CN107369555A - 增加电介质常数的plzt电容器和方法 - Google Patents

增加电介质常数的plzt电容器和方法 Download PDF

Info

Publication number
CN107369555A
CN107369555A CN201710325781.5A CN201710325781A CN107369555A CN 107369555 A CN107369555 A CN 107369555A CN 201710325781 A CN201710325781 A CN 201710325781A CN 107369555 A CN107369555 A CN 107369555A
Authority
CN
China
Prior art keywords
plzt
conductive layer
ceramic capacitor
dielectric layer
medium constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710325781.5A
Other languages
English (en)
Other versions
CN107369555B (zh
Inventor
R·S·泰勒
M·R·费尔柴尔德
U·巴拉钱德拉
T·H·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies IP Ltd
UChicago Argonne LLC
Original Assignee
UChicago Argonne LLC
Delphi Automotive Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UChicago Argonne LLC, Delphi Automotive Systems LLC filed Critical UChicago Argonne LLC
Publication of CN107369555A publication Critical patent/CN107369555A/zh
Application granted granted Critical
Publication of CN107369555B publication Critical patent/CN107369555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/085Vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

陶瓷电容器(10)包括第一导电层(14)、靠近第一导电层(14)布置的第二导电层(18)、以及介于第一导电层(14)和第二导电层(18)之间电介质层(16)。电介质层(16)由锆钛酸铅镧材料(PLZT)形成,其中在25摄氏度和零伏特偏压、以及一万赫兹(10kHz)的激发频率下测量时,PLZT由大于125的电介质常数表征。一种用于增加锆钛酸铅镧材料(PLZT)的电介质常数的方法(20)包括沉积PLZT以形成陶瓷电容器(10)的电介质层(16),以及将陶瓷电容器(10)加热至不高于300℃的温度的步骤。

Description

增加电介质常数的PLZT电容器和方法
政府许可权声明
这是由阿尔贡国家实验室(Argonne National Laboratory)和德尔福汽车系统有限责任公司(Delphi Automotive System,LLC)共同开发的一项发明。依照美国政府与代表阿尔贡国家实验室的U芝加哥阿尔贡有限责任公司(UChicago Argonne,LLC)之间的第DE-AC02-06CH11357号合同以及依照美国政府/能源部门(阿尔贡国家实验室)与德尔福汽车系统有限公司之间的第4F-31041号合同,美国政府享有在本发明中的权利。
技术领域
本公开一般涉及一种陶瓷电容器,并且更具体地涉及一种具有锆钛酸铅镧(PLZT)电介质材料的陶瓷电容器。
背景技术
众所周知,电动车辆逆变器中所使用的高压直流链路电容器需要大的封装体积。在典型的电动车辆逆变器的一个示例中,直流链路电容器是最重的单个部件,占逆变器总体积的近百分之四十(40%)体积,并且是逆变器成本的很大一部分。DC链路电容器通常是卷绕式聚丙烯薄膜电容器,其封装体积大于或等于1升。不利的是,聚丙烯薄膜电容器的使用温度为薄膜材料所限制,其使用温度可低至85摄氏度(85℃)。相比之下,陶瓷电容器的使用温度能够大于140℃,但需要超过650℃的高烧成温度以将陶瓷颗粒烧结成单片层。
发明内容
本文描述了一种陶瓷电容器,其可采用薄膜制造工艺制造并被热处理以显著增加锆钛酸铅镧(PLZT)电介质材料的电介质常数,从而大大减少满足目标电容/额定电压特性所需的电容材料的量。电容材料的量的显著减少又将大大减小DC链路电容器的封装体积。
根据一个实施例,提供一种陶瓷电容器。陶瓷电容器包括第一导电层。陶瓷电容器还包括靠近第一导电层布置的第二导电层。陶瓷电容器还包括介于第一导电层和第二导电层之间的电介质层。电介质层由锆钛酸铅镧材料(PLZT)形成,其中,在25摄氏度、零伏特偏压和一万赫兹(10kHz)的激发频率下测量时,PLZT由大于125的电介质常数表征。
在另一实施例中,提供了一种用于增加锆钛酸铅镧材料(PLZT)的电介质常数的方法。该方法包括沉积PLZT以形成陶瓷电容器的电介质层的步骤。该方法还包括将陶瓷电容器加热至不超过300℃的温度的步骤。
在阅读仅通过非限制性示例并参照所附附图给出的优选实施例的以下详细描述之后,进一步的特征和优点将更清楚地显现。
附图说明
现在将参考附图借助示例来描述本发明,在附图中:
图1是根据一实施例的陶瓷电容器的截面端视图;
图2是示出了根据一实施例的在热处理之后电介质常数的增加的曲线图;
图3是示出了根据一实施例的在热处理之后电介质常数的增加的曲线图;以及
图4是根据一实施例的用于增加图1的陶瓷电容器的电介质常数的方法的流程图。
具体实施方式
图1示出了陶瓷电容器10的非限制性示例。所示的层的相对厚度不意味着推断关于用于形成陶瓷电容器10的材料的实际层的相对厚度的任何内容,而是仅被显示成使下面提供的描述更易于可视化。如电容器制造领域的技术人员将会认识到的,陶瓷电容器10的其它特征被构想但未示出,例如将陶瓷电容器10电连接至其它电路的触头或端子。
陶瓷电容器10包括基板12。作为示例而非限制,基板12可由聚合物材料形成,例如来自德克萨斯州帕萨迪纳市的卡内卡德克萨斯公司的,具有50微米(50μm)厚度的AV聚酰亚胺(polyimide)膜。这种聚合物基板通常用于薄膜型电容器的制造,并且适用于高容量、卷对卷式的制造工艺。替代地,基板可以是金属箔。陶瓷电容器10还包括第一导电层14。作为示例而非限制,第一导电层14可通过已知的电子束蒸发工艺沉积到基板12上。优选地,第一导电层14是铝,其具有100nm(纳米)厚度至200nm厚度,并且优选120nm。替代地,第一导电层14可以由铂、铜或镍形成。
第二导电层18布置成靠近第一导电层14。作为示例而非限制,第二导电层18可通过已知的电子束蒸发工艺沉积到电介质层16上(如下所述),电介质层16可覆盖第一导电层14。优选地,第二导电层18是铝,其具有100nm(纳米)厚度至200nm厚度,并且优选120nm。替代地,第二导电层18可以由铂、铜或镍形成。
电介质层16介于第一导电层14和第二导电层18之间,使得电介质层16的第一侧16A与第一导电层14直接接触,以及与第一侧相对的电介质层16的第二侧16B与第二导电层18直接接触。电介质层16由锆钛酸铅镧材料(PLZT)形成。PLZT是陶瓷材料,与其他常见电介质材料相比,其具有相对较高的电介质常数,并且能够在大于140℃的温度下操作。经验测试表明,8μm厚度的PLZT层提供在可靠性和电介质击穿之间良好的平衡,其中期望的最大电容器电压为600伏。根据本文中别处描述的工艺沉积的PLZT通常被观察到具有电介质常数相对于电压、频率和温度的线性关系,并且由在25℃、零伏特偏置、以及一万赫兹(10kHz)激发频率下测得的大于一百二十五(125)的电介质常数来表征。由于电介质被定义为电容器中所使用的电介质材料的电容率(以法拉每米为单位)与真空的电容率之比,因此电介质常数是无量纲的。
图2是示出了PLZT的电介质常数的增加的曲线图40的非限制性示例,如将通过本文中的方法所描述的,在250℃的温度下对陶瓷电容器10进行长达一小时(1小时)的热处理之后,其具有Pb0.92/La0.08/Zr0.52/Ti0.48/Oδ的元素比。与处于沉积态的,或零时状态的未经热处理的PLZT电容器由在25℃、零伏特偏置和10kHz的激励频率下小于125的相对电容率或电介质常数表征相比,经热处理的PLZT由在25℃、零伏特偏置和10kHz的激发频率下大于125的相对电容率或电介质常数表征。可以发现,经热处理的PLZT的电介质比未经热处理的PLZT增加了百分之二十(20%)。热处理工艺的细节在本文其他地方描述。如前所述的,还要注意对于未经热处理的PLZT和经热处理的PLZT两者,电介质常数相对于-40℃的温度范围至140℃的温度的相对线性关系。
图3是示出了在对由与图2的陶瓷电容器10相同的工艺制造的并且包括相同的元素比的另一样本陶瓷电容器10的热处理之后PLZT的电介质常数的增加的曲线图42的非限制性示例。与处于沉积态的,或零时状态的未经热处理的PLZT电容器相比,经热处理的PLZT由在25℃、零伏特偏置和10kHz的激发频率下大于125的电介质常数表征。在该示例中,在250℃的温度下在对未经热处理的PLZT热处理达356小时后,PLZT的电介质常数增加了32%。经过在300℃的温度下进一步进行长达额外的144小时的热处理,经热处理PLZT的电介质常数比未经热处理的PLZT增加了52%。如前所述的,再次注意对于未经热处理的PLZT和经热处理的PLZT两者,电介质常数相对于-40℃的温度范围至140℃的温度的相对线性关系。测试已表明,在大于300℃的温度下热处理的影响导致电介质击穿强度的降低。
图4是示出了制造和热处理由在25℃、零伏特偏置和10kHz的激发频率下大于125的电介质常数表征的陶瓷电容器10的方法20的非限制性示例的流程图。
步骤22,“提供基板”,可包括提供由玻璃、陶瓷和聚合物材料中的一个形成的基板12。作为示例而非限制,基板12可由聚合物材料形成,例如来自德克萨斯州帕萨迪纳市的卡内卡德克萨斯公司的,具有50微米(50μm)厚度的AV聚酰亚胺膜。这种聚合物基板通常用于薄膜型电容器的制造,并且适用于高容量、卷对卷式的制造工艺。替代地,基板可以是金属箔。
步骤24,“沉积第一电导体层”,可包括利用蒸发沉积工艺(诸如,电子束蒸发)在基板13的顶部上沉积由铂、镍、铜和铝中的一个形成的第一导电层14。优选地,第一导电层14是铝,其具有100nm厚度至200nm厚度,并且优选120nm,从而提供足够的导电性和柔性。
步骤26,“沉积电介质层”,可包括优选使用气溶胶(aerosol)喷雾工艺在第一导电层14的顶部上沉积由PLZT形成的电介质层16。气溶胶喷雾工艺可在10℃至38℃之间,并且优选地在室温的沉积温度下执行,从而有利于不需要对制造设备进行加热或冷却。优选地,亚微米空气传播(air-born)的PLZT颗粒的冲击速度生成所需的热量以使颗粒一经沉积到第一导电层14上就被烧结在一起。PLZT是陶瓷材料,其具有高电介质常数并且能够在大于140℃的温度下操作。经验测试表明,8μm厚度的PLZT层提供在电介质击穿和可靠性之间良好的平衡,其中期望的最大电容器电压为600伏。在可取的沉积工艺中,PLZT材料是将通常需要超过650℃的烧成温度以将颗粒烧结成单片结构的陶瓷。使用常规的陶瓷处理方法,烧结PLZT颗粒所需的烧成温度将使聚合物基板12熔化。有利地,能够在不高于聚合物基板12的熔点的温度下沉积PLZT,从而实现对陶瓷电容器10使用高容量的薄膜处理方法。
步骤28,“沉积第二导电层”,可包括利用蒸发沉积工艺(诸如,电子束蒸发)在电介质层16的顶部上沉积由铂、镍、铜和铝中的一个形成的第二导电层18。优选地,第二导电层18是铝,其具有100nm厚度至200nm厚度,并且优选120nm,从而提供足够的导电性和柔性。
步骤30,“加热电容器”,可包括将陶瓷电容器10加热到不高于300℃的温度。加热可以进行一段时间,使得与将传统陶瓷电容器的电容定义为基于所施加的频率、电压或温度的变量的钟形曲线相对比,电容作为电压、频率和温度的函数保持相对线性(非常像薄膜电容器)。传统陶瓷电容器的电容遵循钟形曲线。
陶瓷电容器10的加热可以在烤炉中执行,其中受控的热源可包括电阻元件、燃气燃烧器、快速热退火、红外和紫外光源、以及激光器中的一个。
相应地,提供了增加PLZT的电介质常数的陶瓷电容器10和方法20。通过增加PLZT的电介质常数,需要较少的电容材料来满足目标电容,进而减小了成品直流链路电容器的总体积。另外,能够在不大于聚合物基板12的熔点的温度下沉积PLZT从而实现对陶瓷电容器10使用高容量的薄膜处理方法。通过调节热处理时间和热处理温度来影响电介质常数的能力允许在不牺牲电介质击穿强度的情况下增加电介质常数并降低电介质常数值的总体差异两者的能力。
尽管已针对其优选实施例对本发明进行了描述,然而本发明不旨在如此限制,而是仅受所附权利要求书中给出的范围限制。

Claims (5)

1.一种陶瓷电容器(10),包括:
第一导电层(14);
第二导电层(18),其被布置成靠近第一导电层(14);以及
电介质层(16),介于所述第一导电层(14)和第二导电层(18)之间,所述电介质层(16)由锆钛酸铅镧材料PLZT形成,其中所述PLZT由在25摄氏度、零伏特偏压和一万赫兹(10kHz)的激发频率下测得的大于125的电介质常数来表征。
2.根据权利要求1所述的陶瓷电容器(10),其特征在于,所述电介质层(16)利用气溶胶喷雾工艺沉积。
3.根据权利要求1所述的陶瓷电容器(10),其特征在于,所述电介质层(16)的第一侧与所述第一导电层(14)直接接触,并且与所述第一侧相对的所述电介质层(16)的第二侧与所述第二导电层(18)直接接触。
4.一种用于增加锆钛酸铅镧材料PLZT的电介质常数的方法(20),所述方法(20)包括:
沉积PLZT以形成陶瓷电容器(10)的电介质层(16);并且
将陶瓷电容器(10)加热至不高于300℃的温度。
5.根据权利要求4所述的方法(20),其特征在于,在10摄氏度和38摄氏度之间的沉积温度下执行所述沉积PLZT。
CN201710325781.5A 2016-05-11 2017-05-10 增加电介质常数的plzt电容器和方法 Active CN107369555B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/151,830 US9842695B2 (en) 2016-05-11 2016-05-11 PLZT capacitor and method to increase the dielectric constant
US15/151,830 2016-05-11

Publications (2)

Publication Number Publication Date
CN107369555A true CN107369555A (zh) 2017-11-21
CN107369555B CN107369555B (zh) 2020-05-08

Family

ID=58672432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325781.5A Active CN107369555B (zh) 2016-05-11 2017-05-10 增加电介质常数的plzt电容器和方法

Country Status (3)

Country Link
US (1) US9842695B2 (zh)
EP (1) EP3244428A3 (zh)
CN (1) CN107369555B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210516A1 (de) 2020-08-19 2022-02-24 Volkswagen Aktiengesellschaft Als Filterkondensator ausgestaltete Leiteranordnung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116499A (en) * 1977-03-23 1978-10-11 Sharp Corp Preparing high dielectric thin film
US4219866A (en) * 1979-01-12 1980-08-26 Sprague Electric Company Ceramic capacitor having a dielectric of (Pb,La) (Zr,Ti)O3 and BaTiO3
US5950292A (en) * 1997-03-04 1999-09-14 Sandia Corporation Methods of fabricating applique circuits
CN1419700A (zh) * 2000-03-04 2003-05-21 艾纳尔杰纽斯公司 金属箔上的锆钛酸铅介电薄膜复合材料
US20060276050A1 (en) * 2005-06-03 2006-12-07 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing crystalline dielectric film,crystalline dielectric film manufactured thereby and thin film capacitor having the same
CN1937174A (zh) * 2005-07-11 2007-03-28 E.I.内穆尔杜邦公司 电容器件、有机电介质叠层、含此类器件的多层结构及其制造方法
US20140120736A1 (en) * 2011-09-30 2014-05-01 Uchicago Argonne, Llc Method for fabrication of crack-free ceramic dielectric films
CN104576046A (zh) * 2013-10-29 2015-04-29 德尔福技术有限公司 玻璃衬底上的plzt电容器
US20150364257A1 (en) * 2014-06-16 2015-12-17 Uchicago Argonne, Llc Wound/stacked ceramic film capacitors, method for making ceramic film capacitors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI334408B (en) * 2002-05-28 2010-12-11 Nat Inst Of Advanced Ind Scien Brittle material formed of ultrafine particles
US20120069487A1 (en) * 2009-05-29 2012-03-22 Sanyo Electric Co., Ltd. Stacked structure and method of manufacturing the same
US9646766B2 (en) * 2012-06-14 2017-05-09 Uchicago Argonne, Llc Method of making dielectric capacitors with increased dielectric breakdown strength

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116499A (en) * 1977-03-23 1978-10-11 Sharp Corp Preparing high dielectric thin film
US4219866A (en) * 1979-01-12 1980-08-26 Sprague Electric Company Ceramic capacitor having a dielectric of (Pb,La) (Zr,Ti)O3 and BaTiO3
US5950292A (en) * 1997-03-04 1999-09-14 Sandia Corporation Methods of fabricating applique circuits
CN1419700A (zh) * 2000-03-04 2003-05-21 艾纳尔杰纽斯公司 金属箔上的锆钛酸铅介电薄膜复合材料
US20060276050A1 (en) * 2005-06-03 2006-12-07 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing crystalline dielectric film,crystalline dielectric film manufactured thereby and thin film capacitor having the same
CN1937174A (zh) * 2005-07-11 2007-03-28 E.I.内穆尔杜邦公司 电容器件、有机电介质叠层、含此类器件的多层结构及其制造方法
US20140120736A1 (en) * 2011-09-30 2014-05-01 Uchicago Argonne, Llc Method for fabrication of crack-free ceramic dielectric films
CN104576046A (zh) * 2013-10-29 2015-04-29 德尔福技术有限公司 玻璃衬底上的plzt电容器
US20150364257A1 (en) * 2014-06-16 2015-12-17 Uchicago Argonne, Llc Wound/stacked ceramic film capacitors, method for making ceramic film capacitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG-JIN ZHAO ET AL: "Preparation and properties of PLZT thick films on silicon", 《MATERIALS SCIENCE & ENGINEERING B》 *

Also Published As

Publication number Publication date
US20170330685A1 (en) 2017-11-16
CN107369555B (zh) 2020-05-08
EP3244428A2 (en) 2017-11-15
US9842695B2 (en) 2017-12-12
EP3244428A3 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
Li et al. Multilayer lead‐free ceramic capacitors with ultrahigh energy density and efficiency
Chen et al. Multifunctional antiferroelectric MLCC with high‐energy‐storage properties and large field‐induced strain
Zhang et al. High‐energy storage performance of (Pb0. 87Ba0. 1La0. 02)(Zr0. 68Sn0. 24Ti0. 08) O3 antiferroelectric ceramics fabricated by the hot‐press sintering method
Ma et al. PLZT film capacitors for power electronics and energy storage applications
Samantaray et al. Electrode defects in multilayer capacitors part I: modeling the effect of electrode roughness and porosity on electric field enhancement and leakage current
CN102065650A (zh) 印刷电路板及其制造方法
Ye et al. Electrical and Energy Storage Performance of Eu‐Doped PbZrO 3 Thin Films with Different Gradient Sequences
Kim et al. Inter-digital capacitors with aerosol-deposited high-K dielectric layer for highest capacitance value in capacitive super-sensing applications
Zhang et al. Flexible antiferroelectric thick film deposited on nickel foils for high energy‐storage capacitor
Dursun et al. A route towards fabrication of functional ceramic/polymer nanocomposite devices using the cold sintering process
Groh et al. High‐temperature multilayer ceramic capacitors based on 100− x (94Bi1/2Na1/2TiO3–6BaTiO3)–xK0. 5Na0. 5NbO3
Rajib et al. Enhanced energy storage of dielectric nanocomposites at elevated temperatures
Li et al. Enhancement of energy storage density in antiferroelectric PbZrO3 films via the incorporation of gold nanoparticles
Pushkar et al. Thin-film capacitors for packaged electronics
US20170194098A1 (en) High Energy Density and Low Leakage Electronic Devices
US20120099240A1 (en) High energy density and low leakage electronic devices
Exner et al. In-and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition
CN107369555A (zh) 增加电介质常数的plzt电容器和方法
Ma et al. Flexible ceramic film capacitors for high-temperature power electronics
Wu et al. Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components
US20240038447A1 (en) Multi-layered ceramic electronic component
Ma et al. Dense PLZT films grown on nickel substrates by PVP-modified sol–gel method
Bhattacharya et al. Epoxy nanocomposite capacitors for application as MCM-L compatible integral passives
Lee et al. Ag-migration effects on the metastable phase in CaCu3Ti4O12 capacitors
Watkins Modern electronic materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200609

Address after: Babado J San Michaele

Co-patentee after: UChicago Argonne, LLC

Patentee after: DELPHI TECHNOLOGIES IP Ltd.

Address before: michigan

Co-patentee before: UChicago Argonne, LLC

Patentee before: Delphi Technologies, Inc.