CN107393983A - 含极化调控层的氮化物量子阱红外探测器及其制备方法 - Google Patents

含极化调控层的氮化物量子阱红外探测器及其制备方法 Download PDF

Info

Publication number
CN107393983A
CN107393983A CN201710763444.4A CN201710763444A CN107393983A CN 107393983 A CN107393983 A CN 107393983A CN 201710763444 A CN201710763444 A CN 201710763444A CN 107393983 A CN107393983 A CN 107393983A
Authority
CN
China
Prior art keywords
layer
regulation
electrode contact
infrared detector
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710763444.4A
Other languages
English (en)
Other versions
CN107393983B (zh
Inventor
康健彬
李沫
李倩
王旺平
陈飞良
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201710763444.4A priority Critical patent/CN107393983B/zh
Publication of CN107393983A publication Critical patent/CN107393983A/zh
Application granted granted Critical
Publication of CN107393983B publication Critical patent/CN107393983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种含极化调控层的氮化物量子阱红外探测器及其制备方法,该探测器的结构包括下电极接触层、功能层和上电极接触层,功能层由周期性AlxGa1‑xN/AlyGa1‑yN/AlzGa1‑zN复合异质结构构成,其中0≤x<z<y≤1;本发明提供的量子阱红外探测器通过在量子势阱层和量子势垒层之间引入一层极化调控层,将对势垒层的极化电场产生有效屏蔽,能提高光生电子在准连续态能级上的迁移效率,进而提高器件的响应信号强度,有望解决目前中(远)红外波段的AlGaN基量子阱红外探测器只能工作在极低温度下的问题。

Description

含极化调控层的氮化物量子阱红外探测器及其制备方法
技术领域
本发明属于半导体光电探测器领域,具体涉及一种含极化调控层的氮化物量子阱红外探测器及其制备方法。
背景技术
单一芯片上双波段、甚至多波段探测是未来探测技术发展的主要方向。从探测波段来看,紫外和红外探测技术是目前应用需求较广、发展较为成熟的两种探测技术。若在同一个芯片上集成紫外和中(远)红外两种波段的探测技术,则既能发挥紫外探测技术低背景噪声的优势,又能发挥红外探测技术远距离的优势,对于背景环境复杂的应用场景尤其适用。考虑到紫外和红外波段的波长跨度较大,选取合适的光敏材料是关键。AlGaN基第三代宽禁带半导体材料带隙从3.4-6.2 eV可调,是理想的制作紫外探测器件的材料;另一方面,GaN/AlGaN量子阱材料结构的成功制备使得氮化物材料探测红外光波成为可能。因此,要实现在单一芯片上集成紫外和红外探测技术,AlGaN材料是首选。
从目前的技术现状来分析,基于AlGaN材料的紫外探测技术相对成熟,且由此制成的紫外探测器件已得到商业应用。而利用GaN/AlGaN量子阱子带能级跃迁探测红外光的技术则比较滞后,器件性能不甚理想,主要体现在光电流响应信号弱和暗电流大。暗电流大主要是由材料晶体质量差所致,该问题的解决将很大程度上依赖于材料外延技术的进步。对于光电流响应信号弱,主要是由于氮化物材料的极化效应所致。量子势垒层能带在极化电场作用下发生倾斜形成类三角形分布,而激发态能级主要分布在该类三角形能带区域,当位于激发态能级上的光生电子在发生迁移行为时,将会受到势垒层较强烈的阻挡作用,导致光电流信号不能被外电路检测。根据文献报道,以此方式工作的AlGaN基量子阱中红外探测器需要在极低的温度下(~4 K)才能检测出有效的光电流信号。文献Rong, X. et al.Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells. Sci.Rep. 5, 14386 (2015) 中尝试引入台阶型势垒结构调控极化电场,虽然势垒层的极化电场得到抑制,但光生电子需要隧穿通过高Al组分的AlGaN插入层,导致光电流响应信号也只有在5 K的超低温下才能被观测到。因此,如何提升AlGaN基量子阱红外探测器在中(远)红外波段的光电流响应信号强度,实现其在较高温度制冷甚至无制冷环境中工作是目前急需解决的难题。
发明内容
本发明提供了一种含极化调控层的氮化物量子阱红外探测器及其制备方法,是在传统的AlGaN基量子阱结构的量子势阱层和量子势垒层之间插入一层稍高Al组分的极化调控层,目的是实现光生电子在激发态能级上的无阻碍迁移,不仅解决了目前工作于中(远)红外波段的AlGaN基量子阱红外探测器光电流响应信号弱的问题,而且为发展实用化单芯片集成紫外-红外双波段探测器件奠定基础。
本发明的技术方案如下:
含极化调控层的氮化物量子阱红外探测器,其特征在于,按照材料结构自下至上依次包括:衬底、缓冲层、成核层、下电极接触层、功能层和上电极接触层。
所述衬底可以为Al2O3、GaN、AlN、Si等材料中的任意一种,用于探测器材料结构生长。
所述缓冲层、成核层、下电极接触层、功能层和上电极接触层所选材料均为AlGaN,Al组分任意可调,即Al在AlGaN材料中所占的比例任意可调,例如Al0.3Ga0.7N,Al组分为30%。
所述缓冲层的厚度为0.01 µm至10 µm,所述成核层的厚度为0.01 µm至0.5 µm,用于提高生长材料(即下电极接触层、功能层以及上电极接触层)的质量。
所述下电极接触层的n型掺杂浓度在1×1017 cm-3至5×1019 cm-3之间,厚度为0.1µm至2 µm,用于制作下欧姆接触电极。
所述功能层由周期性AlxGa1-xN/AlyGa1-yN/ AlzGa1-zN复合异质结构构成,其中0≤x<z<y≤1,周期数为1至200;AlxGa1-xN为量子势阱层,厚度为0.0005 µm至0.01 µm,该层材料n型掺杂,掺杂浓度为5×1017cm-3至5×1019 cm-3;AlyGa1-yN为极化调控层,厚度为0.002 µm至0.05 µm;AlzGa1-zN 为量子势垒层,厚度为0.02 µm至0.2 µm,该功能层为红外光子产生吸收和光生电子发生输运的区域。
所述上电极接触层的n型掺杂浓度为1×1017 cm-3至5×1019 cm-3,厚度为0.05 µm至0.5 µm,用于制作上欧姆接触电极。
本发明还提供了制备上述含极化调控层的基氮化物量子阱红外探测器的方法,其步骤如下:
(1)在衬底上生长缓冲层;
(2)在缓冲层上生长成核层;
(3)在成核层上生长下电极接触层;
(4)在下电极接触层的上面生长功能层;
(5)在功能层之上生长上电极接触层;
(6)在上电极接触层和下电极接触之上制作上、下欧姆接触电极;
(7)将步骤(5)制作完成后的器件的衬底一侧面制成光滑斜面或者在上电极接触层上制作衍射光栅,以实现红外光的背面斜入射耦合或者正面垂直入射耦合。
本发明的有益效果如下:
(1)本发明提供的AlGaN基量子阱中(远)红外探测器响应信号强度能得到大幅度增强,有望解决现有器件只能工作在极低温度下的问题。由于在功能层中引入了高Al组分的极化调控层,使得本应施加在量子势垒层上的极化电场大部分施加到了极化调控层上,有助于减小势垒层中的极化场强。另一方面,若将量子势阱层和极化调控层看作一个整体,在器件结构设计时将势垒层、下电极接触层和上电极接触层的Al组分均设置为与上述整体相同或者接近的平均Al组分,则可以消除压应变带来的极化电场的影响,使得功能层基本处于平带状态,以保证每个量子势阱的基态能级上有足够的电子填充。该器件结构的巧妙之处在于对极化调控层的Al组分和厚度的优化选取,合适的材料参数刚好能平衡量子势垒层中的极化电场,同时极化调控层又不会由于较高的Al组分对处于激发态能级上的光生电子的迁移形成阻挡势垒,以此实现对光电流信号的有效收集。
(2)本发明提供的AlGaN基量子阱中(远)红外探测器暗电流能得到一定抑制。器件工作时的跃迁模式属于从束缚态能级到准连续态能级的跃迁,激发态能级刚好处于势阱口,与从束缚态能级到连续态能级的跃迁相比能够减小热噪声带来的影响。另外,由于量子势垒层的极化电场被几乎完全屏蔽,能带不会出现倾斜,因此进一步增加势垒层的厚度也不会影响光生电子的迁移,而较厚的势垒层厚度一是可以增大器件电阻,其次是可以减小电子在不同量子势阱之间的隧穿。
附图说明
图1为本发明功能层的有三个周期的导带能带结构示意图。
图2 为实施例中本发明的截面结构示意图。
图3为实施例中本发明有三个周期的导带能带结构和电子波函数分布示意图。
其中:101-量子势阱层,103-极化调控层,105-量子势垒层,107-量子阱基态能级,109-量子阱激发态能级,201-衬底,203-缓冲层,205-成核层,207-下电极接触层,209-上电极接触层,211-下欧姆接触电极,213-上欧姆接触电极,301-费米能级,303-基态能级波函数,305-激发态能级波函数,307-准连续态能级。
具体实施方式
实施例
为了更清晰地展示本发明器件的积极效果,图1给出了功能层在理想情况下的能带结构示意图,同时为了形成对比,还给出了未引入极化调控层的能带结构,如势垒层中的虚线所示。可以看到,未引入极化调控层时,势垒层能带在极化电场作用下呈单向倾斜状态,形成类三角形的能带区域,而激发态能级主要位于该能带区域内,由此将会对光生电子的迁移形成阻挡作用,影响对光电流的有效收集。当在量子势阱和量子势垒层中间引入一层比势垒层稍高Al组分的极化调控层时,势垒层中的极化电场主要“转移”到了极化调控层上,这时势垒层的能带接近拉平,而极化调控层发生大角度倾斜。通过合理设计各层材料的厚度和组分,保证激发态能级位于准连续态上,且尽量控制势垒层和极化调控层的导带带阶足够小,就可以实现光生电子的高效迁移。
器件工作时,量子势阱层基态能级上的电子在红外光的作用下直接跃迁到准连续态上,再在外电场的作用下向上电极接触层或下电极接触层迁移。虽然势垒层和极化调控层的导带带阶会对光生电子的迁移产生一定阻挡,但由于阻挡势垒很低,光生电子理论上可以很容易越过该势垒。另外,利用能带工程对量子势阱层、极化调控层和量子势垒层进行灵活设计,可以实现对各个中(远)红外波段的探测。
图2所示为本实施例的器件结构截面示意图,在该实施例中红外光采用背面侧入射耦合方式,红外光入射时垂直于该斜面。该结构采用分子束外延技术(MBE)或金属有机化合物气相沉积技术(MOCVD)在蓝宝石衬底上生长,材料生长和器件制备流程如下:
(1)在蓝宝石衬底上生长3µm的AlN缓冲层;
(2)在AlN缓冲层上接着生长0.5 µm的Al0.28Ga0.72N成核层,以提高后续器件外延的晶体质量;
(3)在成核层上再生长600 nm的Al0.28Ga0.72N下电极接触层,n型掺杂浓度为1×1019cm-3
(4)在下电极接触层上再生长50个周期的GaN/Al0.36Ga0.64N/Al0.28Ga0.72N复合异质结构层,GaN量子势阱层厚度为1.5 nm,n型掺杂浓度为1×1019 cm-3,Al0.36Ga0.64N极化调控层厚度为5 nm,Al0.28Ga0.72N量子势垒层厚度为25 nm;
(5)随后再生长150 nm的n型Al0.28Ga0.72N上电极接触层,n型掺杂浓度为1×1019 cm-3
(6)采用光刻工艺和电感耦合等离子体(ICP)刻蚀工艺将材料样品的部分区域刻蚀至n型下电极接触层,形成直径为300 µm的圆形台面结构;
(7)采用磁控溅射的技术在台面结构之上和台面结构周围沉积厚度为20 nm/100 nm/30 nm/100 nm的Ti/Al/Ti/Au多层金属电极;
(8)制作电极后的样品在N2氛围中750℃退火15 s;
(9)再采用等离子体增强化学气相沉积(PECVD)技术在样品表面沉积250 nm SiO2或SiNx钝化保护层,采用反应离子刻蚀(RIE)技术将金属电极上的钝化保护层刻蚀掉;
(10)制作完成后的器件在衬底的底面一侧磨出45°角。
图3所示为根据实施例结构参数计算得到的三个周期功能层的导带示意图和电子波函数分布。量子势垒层、下电极接触层和上电极接触层AlGaN材料的Al组分均选取为28%,是为了使其与量子势阱层和极化调控层的平均Al组分保持一致,尽量抑制压电极化效应的影响。在该器件结构参数下,功能层的导带整体处于平带状态,量子势阱中基态能级的波函数在能量上均高于虚线所示的费米能级,这样可以保证基态能级上有足够的电子填充。此时第一激发态能级刚好处于量子势阱的导带口,与准连续态众多能级的波函数有较大的重叠积分,当光生电子从基态能级跃迁到第一激发态能级后,有较大的概率弛豫进入准连续态能级上。由于极化调控层的引入,量子势垒层内的极化场强几乎被消除,且极化调控层与势垒层的导带带阶只有约0.08 eV,光生电子跃迁到第一激发态能级后可以在准连续态上高效的迁移。在该设计中,基态能级与第一激发态能级的能量差约为0.282 eV,意味着将主要对峰值波长为4.4 µm的中红外光产生响应。

Claims (8)

1.含极化调控层的氮化物量子阱红外探测器,其特征在于,按照材料结构自下至上依次包括:衬底、缓冲层、成核层、下电极接触层、功能层和上电极接触层;所述缓冲层、成核层、下电极接触层、功能层和上电极接触层所选材料均为AlGaN,Al组分根据材料结构任意可调;所述功能层由周期性AlxGa1-xN/AlyGa1-yN/ AlzGa1-zN复合异质结构构成,其中0≤x<z<y≤1,周期数为1至200;所述AlxGa1-xN为量子势阱层,厚度为0.0005 µm至0.01 µm;所述AlyGa1-yN为极化调控层,厚度为0.002 µm至0.05 µm;所述AlzGa1-zN 为量子势垒层,厚度为0.02 µm至0.2 µm;所述功能层为红外光子产生吸收和光生电子发生输运的区域。
2.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述衬底为Al2O3、GaN、AlN、Si中的任意一种。
3.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述缓冲层的厚度为0.01 µm至10 µm。
4.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述成核层的厚度为0.01 µm至0.5 µm。
5.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述下电极接触层的n型掺杂浓度为1×1017 cm-3至5×1019 cm-3,厚度为0.1 µm至2 µm,用于制作下欧姆接触电极。
6.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述上电极接触层n型掺杂浓度在1×1017 cm-3至5×1019 cm-3之间,厚度为0.05 µm至0.5 µm,用于制作上欧姆接触电极。
7.根据权利要求1所述的含极化调控层的氮化物量子阱红外探测器,其特征在于:所述量子势阱层为n型掺杂,掺杂浓度在5×1017cm-3至5×1019 cm-3之间。
8.制备权利要求1-7中任一项所述含极化调控层的氮化物量子阱红外探测器的方法,其特征在于步骤如下:
1)在衬底上生长缓冲层;
2)在缓冲层上生长成核层;
3)在成核层上生长下电极接触层;
4)在下电极接触层上生长功能层;
5)在功能层之上生长上电极接触层;
6)在上电极接触层和下电极接触层之上分别制作上、下欧姆接触电极;
7)为了实现对红外光的耦合,将步骤(6)制作完成后的器件的衬底一侧面制成斜面或者在制作上欧姆接触电极之前在上电极接触层上制作一维光栅或二维光栅。
CN201710763444.4A 2017-08-30 2017-08-30 含极化调控层的氮化物量子阱红外探测器及其制备方法 Active CN107393983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710763444.4A CN107393983B (zh) 2017-08-30 2017-08-30 含极化调控层的氮化物量子阱红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710763444.4A CN107393983B (zh) 2017-08-30 2017-08-30 含极化调控层的氮化物量子阱红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107393983A true CN107393983A (zh) 2017-11-24
CN107393983B CN107393983B (zh) 2023-05-02

Family

ID=60348217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710763444.4A Active CN107393983B (zh) 2017-08-30 2017-08-30 含极化调控层的氮化物量子阱红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107393983B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429146A (zh) * 2019-08-07 2019-11-08 北京大学 一种非极性面氮化物量子阱红外探测器及其制备方法
CN113471326A (zh) * 2021-06-15 2021-10-01 中山大学 一种ⅲ族氮化物异质结光电探测器
WO2022261829A1 (zh) * 2021-06-15 2022-12-22 中山大学 一种ⅲ族氮化物异质结光电探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483130B1 (en) * 1999-03-24 2002-11-19 Honeywell International Inc. Back-illuminated heterojunction photodiode
CN102629637A (zh) * 2011-12-22 2012-08-08 清华大学 一种含量子级联结构的波长上转换器件
CN103346197A (zh) * 2013-06-24 2013-10-09 华中科技大学 一种高响应度的AlGaN基量子阱红外探测器及其制备方法
US20140231750A1 (en) * 2013-02-20 2014-08-21 The Trustees Of Princeton University Quantum well infrared photodetectors using ii-vi material systems
CN104409556A (zh) * 2014-12-05 2015-03-11 北京大学 一种氮化物复合势垒量子阱红外探测器及其制备方法
CN104733561A (zh) * 2015-03-23 2015-06-24 北京大学 一种新型氮化物量子阱红外探测器及其制备方法
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN207165585U (zh) * 2017-08-30 2018-03-30 中国工程物理研究院电子工程研究所 一种含极化调控层的AlGaN基量子阱红外探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483130B1 (en) * 1999-03-24 2002-11-19 Honeywell International Inc. Back-illuminated heterojunction photodiode
CN102629637A (zh) * 2011-12-22 2012-08-08 清华大学 一种含量子级联结构的波长上转换器件
US20140231750A1 (en) * 2013-02-20 2014-08-21 The Trustees Of Princeton University Quantum well infrared photodetectors using ii-vi material systems
CN103346197A (zh) * 2013-06-24 2013-10-09 华中科技大学 一种高响应度的AlGaN基量子阱红外探测器及其制备方法
CN104409556A (zh) * 2014-12-05 2015-03-11 北京大学 一种氮化物复合势垒量子阱红外探测器及其制备方法
CN104733561A (zh) * 2015-03-23 2015-06-24 北京大学 一种新型氮化物量子阱红外探测器及其制备方法
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN207165585U (zh) * 2017-08-30 2018-03-30 中国工程物理研究院电子工程研究所 一种含极化调控层的AlGaN基量子阱红外探测器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429146A (zh) * 2019-08-07 2019-11-08 北京大学 一种非极性面氮化物量子阱红外探测器及其制备方法
CN110429146B (zh) * 2019-08-07 2020-11-03 北京大学 一种非极性面氮化物量子阱红外探测器及其制备方法
CN113471326A (zh) * 2021-06-15 2021-10-01 中山大学 一种ⅲ族氮化物异质结光电探测器
WO2022261829A1 (zh) * 2021-06-15 2022-12-22 中山大学 一种ⅲ族氮化物异质结光电探测器

Also Published As

Publication number Publication date
CN107393983B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
Alaie et al. Recent advances in ultraviolet photodetectors
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
CN106415854B (zh) 包括n型和p型超晶格的电子装置
CN101872798B (zh) 一种紫外红外双色探测器及制作方法
CN102244135B (zh) 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN107393983A (zh) 含极化调控层的氮化物量子阱红外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
JP2009065142A (ja) 量子ドット型赤外線検知器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
CN206541827U (zh) 单片集成紫外‑红外双色雪崩光电二极管
CN207165585U (zh) 一种含极化调控层的AlGaN基量子阱红外探测器
Mensz et al. Design and implementation of bound-to-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature
CN207705208U (zh) 一种高线性增益红外雪崩光电二极管
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
CN108028294B (zh) 具有内场防护有源区的半导体器件
CN108470793A (zh) 紫外-红外双波段集成p-i-n型光电探测器
CN112635615B (zh) 具有多吸收量子阱的光伏型氮化物子带跃迁红外探测器
CN208062085U (zh) 一种紫外-红外双波段集成p-i-n型光电探测器
KR102473352B1 (ko) 광 검출 소자
Huang et al. Performance of back-illuminated In _ 0.09 Ga _ 0.91 N In 0.09 Ga 0.91 N-based p–i–n photodetector
CN108269866B (zh) 一种混合极性InGaN太阳能电池结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant