Å, α = β = γ = 90°, Z = 2, and the unit cell volume V = 411.1(5) Å 3 .
所述的硒硅银钡中远红外非线性光学晶体的制备方法,按下列步骤进行:The preparation method of the described mid-far infrared nonlinear optical crystal of selenium silicon silver barium is carried out according to the following steps:
a、在水含量和氧气含量为0.01-0.1 ppm的气密容器为充有惰性气体氮气的手套箱内按按Ba:Ag:Si:Se摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In a glove box filled with an inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.01-0.1 ppm, mix it evenly according to the molar ratio of Ba:Ag:Si:Se 1:2:1:4 and put it in In a clean graphite crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and seal the quartz tube containing the raw material after vacuuming at a vacuum of 10-5-10-3 Pa ;
b、将步骤a中封好的石英管以温度20-40 ℃/h的升温速率从室温升至400-700 ℃,保温30-60小时,再以温度20-40 ℃/h升温至800-1050 ℃,保温70-110小时;b. Heat the sealed quartz tube in step a from room temperature to 400-700°C at a temperature of 20-40°C/h, keep it warm for 30-60 hours, and then raise the temperature to 800°C at a temperature of 20-40°C/h -1050 ℃, keep warm for 70-110 hours;
c、以温度2-7 ℃/h的速率冷却降至室温,得到硒硅银钡BaAg2SiSe4中远红外非线性光学晶体。c. Cool down to room temperature at a rate of 2-7° C./h to obtain mid-far infrared nonlinear optical crystals of BaAg 2 SiSe 4 .
所述硒硅银钡中远红外非线性光学晶体在制备红外通讯器件、红外波段激光倍频晶体以及红外激光制导器件中的用途。Use of the mid-far infrared nonlinear optical crystal of selenium silicon silver barium in the preparation of infrared communication devices, infrared band laser frequency doubling crystals and infrared laser guidance devices.
本发明硒硅银钡和硒硅银钡中远红外非线性光学晶体的粉末XRD图与理论值吻合;在2090 nm的激光照射下,颗粒度为55-88 μm的BaAg2SiSe4倍频效应是同等颗粒度下硫镓银(AgGaS2)的2倍。The powder XRD pattern of silver barium selenium silicon and silver barium selenium silicon in the present invention is consistent with the theoretical value; under 2090 nm laser irradiation, the BaAg 2 SiSe 4 frequency doubling effect with a particle size of 55-88 μm It is twice that of AgGaS 2 with the same particle size.
本发明所述硒硅银钡晶体结构中,Ba原子,Ag原子,Si原子,Se原子的化合价分别为+2,+1,+4,-2;Si原子与邻近四个Se原子形成孤立存在的[SiSe4]四面体结构;Ag原子也与其临近的四个Se原子形成[AgSe4]四面体,并以共顶点的连接方式形成层状结构,层与层之间由孤立的[SiSe4]四面体连接形成[Ag2Si2]四元环状孔道;Ba原子则只镶嵌在[AgSe4]四面体与[SiSe4]四面体所形成的四元环状孔道中,形成8配位的[BaSe8]多面体;所有的原子,相互连接形成三维网状结构。In the crystal structure of selenium-silicon-silver-barium of the present invention, the valences of Ba atom, Ag atom, Si atom, and Se atom are respectively +2, +1, +4, -2; Si atom exists in isolation with the adjacent four Se atoms [SiSe 4 ] tetrahedral structure; Ag atoms also form [AgSe 4 ] tetrahedrons with four adjacent Se atoms, and form a layered structure in a common-vertex connection mode, and the layers are separated by isolated [SiSe 4 ] tetrahedra connected to form [Ag 2 Si 2 ] four-membered ring channel; Ba atoms are only embedded in the four-membered ring channel formed by [AgSe 4 ] tetrahedron and [SiSe 4 ] tetrahedron, forming 8-coordination The [BaSe 8 ] polyhedron; all atoms are interconnected to form a three-dimensional network structure.
本发明所述的硒硅银钡和硒硅银钡中远红外非线性光学晶体及制备方法和用途,采用高温固相合成的方法,成功合成出了一种化合物硒硅银钡及硒硅银钡中远红外非线性光学晶体。与专利申请号201710388528.4硒硅铜钡和硒硅铜钡中远红外非线性光学晶体及制备方法和用途相比较,其所属的晶系由三方晶系(BaCu2SiSe4)转变到四方晶系(BaAg2SiSe4),从结构上来看由三维网状结构(BaCu2SiSe4)转变为层状结构(BaAg2SiSe4);这就说明这两个化合物不仅仅是一个简单的元素同构替代,而是发生了结构上的转变,而这种结构上的转变致使硒硅银钡晶体具有更优异的光学性能:(1)使用紫外-可见-近红外漫反射光谱仪评估了硒硅银钡晶体的带隙,结果显示相比于硒硅铜钡晶体,该化合物具有更大的带隙;(2)利用将粉末样品在1064 nm的激光下照射的方法测试其粉末激光损伤阈值,结果表明硒硅银钡晶体粉末具有更大的激光损伤阈值;(3)使用粉末倍频的方法测量了硒硅银钡的非线性响应强度,结果表明其能够实现Ho:Tm:Cr:YAG (2090 nm)的2倍频,且其粉末倍频效应为同等颗粒度下AgGaS2晶体的2倍,表明硒硅银钡晶体具有更强的非线性光学效应。硒硅银钡晶体具有的以上优良的光学性能,使其具有更大的潜在应用价值。The selenium-silicon-silver-barium and selenium-silicon-silver-barium mid-to-far-infrared nonlinear optical crystals and their preparation methods and uses described in the present invention adopt a high-temperature solid-phase synthesis method to successfully synthesize a compound of selenium-silicon-silver-barium and selenium-silicon-silver-barium Middle and far infrared nonlinear optical crystals. Compared with the patent application No. 201710388528.4 Selenium Silicon Copper Barium and Selenium Silicon Copper Barium Mid-Far Infrared Nonlinear Optical Crystal and its preparation method and application, the crystal system it belongs to has changed from the trigonal system (BaCu 2 SiSe 4 ) to the tetragonal system (BaAg 2 SiSe 4 ), from a structural point of view, it changes from a three-dimensional network structure (BaCu 2 SiSe 4 ) to a layered structure (BaAg 2 SiSe 4 ); this shows that these two compounds are not just a simple isomorphic substitution of elements, Instead, a structural transformation occurred, and this structural transformation resulted in better optical properties of the SiSiSiAgBar crystal: (1) The UV-Vis-NIR diffuse reflectance spectrometer was used to evaluate the Band gap, the results show that the compound has a larger band gap than that of selenium-silicon-copper-barium crystal; (2) The powder laser damage threshold of the powder sample is tested by irradiating the powder sample under 1064 nm laser, and the results show that the selenium-silicon Silver-barium crystal powder has a larger laser damage threshold; (3) The nonlinear response intensity of silver-barium selenium silicon was measured by powder frequency doubling method, and the results showed that it can achieve Ho:Tm:Cr:YAG (2090 nm) 2 frequency doubling, and its powder frequency doubling effect is twice that of AgGaS 2 crystals with the same particle size, indicating that the selenium silicon silver barium crystal has a stronger nonlinear optical effect. The above-mentioned excellent optical properties of selenium silicon silver barium crystal make it have greater potential application value.
本发明所述硒硅银钡化合物为硒硅银钡多晶粉末。The selenium-silicon-silver-barium compound in the present invention is polycrystalline powder of selenium-silicon-silver-barium.
附图说明Description of drawings
图1为本发明多晶粉末X射线粉末衍射图与理论值的对比图,其中A是理论值,B是实验值;Fig. 1 is the comparative figure of polycrystalline powder X-ray powder diffraction pattern of the present invention and theoretical value, and wherein A is theoretical value, and B is experimental value;
图2为本发明BaAg2SiSe4晶体的结构图;Fig. 2 is the structural diagram of BaAg of the present invention 2 SiSe 4 crystals;
图3为本发明硒硅银钡中远红外非线性光学晶体在2090 nm激光下,颗粒度为55-88 μm时和同颗粒度硫镓银倍频对比图,其中A是AgGaS2二次倍频效应图,B是BaAg2SiSe4二次倍频效应图;Fig. 3 is the mid-far-infrared nonlinear optical crystal of the present invention under 2090 nm laser, when the particle size is 55-88 μ m and the same particle size sulfur-gallium-silver frequency doubling comparison diagram, wherein A is AgGaS 2 times times Frequency effect diagram, B is BaAg 2 SiSe 4 secondary frequency effect diagram;
图4为本发明倍频效应原理图。Fig. 4 is a schematic diagram of the frequency doubling effect of the present invention.
具体实施方式detailed description
本发明通过实施例进行详细说明,但不仅限于所给出的实施例。The invention is illustrated in detail by means of examples, but is not limited to the examples given.
实施例1Example 1
化合物硒硅银钡多晶粉末的制备:Preparation of compound selenium silicon silver barium polycrystalline powder:
a、在水含量和氧气含量为0.01-0.1 ppm的气密容器为充有惰性气体氮气的手套箱内将单质Ba,单质Ag,单质Si与单质Se按摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3Pa的条件下抽真空后封口;a. Mix elemental Ba, elemental Ag, elemental Si and elemental Se in a molar ratio of 1:2:1:4 in a glove box filled with an inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.01-0.1 ppm After uniformity, put it into a clean graphite crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and pump the quartz tube with the raw material under the condition of a vacuum of 10-5-10-3 Pa . Sealed after vacuum;
b、将步骤a中封好的石英管以温度20-40 ℃/h的升温速率从室温升至400-700 ℃,保温30-60小时,再以温度20-40 ℃/h升温至800-1050 ℃,保温70-110小时,得到化合物;b. Heat the sealed quartz tube in step a from room temperature to 400-700°C at a temperature of 20-40°C/h, keep it warm for 30-60 hours, and then raise the temperature to 800°C at a temperature of 20-40°C/h -1050 ℃, heat preservation for 70-110 hours to obtain the compound;
c、将步骤b得到的化合物以温度2-7 ℃/h的速率冷却降至室温,取出样品放入研钵中捣碎,研磨,即得到暗红色化合物BaAg2SiSe4多晶粉末,将得到的化合物硒硅银钡多晶粉末进行X射线分析,所得X射线衍射谱图与用单晶结构解析的BaAg2SiSe4理论X射线谱图一致,结果参见图1,从图中看出,实验值与理论值相吻合,说明得到的粉末样品为纯相。c. Cool the compound obtained in step b to room temperature at a rate of 2-7 °C/h, take out the sample, put it into a mortar, crush it, and grind it to obtain a dark red compound BaAg 2 SiSe 4 polycrystalline powder, which will be obtained The compound selenium silicon silver barium polycrystalline powder carries out X-ray analysis, and the obtained X-ray diffraction spectrum is consistent with the BaAg 2 SiSe 4 theoretical X-ray spectrum analyzed by single crystal structure, the result is shown in Figure 1, as can be seen from the figure, the experimental The values are in good agreement with the theoretical values, indicating that the obtained powder samples are phase-pure.
实施例2Example 2
硒硅银钡中远红外非线性光学晶体的制备:Preparation of mid- and far-infrared nonlinear optical crystals of selenium, silicon, silver, and barium:
a、在水含量和氧气含量为0.01 ppm的气密容器为充有惰性气体氮气的手套箱内按Ba:Ag:Si:Se摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In a glove box filled with an inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.01 ppm, put clean graphite after mixing evenly according to the molar ratio of Ba:Ag:Si:Se 1:2:1:4 In the crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and seal the quartz tube with the raw material after vacuuming at a vacuum degree of 10-5-10-3 Pa ;
b、将步骤a中封好的石英管以温度20 ℃/h的升温速率从室温升至400 ℃,保温30小时,再以温度20 ℃/h升温至800 ℃,保温70小时;b. The quartz tube sealed in step a is raised from room temperature to 400°C at a heating rate of 20°C/h, and kept at a temperature of 30 hours, then raised to 800°C at a temperature of 20°C/h, and kept at a temperature of 70 hours;
c、以温度2 ℃/h的速率冷却降至室温,取出石墨坩埚,得到暗红色块状硒硅银钡BaAg2SiSe4中远红外非线性光学晶体,通过单晶X射线衍射分析,表明该晶体为硒硅银钡中远红外非线性光学晶体。c. Cool down to room temperature at a rate of 2 °C/h, take out the graphite crucible, and obtain a dark red bulk BaAg 2 SiSe 4 mid-to-far infrared nonlinear optical crystal, which is shown by single crystal X-ray diffraction analysis. It is a mid-to-far infrared nonlinear optical crystal of selenium silicon silver barium.
实施例3Example 3
硒硅银钡中远红外非线性光学晶体的制备:Preparation of mid- and far-infrared nonlinear optical crystals of selenium, silicon, silver, and barium:
a、在水含量和氧气含量为0.05 ppm的气密容器为充有惰性气体氮气的手套箱内将单质Ba,单质Ag,单质Si与单质Se按摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In a glove box filled with an inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.05 ppm, the elemental Ba, elemental Ag, elemental Si and elemental Se are mixed evenly in a molar ratio of 1:2:1:4 Put it into a clean graphite crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and vacuumize the quartz tube with the raw material at a vacuum degree of 10 -5 -10 -3 Pa seal;
b、将步骤a中封好的石英管以温度40 ℃/h的升温速率从室温升至600 ℃,保温50小时,再以温度30 ℃/h升温至1000 ℃,保温100小时;b. The quartz tube sealed in step a is raised from room temperature to 600°C at a heating rate of 40°C/h, and kept at a temperature of 50 hours, then raised to 1000°C at a temperature of 30°C/h, and kept at a temperature of 100 hours;
c、以温度4 ℃/h的速率冷却降至室温,取出石墨坩埚,得到暗红色块状硒硅银钡BaAg2SiSe4中远红外非线性光学晶体。c. Cool down to room temperature at a rate of 4 °C/h, take out the graphite crucible, and obtain a dark red bulk BaAg 2 SiSe 4 mid-to-far infrared nonlinear optical crystal.
实施例4Example 4
硒硅银钡中远红外非线性光学晶体的制备:Preparation of mid- and far-infrared nonlinear optical crystals of selenium, silicon, silver, and barium:
a、在水含量和氧气含量为0.08 ppm的气密容器为充有惰性气体氮气的手套箱内按Ba:Ag:Si:Se摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In a glove box filled with an inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.08 ppm, put clean graphite after mixing evenly according to the molar ratio of Ba:Ag:Si:Se 1:2:1:4 In the crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and seal the quartz tube with the raw material after vacuuming at a vacuum degree of 10-5-10-3 Pa ;
b、将步骤a中封好的石英管以温度38 ℃/h的升温速率从室温升至700 ℃,保温60小时,再以温度40 ℃/h升温至1050 ℃,保温110小时;b. The quartz tube sealed in step a is raised from room temperature to 700°C at a heating rate of 38°C/h, and kept at a temperature of 60 hours, then raised to 1050°C at a temperature of 40°C/h, and kept at a temperature of 110 hours;
c、以温度7 ℃/h的速率冷却降至室温,取出石墨坩埚,得到暗红色块状硒硅银钡BaAg2SiSe4中远红外非线性光学晶体。c. Cool down to room temperature at a rate of 7°C/h, take out the graphite crucible, and obtain dark red bulk BaAg 2 SiSe 4 mid-to-far infrared nonlinear optical crystal.
实施例5Example 5
硒硅银钡中远红外非线性光学晶体的制备:Preparation of mid- and far-infrared nonlinear optical crystals of selenium, silicon, silver, and barium:
a、在水含量和氧气含量为0.1 ppm的气密容器为充有惰性气体氮气的手套箱内将单质Ba,单质Ag,单质Si与单质Se按摩尔比1:2:1:4混合均匀后放入干净的石墨坩埚中,装入长为20 cm、直径为10 mm的石英玻璃管中,将装有原料的石英管在真空度为10-5-10-3 Pa的条件下抽真空后封口;a. In a glove box filled with inert gas nitrogen in an airtight container with a water content and an oxygen content of 0.1 ppm, the elemental Ba, elemental Ag, elemental Si and elemental Se are mixed evenly in a molar ratio of 1:2:1:4 Put it into a clean graphite crucible, put it into a quartz glass tube with a length of 20 cm and a diameter of 10 mm, and vacuumize the quartz tube with the raw material at a vacuum degree of 10 -5 -10 -3 Pa seal;
b、将步骤a中封好的石英管以温度35 ℃/h的升温速率从室温升至500 ℃,保温45小时,再以温度35 ℃/h升温至950 ℃,保温95小时;b. The quartz tube sealed in step a is raised from room temperature to 500°C at a heating rate of 35°C/h, and kept for 45 hours, then raised to 950°C at a temperature of 35°C/h, and kept for 95 hours;
c、以温度5 ℃/h的速率冷却降至室温,取出石墨坩埚,得到暗红色块状硒硅银钡BaAg2SiSe4中远红外非线性光学晶体。c. Cool down to room temperature at a rate of 5°C/h, take out the graphite crucible, and obtain a dark red bulk BaAg 2 SiSe 4 mid-to-far infrared nonlinear optical crystal.
实施例6Example 6
将实施例2-5中所得的任意一种硒硅银钡中远红外非线性光学晶体,按附图4所示安置在3的位置上,在室温下,用调Q Ho:Tm:Cr:YAG激光器的2090 nm输出作光源,观察到明显的1045 nm倍频光输出,输出的强度与同等颗粒度条件下AgGaS2的相等(如图3所示)。由调QHo:Tm:Cr:YAG激光器1发出波长为2090 nm的红外光束经全聚透镜2射入硒硅银钡非线性光学晶体,产生波长为1045 nm的倍频光,出射光束4含有波长为2090 nm的红外光和1045 nm的光,经滤波片5滤去后得到波长为1045 nm的倍频光。Any one of the middle-far-infrared nonlinear optical crystals of selenium-silicon-silver-barium obtained in Examples 2-5 is arranged at position 3 as shown in accompanying drawing 4, and at room temperature, use Q-switching Ho:Tm:Cr:YAG The 2090 nm output of the laser was used as the light source, and an obvious 1045 nm frequency-doubled light output was observed, and the intensity of the output was equal to that of AgGaS 2 under the same particle size (as shown in Figure 3). The infrared beam with a wavelength of 2090 nm emitted by the Q-switched Ho:Tm:Cr:YAG laser 1 is injected into the non-linear optical crystal of selenium-silicon-silica-silver-barium through the all-condensing lens 2 to generate frequency-doubled light with a wavelength of 1045 nm, and the outgoing beam 4 contains wavelength Infrared light of 2090 nm and light of 1045 nm are filtered by filter 5 to obtain frequency-doubled light with a wavelength of 1045 nm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710695513.2A CN107399722B (en) | 2017-08-15 | 2017-08-15 | Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710695513.2A CN107399722B (en) | 2017-08-15 | 2017-08-15 | Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107399722A true CN107399722A (en) | 2017-11-28 |
CN107399722B CN107399722B (en) | 2019-05-14 |
Family
ID=60398013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710695513.2A Active CN107399722B (en) | 2017-08-15 | 2017-08-15 | Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107399722B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588840A (en) * | 2018-06-15 | 2018-09-28 | 中国科学院新疆理化技术研究所 | Boron barium sulphide mid and far infrared nonlinear optical crystal and preparation method and application |
CN110578173A (en) * | 2019-10-25 | 2019-12-17 | 河北大学 | A kind of nonlinear optical crystal strontium lithium silicon sulfur and its preparation method and application |
CN110735184A (en) * | 2018-07-19 | 2020-01-31 | 中国科学院理化技术研究所 | BaHgGeSe seeds4Nonlinear optical crystal and preparation method and application thereof |
CN111118594A (en) * | 2020-01-16 | 2020-05-08 | 中国科学院上海硅酸盐研究所 | Nonlinear optical crystal material and preparation method and application thereof |
CN112323145A (en) * | 2020-10-16 | 2021-02-05 | 扬州大学 | Infrared nonlinear optical crystal KAg3Ga8Se14 and its preparation method and use |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104674349A (en) * | 2015-03-18 | 2015-06-03 | 遵义师范学院 | Infrared nonlinear optical crystal La3Sb0.33SiS7 and its preparation method |
CN104695022A (en) * | 2015-03-09 | 2015-06-10 | 中国科学院合肥物质科学研究院 | Long-wave infrared nonlinear CdGa2Se4 crystal and its growth method and application |
CN105603531A (en) * | 2014-11-17 | 2016-05-25 | 中国科学院福建物质结构研究所 | Mid-infrared nonlinear optical crystal, preparation method and applications thereof |
CN106757365A (en) * | 2016-12-06 | 2017-05-31 | 中国科学院福建物质结构研究所 | A kind of crystalline material, its preparation method and the nonlinear optical crystal comprising it |
CN106978630A (en) * | 2017-05-27 | 2017-07-25 | 中国科学院新疆理化技术研究所 | Selenium copper silicon barium and selenium copper silicon barium mid and far infrared nonlinear optical crystal and preparation method and purposes |
-
2017
- 2017-08-15 CN CN201710695513.2A patent/CN107399722B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105603531A (en) * | 2014-11-17 | 2016-05-25 | 中国科学院福建物质结构研究所 | Mid-infrared nonlinear optical crystal, preparation method and applications thereof |
CN104695022A (en) * | 2015-03-09 | 2015-06-10 | 中国科学院合肥物质科学研究院 | Long-wave infrared nonlinear CdGa2Se4 crystal and its growth method and application |
CN104674349A (en) * | 2015-03-18 | 2015-06-03 | 遵义师范学院 | Infrared nonlinear optical crystal La3Sb0.33SiS7 and its preparation method |
CN106757365A (en) * | 2016-12-06 | 2017-05-31 | 中国科学院福建物质结构研究所 | A kind of crystalline material, its preparation method and the nonlinear optical crystal comprising it |
CN106978630A (en) * | 2017-05-27 | 2017-07-25 | 中国科学院新疆理化技术研究所 | Selenium copper silicon barium and selenium copper silicon barium mid and far infrared nonlinear optical crystal and preparation method and purposes |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588840A (en) * | 2018-06-15 | 2018-09-28 | 中国科学院新疆理化技术研究所 | Boron barium sulphide mid and far infrared nonlinear optical crystal and preparation method and application |
CN108588840B (en) * | 2018-06-15 | 2020-12-11 | 中国科学院新疆理化技术研究所 | Barium borosulfide mid-far infrared nonlinear optical crystal and preparation method and application |
CN110735184A (en) * | 2018-07-19 | 2020-01-31 | 中国科学院理化技术研究所 | BaHgGeSe seeds4Nonlinear optical crystal and preparation method and application thereof |
CN110735184B (en) * | 2018-07-19 | 2021-06-08 | 中国科学院理化技术研究所 | A kind of BaHgGeSe4 nonlinear optical crystal and its preparation method and application |
CN110578173A (en) * | 2019-10-25 | 2019-12-17 | 河北大学 | A kind of nonlinear optical crystal strontium lithium silicon sulfur and its preparation method and application |
CN111118594A (en) * | 2020-01-16 | 2020-05-08 | 中国科学院上海硅酸盐研究所 | Nonlinear optical crystal material and preparation method and application thereof |
CN111118594B (en) * | 2020-01-16 | 2021-08-31 | 中国科学院上海硅酸盐研究所 | A kind of nonlinear optical crystal material and its preparation method and application |
CN112323145A (en) * | 2020-10-16 | 2021-02-05 | 扬州大学 | Infrared nonlinear optical crystal KAg3Ga8Se14 and its preparation method and use |
CN112323145B (en) * | 2020-10-16 | 2024-02-13 | 扬州大学 | Infrared nonlinear optical crystal KAg 3 Ga 8 Se 14 Method for producing the same and use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107399722B (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107399722A (en) | Selenium silicon silver barium and selenium silicon silver barium mid and far infrared nonlinear optical crystal and preparation method and purposes | |
CN103866391B (en) | Infrared non-linear optics powder and monocrystal selenium germanium gallium lead | |
CN104630891B (en) | A kind of Infrared nonlinear optical single crystal sulfur tellurium indium barium | |
Jiang et al. | Large crystal growth and new crystal exploration of mid-infrared second-order nonlinear optical materials | |
CN107022793B (en) | A kind of infrared nonlinear optical crystal, preparation method and application | |
CN110578173B (en) | A kind of nonlinear optical crystal strontium lithium silicon sulfur and its preparation method and application | |
CN102383196B (en) | Nonlinear optical crystal sulfuration gallium germanium barium and growing method and purposes | |
CN104532352B (en) | A kind of non-linear optical crystal material, its preparation method and application | |
WO2017132815A1 (en) | Infrared nonlinear optical crystals, preparation method therefor, and applications thereof | |
CN105951181A (en) | Crystal material, method for preparing same and application of crystal material used as infrared nonlinear optical material | |
CN103590108B (en) | Infrared non-linear optical monocrystal sulfur tin barium | |
WO2016086425A1 (en) | Nonlinear optical crystal material, method for preparation thereof, and application thereof | |
CN103572372B (en) | Infrared nonlinear optical single crystal selenium gallium tin | |
CN108070906A (en) | Non-linear optical crystal of iodic acid germanium lithium and its preparation method and application | |
CN107557868A (en) | Sulphur germanium cadmium sodium and sulphur germanium cadmium sodium infrared nonlinear optical crystal and preparation method and application | |
CN108004596B (en) | Compound sulfur-silicon-zinc-lithium and sulfur-silicon-zinc-lithium infrared nonlinear optical crystal, preparation method and application | |
CN102191554B (en) | A Class of Infrared Nonlinear Optical Crystal Ln4GaSbS9 | |
CN103194799B (en) | Infrared nonlinear optical single crystal sulphur gallium tin | |
CN110777434B (en) | Mixed anion infrared nonlinear optical crystal/powder and preparation method thereof | |
CN106978630A (en) | Selenium copper silicon barium and selenium copper silicon barium mid and far infrared nonlinear optical crystal and preparation method and purposes | |
CN103060917B (en) | BaGa2SiS6Compound and BaGa2SiS6Nonlinear optical crystal and its preparation method and use | |
CN105603531B (en) | A kind of middle infrared nonlinear optical crystal, its preparation method and application | |
CN107557867B (en) | Sulphur tin zinc sodium and sulphur tin zinc sodium mid and far infrared nonlinear optical crystal and preparation method and application | |
CN106192002B (en) | Rubidium boron carbon oxygen iodine hydrogen and rubidium boron carbon oxygen iodine hydrogen nonlinear optical crystal and preparation method and purposes | |
CN108588840B (en) | Barium borosulfide mid-far infrared nonlinear optical crystal and preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |