CN107395548A - 一种基于阵列天线的qam调制信号发射方法 - Google Patents

一种基于阵列天线的qam调制信号发射方法 Download PDF

Info

Publication number
CN107395548A
CN107395548A CN201710650757.9A CN201710650757A CN107395548A CN 107395548 A CN107395548 A CN 107395548A CN 201710650757 A CN201710650757 A CN 201710650757A CN 107395548 A CN107395548 A CN 107395548A
Authority
CN
China
Prior art keywords
mrow
qam
bpsk
msub
bpsk symbols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710650757.9A
Other languages
English (en)
Other versions
CN107395548B (zh
Inventor
贺寓东
刘友江
杜念通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201710650757.9A priority Critical patent/CN107395548B/zh
Publication of CN107395548A publication Critical patent/CN107395548A/zh
Application granted granted Critical
Publication of CN107395548B publication Critical patent/CN107395548B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种基于阵列天线的QAM调制信号发射方法,涉及无线电通信技术领域。本发明将QAM调制信号分解为多个独立的BPSK调制信号,经饱和功率放大器放大后由阵列天线同时向外辐射,通过空间功率合成在期望方向上产生QAM调制信号,在其它方向上的调制星座图则会产生畸变,可实现QAM调制信号的高效线性发射,降低了发射机的热损耗,并具有保密通信功能。

Description

一种基于阵列天线的QAM调制信号发射方法
技术领域
本发明涉及无线电通信技术领域,更具体地说涉及一种基于阵列天线的QAM调制信号的发射方法。
背景技术
正交幅度调制(quadratic amplitude modulation,QAM)是一种幅度与相位联合调制技术,具有很高的频谱效率。对于当前日益紧张的频谱资源而言,QAM是一种非常重要的调制方式,在移动通信、卫星通信等领域都有着广泛的应用。QAM是一种非恒包络调制技术,功率放大器的非线性会使QAM信号产生严重失真,影响信号的接收解调。因此,QAM调制对功率放大器的线性度提出了很高的要求。
QAM信号可看作是两路正交的多电平振幅键控信号的叠加,传统的QAM调制信号发射机直接用功率放大器放大QAM调制信号,为控制QAM信号的非线性失真,功率放大器必须工作在回退状态,导致功率放大器的效率很低,大部分功率都通过发热而损失,给发射机的设计带来很大的挑战。
国家知识产权局于2005年1月5日,公开了一件公开号为CN1183730C,名称为“用于QAM编码数据的发射机”的发明专利,该发明专利公开了一种高效的16QAM调制信号发射方法,将16QAM信号分解为两个QPSK信号,分别经饱和功率放大器放大并按比例进行缩放,通过功率合成器将两支路信号进行合并。该方法对功率合成器的设计有很高的要求,也会带来一定的功率合成损耗。文献“卫星通信系统中适用于16QAM信号的一种预失真方法”针对宽带卫星通信系统中由记忆功率放大器引起的16QAM信号非线性失真问题,提出了一种基于通用记忆多项式模型的预失真线性化系统,使用QR分解递归最小二乘算法动态更新预失真参数。功率放大器的非线性模型以及自适应算法直接影响数字预失真系统的性能,构建可靠稳定并且可硬件实现的自适应算法仍有很大的难度。现有技术方案还无法很好的解决QAM信号的高效线性发射问题。
发明内容
为了克服上述现有技术中存在的缺陷和不足,本发明提供了一种基于阵列天线的QAM调制信号发射方法,本发明将QAM调制信号分解为多个独立的BPSK调制信号,经饱和功率放大器放大后由阵列天线同时向外辐射,通过空间功率合成在期望方向上产生QAM调制信号,在其它方向上的调制星座图则会产生畸变,可实现QAM调制信号的高效线性发射,降低了发射机的热损耗,并具有保密通信功能。
为了解决上述现有技术中存在的问题,本发明是通过下述技术方案实现的:
一种基于阵列天线的QAM调制信号发射方法,其特征在于:包括如下步骤:
A、对信息序列进行符号映射得到QAM符号;
B、对QAM符号进行BPSK符号分解,并将分解得到的BPSK符号进行天线映射;分解得到的BPSK符号包括同相支路BPSK符号和正交支路BPSK符号;
C、对各支路BPSK符号进行成形滤波,得到BPSK基带调制信号;
D、各支路BPSK基带调制信号通过数字上变频与相位控制单元,得到多通道数字中频调制信号;
E、多通道数字中频调制信号通过多通道同步数模转换器,得到多通道模拟中频调制信号;
F、多通道模拟中频调制信号经射频前段进行模拟上变频与功率放大,而后传输至阵列天线对外辐射。
所述A步骤中,对信息序列进行符号映射得到QAM符号,具体是指:对信息序列进行串并转换,每L比特信息映射为一个M-QAM符号,其中M=2L;其表达式为:
x(n)=mI(n)+jmQ(n);其中x(n)为基带M-QAM符号,mI(n)为同相支路基带数据,mI(n)=±1,±3,…,±(2L/2-1);
mQ(n)为正交支路基带数据,mQ(n)=±1,±3,…,±(2L/2-1)。
所述B步骤中对QAM符号进行BPSK符号分解,具体是指:将A步骤中得到的M-QAM符号分解为多个BPSK符号,具体表示如下:
其中,bIk(n)为同相支路BPSK符号,bQk(n)为正交支路BPSK符号。
所述BPSK符号分解,是通过查找表的方式实现,所述同向支路与正交支路的BPSK符号分解由两个独立的查找表实现。
单个查找表的输入地址位宽为L/2,输出数据位宽为2L/2-1。
所述将分解得到的BPSK符号进行天线映射,具体是指:将BPSK符号进行随机排列,对应到天线发射通道。
所述C步骤中,对各支路BPSK符号进行成形滤波,具体是指,通过成形滤波器对各支路BPSK符号进行成形滤波,所述成形滤波器为根升余弦滤波器。
所述D步骤中,对各支路BPSK基带调制信号通过数字上变频与相位控制单元,具体是指:根据阵列流形、期望方向以及天线映射关系,确定各支路的移相值θIk与θQk,k=1,2,…,2L/2-1;对数字上变频产生的同相与正交中频载波进行相位控制,得到相位补偿后的同相与正交中频载波cos(w0t+θIk)、sin(w0t+θQk);各支路基带调制信号分别与对应的中频载波相乘,即可得到各支路数字中频调制信号;其数学表达式为:
sIk_IF(t)=sIk(t)·cos(w0t+θIk)
sQk_IF(t)=sQk(t)·sin(w0t+θQk)
其中,sIk(t)与sIk_IF(t)分别为第k个同相支路的基带与中频调制信号,sQk(t)与sQk_IF(t)分别为第k个正交支路的基带与中频调制信号,k=1,2,…,2L/2-1。
与现有技术相比,本发明所带来的有益的技术效果表现在:
1、本发明将非恒包络QAM调制信号分解为多个恒包络BPSK调制信号,通过空间功率合成形成QAM调制信号,提高了功率放大器的效率与多通道功率合成效率。将各BPSK调制信号随机映射至各天线单元发射通道,并根据阵列流形、期望方向以及天线映射关系对其进行相位控制,使得在期望方向上形成QAM调制信号,在其它方向上的调制星座图则产生畸变,提高了通信系统的保密性能。
2、本发明创造性的利用阵列天线同时辐射多个独立的BPSK调制信号,通过空间功率合成产生QAM调制信号,与现有技术相比,不需要额外的功率合成器,实现了QAM调制信号的高效线性发射。
3、本发明中,将各BPSK调制信号随机映射至各天线单元发射通道,并根据阵列流形、期望方向以及天线映射关系对其进行相位控制,在期望方向上形成QAM调制信号,在其它方向上的调制星座图则会产生畸变,具有保密通信的功能。
4、本发明中,将QAM调制信号分解为多个独立的BPSK调制信号,经过饱和功率放大器放大,各支路功率放大器工作状态一致,不需要按比例进行缩放。
附图说明
图1为本发明阵列天线QAM调制信号发射机总体实现框图;
图2为本发明BPSK符号分解单元实现框图;
图3为本发明数字上变频与相位控制单元实现框图。
具体实施方式
实施例1
作为本发明一较佳实施例,参照说明书附图1-3,本实施例公开了:
一种基于阵列天线的QAM调制信号发射方法,其特征在于:包括如下步骤:
A、对信息序列进行符号映射得到QAM符号;
B、对QAM符号进行BPSK符号分解,并将分解得到的BPSK符号进行天线映射;分解得到的BPSK符号包括同相支路BPSK符号和正交支路BPSK符号;
C、对各支路BPSK符号进行成形滤波,得到BPSK基带调制信号;
D、各支路BPSK基带调制信号通过数字上变频与相位控制单元,得到多通道数字中频调制信号;
E、多通道数字中频调制信号通过多通道同步数模转换器,得到多通道模拟中频调制信号;
F、多通道模拟中频调制信号经射频前段进行模拟上变频与功率放大,而后传输至阵列天线对外辐射。
本实施例将非恒包络QAM调制信号分解为多个恒包络BPSK调制信号,通过空间功率合成形成QAM调制信号,提高了功率放大器的效率与多通道功率合成效率。将各BPSK调制信号随机映射至各天线单元发射通道,并根据阵列流形、期望方向以及天线映射关系对其进行相位控制,使得在期望方向上形成QAM调制信号,在其它方向上的调制星座图则产生畸变,提高了通信系统的保密性能。
实施例2
作为本发明又一较佳实施例,参照说明书附图1-3,本实施例公开了:
基于阵列天线的QAM调制信号发射机实现框图如图1所示,主要由数字分系统、射频分系统以及阵列天线组成。其硬件架构与传统数字阵列发射机相同,不同之处在于数字分系统部分。传统数字阵列发射机中各天线单元辐射的是QAM调制信号,通过控制各天线单元信号的相位,使得在期望方向上的信号功率最大;本发明中各天线单元辐射的是独立的BPSK调制信号,通过控制各天线单元信号的相位,在期望方向上产生QAM调制信号,在其它方向上的调制星座图则会产生畸变。具体实现方案如下:
A、对信息序列进行符号映射得到QAM符号;
对信息序列进行串并转换,每L比特信息映射为一个M-QAM(M=2L)符号,其表达式为:
x(n)=mI(n)+jmQ(n)
其中x(n)为基带M-QAM符号,mI(n)为同相支路基带数据,mQ(n)为正交支路基带数据,mI(n)=±1,±3,…,±(2L/2-1),mQ(n)=±1,±3,…,±(2L/2-1);
B、对QAM符号进行BPSK符号分解,并将分解得到的BPSK符号进行天线映射;
分解得到的BPSK符号包括同相支路BPSK符号和正交支路BPSK符号;
将M-QAM符号分解为多个BPSK符号,表示如下:
其中bIk(n)为同相支路BPSK符号,bQk(n)为正交支路BPSK符号;
BPSK符号分解通过查找表的方式实现,其实现框图如图2所示。同相支路与正交支路的BPSK符号分解由两个独立的查找表实现,可以降低硬件资源消耗。单个查找表的输入地址位宽为L/2,输出数据位宽为2L/2-1。
将2L/2+1-2个BPSK符号进行随机排列,对应到2L/2+1-2个天线发射通道。这样可以增加非期望方向上合成信号星座图的随机性,从而提高系统的保密性能。
C、对各支路BPSK符号进行成形滤波,得到BPSK基带调制信号;
D、各支路BPSK基带调制信号通过数字上变频与相位控制单元,得到多通道数字中频调制信号;
数字上变频与相位控制单元实现框图如图3所示。根据阵列流形、期望方向以及天线映射关系,确定各支路的移相值θIk与θQk,k=1,2,…,2L/2-1。对DDS产生的同相与正交中频载波进行相位控制,得到相位补偿后的同相与正交中频载波cos(w0t+θIk)、sin(w0t+θQk)。各支路基带调制信号分别与对应的中频载波相乘,即可得各支路数字中频调制信号。其数学表达式如下:
sIk_IF(t)=sIk(t)·cos(w0t+θIk)
sQk_IF(t)=sQk(t)·sin(w0t+θQk)
其中sIk(t)与sIk_IF(t)分别为第k个同相支路的基带与中频调制信号,sQk(t)与sQk_IF(t)分别为第k个正交支路的基带与中频调制信号,k=1,2,…,2L/2-1。
E、多通道数字中频调制信号通过多通道同步数模转换器,得到多通道模拟中频调制信号;
F、多通道模拟中频调制信号经射频前段进行模拟上变频与功率放大,而后传输至阵列天线对外辐射。
实施例3
作为本发明又一较佳实施例,参照说明书附图1-3,本实施例公开了:
在本实施例中,以基于六元均匀直线阵列天线的16QAM调制信号发射机为例,其实现的步骤如下:
BPSK符号分解与天线映射
将16QAM信号分解为6个BPSK符号,如下所示:
mI/mQ bI1/bI2 bI2/bQ2 bI3/bQ3
-3 -1 -1 -1
-1 1 -1 -1
1 1 1 -1
3 1 1 1
将6个BPSK符号进行随机排列,与6个天线单元一一对应,共有种映射关系,具体实现中可随机选择。
2)相位控制
对于六元均匀直线阵列,设阵元间距为d,载波波长为λ。则阵列流形矢量为列向量a(θ),θ为期望方向,其中第k个元素为
根据BPSK符号与天线单元的映射关系,设bIk对应第ki个天线单元,ki=1,2,…,6,bQk对应第kq个天线单元,kq=1,2,…,6。则其移相值分别为:
对于16QAM调制信号,阵列天线并不局限于六元均匀直线阵列。对于更多单元的阵列天线,可将其分为多个子阵,每个子阵包含六个天线单元,各子阵内均进行上述处理即可。
在本实施例中,将非恒包络QAM调制信号分解为多个恒包络BPSK调制信号,通过空间功率合成形成QAM调制信号,提高了功率放大器的效率与多通道功率合成效率。将各BPSK调制信号随机映射至各天线单元发射通道,并根据阵列流形、期望方向以及天线映射关系对其进行相位控制,使得在期望方向上形成QAM调制信号,在其它方向上的调制星座图则产生畸变,提高了通信系统的保密性能。

Claims (8)

1.一种基于阵列天线的QAM调制信号发射方法,其特征在于:包括如下步骤:
A、对信息序列进行符号映射得到QAM符号;
B、对QAM符号进行BPSK符号分解,并将分解得到的BPSK符号进行天线映射;分解得到的BPSK符号包括同相支路BPSK符号和正交支路BPSK符号;
C、对各支路BPSK符号进行成形滤波,得到BPSK基带调制信号;
D、各支路BPSK基带调制信号通过数字上变频与相位控制单元,得到多通道数字中频调制信号;
E、多通道数字中频调制信号通过多通道同步数模转换器,得到多通道模拟中频调制信号;
F、多通道模拟中频调制信号经射频前段进行模拟上变频与功率放大,而后传输至阵列天线对外辐射。
2.如权利要求1所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述A步骤中,对信息序列进行符号映射得到QAM符号,具体是指:对信息序列进行串并转换,每L比特信息映射为一个M-QAM符号,其中M=2L;其表达式为:
x(n)=mI(n)+jmQ(n);其中x(n)为基带M-QAM符号,mI(n)为同相支路基带数据,mI(n)=±1,±3,…,±(2L/2-1);
mQ(n)为正交支路基带数据,mQ(n)=±1,±3,…,±(2L/2-1)。
3.如权利要求2所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述B步骤中对QAM符号进行BPSK符号分解,具体是指:将A步骤中得到的M-QAM符号分解为多个BPSK符号,具体表示如下:
<mrow> <msub> <mi>m</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>L</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>b</mi> <mrow> <mi>I</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mi>I</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;PlusMinus;</mo> <mn>1</mn> </mrow>
<mrow> <msub> <mi>m</mi> <mi>Q</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>L</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>b</mi> <mrow> <mi>Q</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mi>Q</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;PlusMinus;</mo> <mn>1</mn> </mrow>
其中,bIk(n)为同相支路BPSK符号,bQk(n)为正交支路BPSK符号。
4.如权利要求1或3所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述BPSK符号分解,是通过查找表的方式实现,所述同向支路与正交支路的BPSK符号分解由两个独立的查找表实现。
5.如权利要求4所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:单个查找表的输入地址位宽为L/2,输出数据位宽为2L/2-1。
6.如权利要求1或3所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述将分解得到的BPSK符号进行天线映射,具体是指:将BPSK符号进行随机排列,对应到天线发射通道。
7.如权利要求1所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述C步骤中,对各支路BPSK符号进行成形滤波,具体是指,通过成形滤波器对各支路BPSK符号进行成形滤波,所述成形滤波器为根升余弦滤波器。
8.如权利要求1所述的一种基于阵列天线的QAM调制信号发射方法,其特征在于:所述D步骤中,对各支路BPSK基带调制信号通过数字上变频与相位控制单元,具体是指:根据阵列流形、期望方向以及天线映射关系,确定各支路的移相值θIk与θQk,k=1,2,…,2L/2-1;对数字上变频产生的同相与正交中频载波进行相位控制,得到相位补偿后的同相与正交中频载波cos(w0t+θIk)、sin(w0t+θQk);各支路基带调制信号分别与对应的中频载波相乘,即可得到各支路数字中频调制信号;其数学表达式为:
sIk_IF(t)=sIk(t)·cos(w0t+θIk)
sQk_IF(t)=sQk(t)·sin(w0t+θQk)
其中,sIk(t)与sIk_IF(t)分别为第k个同相支路的基带与中频调制信号,sQk(t)与sQk_IF(t)分别为第k个正交支路的基带与中频调制信号,k=1,2,…,2L/2-1。
CN201710650757.9A 2017-08-02 2017-08-02 一种基于阵列天线的qam调制信号发射方法 Expired - Fee Related CN107395548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710650757.9A CN107395548B (zh) 2017-08-02 2017-08-02 一种基于阵列天线的qam调制信号发射方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710650757.9A CN107395548B (zh) 2017-08-02 2017-08-02 一种基于阵列天线的qam调制信号发射方法

Publications (2)

Publication Number Publication Date
CN107395548A true CN107395548A (zh) 2017-11-24
CN107395548B CN107395548B (zh) 2020-05-05

Family

ID=60343322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710650757.9A Expired - Fee Related CN107395548B (zh) 2017-08-02 2017-08-02 一种基于阵列天线的qam调制信号发射方法

Country Status (1)

Country Link
CN (1) CN107395548B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361637A (zh) * 2018-12-03 2019-02-19 西安电子科技大学 用于高维信号传输的正交空间编码调制系统及方法
CN110708268A (zh) * 2019-09-25 2020-01-17 维沃移动通信有限公司 一种信号调制装置及终端
WO2021238609A1 (zh) * 2020-05-29 2021-12-02 华为技术有限公司 应用电磁超表面阵列的数据发送方法、装置及系统
CN116865774A (zh) * 2023-09-04 2023-10-10 中国电子科技集团公司第十四研究所 一种基于饱和功放的调幅信号产生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
CN101547058A (zh) * 2008-03-27 2009-09-30 电子科技大学 基于分层编码调制的高阶调制实现方法与装置
CN102624673A (zh) * 2011-01-28 2012-08-01 中兴通讯股份有限公司 一种正交调制信号的处理方法及系统
WO2015065215A1 (en) * 2013-10-28 2015-05-07 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Transmission method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040540A (zh) * 2004-12-21 2007-09-19 中兴通讯股份有限公司 一种编码调制解调系统及其信号的发射接收方法
CN101547058A (zh) * 2008-03-27 2009-09-30 电子科技大学 基于分层编码调制的高阶调制实现方法与装置
CN102624673A (zh) * 2011-01-28 2012-08-01 中兴通讯股份有限公司 一种正交调制信号的处理方法及系统
WO2015065215A1 (en) * 2013-10-28 2015-05-07 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Transmission method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜娜: "一种低复杂度的空时多用户迭代检测方案", 《电子与信息学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361637A (zh) * 2018-12-03 2019-02-19 西安电子科技大学 用于高维信号传输的正交空间编码调制系统及方法
CN109361637B (zh) * 2018-12-03 2020-09-08 西安电子科技大学 用于高维信号传输的正交空间编码调制系统及方法
CN110708268A (zh) * 2019-09-25 2020-01-17 维沃移动通信有限公司 一种信号调制装置及终端
CN110708268B (zh) * 2019-09-25 2021-08-27 维沃移动通信有限公司 一种信号调制装置及终端
US11817992B2 (en) 2019-09-25 2023-11-14 Vivo Mobile Communication Co., Ltd. Signal modulation device and terminal
WO2021238609A1 (zh) * 2020-05-29 2021-12-02 华为技术有限公司 应用电磁超表面阵列的数据发送方法、装置及系统
CN116865774A (zh) * 2023-09-04 2023-10-10 中国电子科技集团公司第十四研究所 一种基于饱和功放的调幅信号产生方法
CN116865774B (zh) * 2023-09-04 2023-11-14 中国电子科技集团公司第十四研究所 一种基于饱和功放的调幅信号产生方法

Also Published As

Publication number Publication date
CN107395548B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN107395548A (zh) 一种基于阵列天线的qam调制信号发射方法
US10069467B1 (en) Apparatus for quantized linear amplification with nonlinear amplifiers
CN102413085B (zh) 一种数字预失真方法及装置
US10284405B2 (en) Transmitter architecture for massive-MIMO
Rudolph Out-of-band emissions of digital transmissions using Kahn EER technique
US10270478B2 (en) Non-linear transmitter pre-coding
CN1863183B (zh) 约束包络发射机及其方法
CN110213193B (zh) 不等概高阶星座点设计方法与解映射方法
CN106506417A (zh) 一种窄带反馈的数字预失真系统与方法
CN112714090B (zh) 一种加权分数傅里叶变换扩展混合载波传输方法
US20030002593A1 (en) M-ary signal constellations suitable for non-linear amplification
US10659276B2 (en) Transmission method, transmission device, reception method, and reception device
Guerreiro et al. Massive MIMO with nonlinear amplification: Signal characterization and performance evaluation
US6574285B2 (en) 128-ary signal constellations suitable for non-linear amplification
CN106209717A (zh) 一种提升功放能效的自适应极化‑qam联合调制方法
US20120177141A1 (en) Transmission device, reception device, transmission method and reception method for wireless communication system
TW201445914A (zh) 應用於多輸入多輸出通訊系統之雙向中繼傳輸之裝置及方法
Arabian et al. On peak-to-average power ratio optimization for coded APSK
US10237114B2 (en) Transmitter
JP2020522928A (ja) 予歪処理方法および装置
CN106712728A (zh) 一种用于卫星通信中的功放预失真补偿的方法
CN103916088A (zh) 一种射频信号的数字矫正装置及其矫正方法
CN204886946U (zh) 基于数字多载波合成230MHz电力专网通信系统中频处理单元
CN102523190B (zh) 基于门限和双曲正切函数的压扩变换方法
CN203014828U (zh) 一种射频信号的数字矫正装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

Termination date: 20200802

CF01 Termination of patent right due to non-payment of annual fee