CN107375214B - 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法 - Google Patents

一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法 Download PDF

Info

Publication number
CN107375214B
CN107375214B CN201710625647.7A CN201710625647A CN107375214B CN 107375214 B CN107375214 B CN 107375214B CN 201710625647 A CN201710625647 A CN 201710625647A CN 107375214 B CN107375214 B CN 107375214B
Authority
CN
China
Prior art keywords
folic acid
drug
modified montmorillonite
preparation
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710625647.7A
Other languages
English (en)
Other versions
CN107375214A (zh
Inventor
张良珂
朱文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201710625647.7A priority Critical patent/CN107375214B/zh
Publication of CN107375214A publication Critical patent/CN107375214A/zh
Application granted granted Critical
Publication of CN107375214B publication Critical patent/CN107375214B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法,包括叶酸活性酯的制备,氨基修饰的蒙脱石的制备以及叶酸修饰蒙脱石纳米制剂的制备。本发明所制备的蒙脱石纳米制剂制备工艺简单,生产成本低,易于工业化生产。一方面,该新型纳米制剂具有一定的缓释作用,可提高药物的生物利用度,另一方面,制剂表面修饰叶酸分子可以实现对肿瘤细胞的主动靶向,降低药物的毒副作用,增强疗效,具有潜在的临床应用价值。

Description

一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法
技术领域
本发明属于医疗药物领域,具体涉及到一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法。
背景技术
靶向给药系统是药剂学研究领域中的热点之一。靶向给药能够选择性的将药物输送至靶标位置,增加疗效的同时减少药物对正常组织的毒副作用。研究表明,某些肿瘤细胞表面高度表达叶酸受体,叶酸与该位点结合呈可饱和性,高度特异性,而正常组织细胞表面相对低表达叶酸受体,与大分子抗体相比,叶酸属于小分子物质,具有易修饰、低免疫原性、化学及物理稳定性好,成本低等诸多优点,使其成为较理想的肿瘤靶向载体。近年来,纳米给药系统是靶向给药系统的研究重点之一。其中无机纳米材料由于具有化学及物理稳定性好、成本低、载药量高、生物相容性良好和表面易于修饰等优点,受到广泛的关注,被多方研究。蒙脱石是一种2:1型的层状硅铝酸盐,作为药用矿物已被多国药典收载,其特殊的带负电荷的层状结构使其具有较强的离子交换能力,高比表面积和强吸/脱附力的特性令其极有可能是一种性能优良的缓/控释制剂载体。在本发明中,通过本发明所阐述的方法步骤所制备的载药的叶酸修饰蒙脱石通过肿瘤部位的EPR效应进入肿瘤间质,从而叶酸与肿瘤细胞表面的叶酸受体特异性结合,然后通过叶酸受体介导进入到肿瘤细胞内,实现肿瘤主动靶向给药。
本发明所制备的载药的叶酸修饰蒙脱石纳米制剂可以实现主动肿瘤靶向作用,降低药物的毒副作用,增强药物的治疗作用。
发明内容
本发明的目的在于针对,提供一种新的载药的叶酸修饰蒙脱石纳米制剂及其制备方法。该新型载药的叶酸修饰蒙脱石纳米制剂在实现负载药物缓释作用的同时,还可通过修饰的叶酸的肿瘤靶向性实现主动靶向作用,由此降低药物的毒副作用,增强药物的治疗作用。
本发明的目的可以通过以下技术方案实现,但本发明并不仅限于下述技术:
步骤1:称取处方量的叶酸,三乙胺,N-羟基琥珀酰亚胺和二环己基碳二亚胺溶于有机溶剂,室温避光搅拌24h,得到活化的叶酸活性酯。
步骤2:称取处方量的蒙脱石K-10,于70℃加硫酸(1gMMT:10mL H2SO4)搅拌0.5h,离心后用水洗涤多次即得空白蒙脱石纳米粒。
步骤3:使用硅烷偶联剂修饰步骤2制得的空白蒙脱石纳米粒,得到氨基修饰的蒙脱土纳米粒。
步骤4:称取步骤1制得的叶酸活性酯和步骤3制得的氨基修饰的蒙脱石纳米粒,分散于无水二甲基亚砜中,搅拌反应24h,得到叶酸修饰的蒙脱石纳米粒。
步骤5:称取步骤4制得的叶酸修饰的蒙脱石纳米粒,分散于甲醇中,得到叶酸修饰的蒙脱石纳米混悬液,制备药物乙醇溶液,加入到上述制剂纳米混悬液中,搅拌吸附后旋转蒸发除去有机溶剂,得到载药的叶酸修饰蒙脱石纳米粒。
步骤6:建立人肝癌HepG-2细胞模型,采用四甲基偶氮唑盐(MTT)比色法研究载药的叶酸修饰蒙脱石纳米粒的细胞毒性。
本发明方法中,步骤1合成叶酸活性酯的试剂包括但不限于1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、二环己基碳二亚胺(DCC)、N-羟基琥珀酰亚胺(NHS)、4-二甲氨基吡啶(DMAP)、N,N-二异丙基碳二亚胺(DIC)、1-羟基苯并三唑(HOBT)。所用有机溶剂包括但不限于二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)、二氯甲烷(DCM)、三氯甲烷(TCM)等。
附图说明
图1为本发明实施例1所制备的空白蒙脱石纳米粒(MMT),氨基修饰的蒙脱石纳米粒(MMT-NH2),叶酸修饰的蒙脱石纳米粒(MMT-FA)和载药的叶酸修饰蒙脱石纳米粒(MMT-FA-CUR)的物理外观图
图2为本发明实施例1所制备的空白蒙脱石纳米粒,氨基修饰的蒙脱石纳米粒和叶酸修饰的蒙脱石纳米粒的粒径分布图和Zeta电位分布图
图3为本发明实施例1所制备的空白蒙脱石纳米粒,氨基修饰的蒙脱石纳米粒和叶酸修饰的蒙脱石纳米粒的红外光谱图
图4为本发明实施例2中载姜黄素的叶酸修饰蒙脱石纳米粒的体外模拟释放图
具体实施方式
以下结合附图实施例对本发明进行详细描述,但本发明并不仅限于下述实施例。
实施例1
1.叶酸活性酯的制备
分别取0.50g叶酸,0.25g N-羟基琥珀酰亚胺,0.44g二环己基碳二亚胺,0.25mL三乙胺溶于无水二甲基亚砜,室温避光搅拌24h。反应结束后过滤除去副产物,乙醚洗涤,干燥,即得叶酸活性酯,密封后避光低温保存备用。
2.空白蒙脱石纳米粒的制备
称取3.0g蒙脱石K-10,加入30mL浓硫酸,于70℃水浴搅拌0.5h。离心收集后,洗涤数次即得空白蒙脱石纳米粒固体,外观如图1(A)所示。
3.氨基修饰的蒙脱石纳米粒的制备
称取0.2g空白蒙脱石纳米粒,加入13mL无水乙醇,超声分散后,加入0.75mL 3-氨丙基三乙氧基硅烷,室温避光搅拌20h。反应结束后离心收集,洗涤数次即得氨基修饰的蒙脱石纳米粒固体,外观如图1(B)所示。
4.叶酸修饰的空白蒙脱石纳米粒的制备
称取100mg氨基修饰的蒙脱石纳米粒和20mg叶酸活性酯,分别分散和溶解于无水乙醇和无水二甲基亚砜中,然后混合均匀,室温避光搅拌24h。离心收集,洗涤数次,即得叶酸修饰的蒙脱石纳米粒固体,外观如图1(C)所示。
将制备成的叶酸修饰的蒙脱石纳米粒及前面制备的空白蒙脱石纳米粒、氨基修饰的蒙脱石纳米粒分别均匀分散于水中,采用马尔文激光粒度分析仪测量其粒径和Zeta电位,结果如图2(A-F)所示;将制备成的叶酸修饰的蒙脱石纳米粒及前面制备的空白蒙脱石纳米粒、氨基修饰的蒙脱石纳米粒真空干燥,通过红外光谱扫描,得到三者的红外光谱图,如图3所示。
5.载药的叶酸修饰蒙脱石纳米粒的制备
称取20mg叶酸修饰的蒙脱石纳米粒,均匀分散于10mL甲醇中;称取6.5mg姜黄素,溶解于1.5mL乙醇中。将药物溶液加入到纳米粒混悬液中,搅拌吸附后,旋转蒸发除去有机溶剂,洗去多余药物,即得载姜黄素的叶酸修饰蒙脱石纳米粒,外观如图1(D)所示。经过洗涤离心后,用紫外分光光度法测得药物载药量为12.65%。
实施例2
1.红外光谱分析
分别取空白蒙脱石纳米粒,氨基修饰的蒙脱石纳米粒和叶酸修饰的蒙脱石纳米粒进行傅氏转换红外光谱分析,表征结果如图3所示。结果表明三个样品均出现了蒙脱石的特征吸收峰:600cm-1附近为硅氧四面体(Si-O)和铝氧四面体(Al-O)的弯曲振动峰,1030cm-1处为Si-O的伸缩振动峰,3620~3650cm-1处为-OH的伸缩振动峰。相比空白蒙脱石纳米粒(MMT)的红外光谱图,氨基修饰的蒙脱石纳米粒(MMT-NH2)光谱图在3000~2850cm-1处出现了明显的C-H伸缩振动峰,证明氨基成功修饰在蒙脱石表面。再者,相比空白蒙脱石纳米粒和氨基修饰的蒙脱石纳米粒的红外光谱图,叶酸修饰的蒙脱石纳米粒(MMT-FA)出现了几个酰胺键的特征吸收峰:3500~3100cm-1处的N-H伸缩振动峰,1680~1630cm-1处的C=O伸缩振动峰,1655~1590cm-1处的N-H弯曲振动峰,1420~1400cm-1处的C-N伸缩振动峰,从而证明了叶酸的成功修饰。
2.体外释放
采用透析袋法测定叶酸修饰的蒙脱石纳米粒的释药特性,结果如图4所示。结果表明:姜黄素原料药与叶酸修饰的蒙脱石纳米粒的释药曲线有明显差异。
3.细胞毒性研究
建立人肝癌HepG-2细胞模型,采用四甲基偶氮唑盐(MTT)比色法进行细胞毒性研究。对照组(A组)为空白蒙脱石纳米粒,实验组1(B组)为载姜黄素的空白蒙脱石纳米粒,实验组2(C组)为载姜黄素的叶酸修饰蒙脱石纳米粒。于24孔板中培养HepG-2细胞,待细胞生长贴壁后,按组给药,孵育24h后加入20μL MTT溶液,继续培养4h,弃去培养液,加入二甲基亚砜充分溶解甲瓒结晶物,在酶联免疫检测仪测量吸光值,进而求算各组细胞抑制率。实验结果表明:C组的细胞抑制率显著高于B组,说明叶酸修饰的蒙脱石纳米粒具有肿瘤靶向作用,能更好地被肿瘤细胞摄取。

Claims (3)

1.一种载药的叶酸修饰蒙脱石纳米制剂,其制备方法包含以下步骤:
(1)称取叶酸,三乙胺,N-羟基琥珀酰亚胺和二环己基碳二亚胺溶于有机溶剂,室温避光搅拌,得到活化叶酸活性酯;
(2)称取蒙脱石K-10,于70℃加浓硫酸搅拌0.5h,离心收集,洗涤,即得空白蒙脱石纳米粒;
(3)称取步骤(2)中制得的空白蒙脱石纳米粒和硅烷偶联剂均匀分散于有机溶剂中,室温避光搅拌,得到氨基修饰的蒙脱石纳米粒;
(4)分别将步骤(3)中制得的氨基修饰的蒙脱石纳米粒、步骤(1)中制得的叶酸活性酯均匀分散或溶于有机溶剂中,二者混合后搅拌反应,得到叶酸修饰的蒙脱石纳米粒;
(5)称取叶酸修饰蒙脱石纳米粒和药物,采用溶剂挥发法或吸附法实现该制剂的载药,得到载药的叶酸修饰蒙脱石纳米制剂;
所述的硅烷偶联剂的结构式为:
Figure FDA0002464168100000011
其中,R为—CH3或—CH2CH3,X为—NH2或—NH—CH2CH2—NH2
2.根据权利要求1所述的载药的叶酸修饰蒙脱石纳米制剂,其特征在于:所述制剂中各组分重量份为:叶酸修饰的蒙脱石纳米粒0.02~1份,药物0.0065~0.325份,溶剂10~500份。
3.根据权利要求1所述的载药的叶酸修饰蒙脱石纳米制剂,其特征在于所述的药物为姜黄素。
CN201710625647.7A 2017-07-27 2017-07-27 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法 Expired - Fee Related CN107375214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710625647.7A CN107375214B (zh) 2017-07-27 2017-07-27 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710625647.7A CN107375214B (zh) 2017-07-27 2017-07-27 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107375214A CN107375214A (zh) 2017-11-24
CN107375214B true CN107375214B (zh) 2020-07-28

Family

ID=60341511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710625647.7A Expired - Fee Related CN107375214B (zh) 2017-07-27 2017-07-27 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107375214B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106344927A (zh) * 2016-09-27 2017-01-25 大连理工大学 叶酸修饰的载药羟基磷灰石及其制备方法
CN106692975A (zh) * 2016-12-01 2017-05-24 浙江大学常州工业技术研究院 一种具有靶向作用的基于氧化石墨烯的纳米药物载体及其制备方法
CN106924215A (zh) * 2016-11-03 2017-07-07 重庆医科大学 载姜黄素甘草次酸修饰介孔二氧化硅纳米粒及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292688A1 (en) * 2005-08-18 2007-12-20 Eastman Kodak Company Silylamine modified nanoparticulate carriers
CN101721372B (zh) * 2008-10-10 2012-02-01 陈东 金壳包覆的中空介孔二氧化硅球及其制备方法和在肿瘤治疗方面的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106344927A (zh) * 2016-09-27 2017-01-25 大连理工大学 叶酸修饰的载药羟基磷灰石及其制备方法
CN106924215A (zh) * 2016-11-03 2017-07-07 重庆医科大学 载姜黄素甘草次酸修饰介孔二氧化硅纳米粒及其制备方法
CN106692975A (zh) * 2016-12-01 2017-05-24 浙江大学常州工业技术研究院 一种具有靶向作用的基于氧化石墨烯的纳米药物载体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Folic acid-modified clay: targeted surface design for cell culture applications;Rebecca Bongartz等;《J. Mater. Chem. B》;20131231;第1卷;522–528 *
Multifunctional colloidal nanofiber composites including dextran and folic acid as electro-active platforms;Zakir M.O. Rzayev等;《Carbohydrate Polymers》;20170424;第166卷;83–92 *

Also Published As

Publication number Publication date
CN107375214A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN102988999B (zh) 姜黄素-多糖类偶联物及其制备方法与应用
Cai et al. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery
CN109010846B (zh) 聚乙二醇-壳聚糖-姜黄素聚合物、及其载药纳米粒子和制备方法
Kesavan et al. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery
CN108264578B (zh) 多糖接枝叶酸共聚物及其纳米粒制备方法
EP1476492A1 (en) Carbohydrate-modified polymers, compositions and uses related thereto
CN106620717B (zh) 一种具有逆转肿瘤多药耐药性功能的两亲性缀合物抗肿瘤纳米药及其制备方法和应用
CN104031174B (zh) 小肠靶向吸收的壳聚糖衍生物、其制备方法及载药纳米粒
Guo et al. Glucose-sensitive polyelectrolyte nanocapsules based on layer-by-layer technique for protein drug delivery
Wang et al. Lycium barbarum polysaccharides grafted with doxorubicin: An efficient pH-responsive anticancer drug delivery system
CN101831000A (zh) 乙酰普鲁兰多糖叶酸偶联物的纯化及其纳米粒子的制备方法
CN107744593A (zh) 一种叶酸靶向抗肿瘤药物缓释载体及其制备方法
CN109806240A (zh) 聚合物修饰的介孔碳纳米粒及其制备和应用
CN111848975B (zh) 磷酸化蛋白质、基于磷酸化蛋白质的胞内递送体系及制备方法与应用
CN108948152A (zh) 一种两亲性穿膜肽键合物、其制备方法及用途
CN104693448A (zh) 一种基于壳聚糖的温敏性聚合物及其制备方法和应用
CN109395091A (zh) 功能化介孔硅肿瘤靶向运输控释系统及其制备方法
Zhou et al. Thioether-bridged mesoporous organosilica nanocapsules with weak acid-triggered charge reversal for drug delivery
Cheng et al. Synthesis, characterization, and evaluation of redox-sensitive chitosan oligosaccharide nanoparticles coated with phycocyanin for drug delivery
CN107375214B (zh) 一种载药的叶酸修饰蒙脱石纳米制剂及其制备方法
Zeng et al. Hollow nanosphere fabricated from β-cyclodextrin-grafted α, β-poly (aspartic acid) as the carrier of camptothecin
CN101812178A (zh) 还原敏感性聚乙烯亚胺衍生物及其制备方法和应用
Hao et al. pH-redox responsive polymer-doxorubicin prodrug micelles studied by molecular dynamics, dissipative particle dynamics simulations and experiments
CN106236733A (zh) 一种靶向传递喜树碱的超分子纳米粒子及其制备方法
CN109260176B (zh) 肿瘤特异性可断裂的peg化纳米粒子及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200728

Termination date: 20210727