CN107365981A - 一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法 - Google Patents

一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法 Download PDF

Info

Publication number
CN107365981A
CN107365981A CN201710686119.2A CN201710686119A CN107365981A CN 107365981 A CN107365981 A CN 107365981A CN 201710686119 A CN201710686119 A CN 201710686119A CN 107365981 A CN107365981 A CN 107365981A
Authority
CN
China
Prior art keywords
cus
rgo
doping
graphene
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710686119.2A
Other languages
English (en)
Other versions
CN107365981B (zh
Inventor
贺海燕
贺祯
沈清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710686119.2A priority Critical patent/CN107365981B/zh
Publication of CN107365981A publication Critical patent/CN107365981A/zh
Application granted granted Critical
Publication of CN107365981B publication Critical patent/CN107365981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法,该复合物薄膜,是CuS、rGO、Al3+共沉积形成的CuS/rGO复合物薄膜,其中CuS为晶体粒,rGO为还原态石墨烯,Al3+以掺杂形式加入,以质量比计rGO/CuS为0.1~9%,以摩尔比计S/Cu<1,Al掺杂量为Cu的0.1~6.55%。本发明采用了Al掺杂CuS薄膜,再通过掺杂Al和复合石墨烯(rGO),所制备薄膜的光透过率、反射率光谱、光带隙以及光导电率、电阻率可以看出所制备薄膜的各项性能得到了很大的提高,其具有良好的光吸收性能和优良的导电性能。

Description

一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法
技术领域
本发明属于半导体薄膜技术领域,涉及一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法。
背景技术
当前太阳能电池、光电池、光阴极材料等技术领域广泛应用的一类材料要求有良好的光吸收系数和良好的导电性能。一些硫化物和硒化物半导体薄膜具有较高的光吸收系数、窄的光带隙、和良好的导电性能是目前常用的光吸收导电薄膜材料。CuS薄膜由于具有光吸收系数高、光带隙窄、和导电性能好的特点,是目前常用的一种二元半导体材料。通过离子掺杂可进一步改善导电性能。
发明内容
本发明解决的问题在于提供一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法,通过掺杂Al和复合石墨烯(rGO),利用掺杂和复合的效应以及两种之间的协同效应增强CuS薄膜材料的光电性能。
本发明是通过以下技术方案来实现:
一种Al掺杂CuS/石墨烯复合物薄膜,是CuS、rGO、Al3+共沉积形成的CuS/rGO复合物薄膜,其中CuS为晶体粒,rGO为还原态石墨烯,Al3+以掺杂形式加入,以质量比计rGO/CuS为0.1~9%,以摩尔比计S/Cu<1,Al掺杂量为Cu的0.1~6.55%。
所述的Al掺杂含量从0.1%增至2%时,光带隙增大;从2%增至4%时光带隙又变窄。
所述的Al掺杂含量在0.1~4%、rGO含量在0.1~9%均能够增大光导电率。
Al掺杂含量在0.1~4%、rGO含量在0.1~9%均能够增大导电率。
一种Al掺杂CuS/石墨烯复合物薄膜的制备方法,包括以下操作:
1)准备含Cu前驱体溶液a:其中含有以及掺杂的Al3+,以摩尔比计Al3+掺杂量为Cu2+的2~4%,并含有石墨烯还原剂和铜离子摩尔量1-2倍的柠檬酸;在混合前加入石墨烯溶液,以质量比计rGO/CuS为2~8%;
准备含S前驱体溶液b:硫代乙酰胺水溶液,以摩尔比计S/Cu=1~1.1;
2)薄膜沉积:将准备好的玻璃基片垂直置于反应容器内,向反应容器内加入前驱体溶液a、前驱体溶液b混合反应,待玻璃基片上沉积生成沉积薄膜后取出玻璃基片并淋洗,完成一次沉积;在玻璃基片上反复沉积多次;
3)薄膜晶华:沉积的薄膜在80~100℃干燥1~2h;
或用25~40W紫外灯照射2~3h。
所述含Cu前驱体溶液a的准备为:
乙酸铜溶于水来提供Cu2+,硝酸铝溶于水来提供Al3+,同时添加少许盐酸和铜离子摩尔量1-2倍的柠檬酸;
在制备复合物薄膜前,再加入GO水溶液,rGO/CuS质量比2~8%。
所述含Cu前驱体溶液a的准备为:
Cu(CH3OO)2·H2O溶于去离子水,浓度0.02mol/l,Al掺杂量为Cu离子的2-4%,即每100ml溶液加0.015~0.030g的Al(NO3)39H2O,同时每100ml加浓HCl0.5ml,并加铜离子摩尔量1-2倍的C6H8O7·H2O;
每100ml再加入2mg/ml的GO水溶液3.8ml,rGO/CuS质量比5%;
所述的含S前驱体溶液b的准备为:制备浓度0.02mol/l的硫代乙酰胺水溶液。
所述的薄膜沉积为:将玻璃基片分别用洗涤剂和乙醇超声洗涤,然后垂直至于反应容器,等体积的前驱体溶液a和前驱体溶液b迅速混合;20min后取出基片,用去离子水淋洗完成有一次沉积;反复沉积5~10次,沉积过程在室温下进行。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的Al掺杂CuS/石墨烯复合物薄膜,首次采用了Al掺杂CuS薄膜,再通过掺杂Al和复合石墨烯(rGO),石墨烯具有高的导电性能和接近零的光带隙,当与其他半导体复合时其显著二维结构可显著增强复合物的导电率,而且还可减小半导体粒子间的接触电阻;从而利用掺杂和复合的效应以及两种之间的协同效应增强CuS薄膜材料的光电性能,从所制备薄膜的光透过率、反射率光谱、光带隙以及光导电率、电阻率可以看出所制备薄膜的各项性能得到了很大的提高,其具有良好的光吸收性能和优良的导电性能。
本发明提供的Al掺杂CuS/石墨烯复合物薄膜的制备方法,采用化学浴沉积法来进行,其是一种工艺简单、成本低、可沉积化学计量和均匀的优质薄膜和大面积沉积化学法工艺。其中,前驱体溶液中添加少量盐酸以还原添加的氧化石墨烯(GO),还通过加柠檬酸减慢沉积速度并使被还原的氧化石墨烯在薄膜沉积期间保持较长时间的均匀悬浮,柠檬酸配比大可使形成的粒子尺寸小因而薄膜沉积速度高。
附图说明
图1为薄膜的X-射线衍射图谱;
图2为薄膜的Raman光谱;
图3-1~图3-3分别为薄膜的光透过率、反射率光谱、光带隙的分析图;
图4为薄膜的光导电率光谱;
图5为薄膜的电阻率分析图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明提供一种Al掺杂CuS/石墨烯复合物薄膜,是CuS、rGO、Al3+共沉积形成的CuS/rGO复合物薄膜,其中CuS为晶体粒,rGO为还原态石墨烯,Al3+以掺杂形式加入,以质量比计rGO/CuS为0.1~9%,以摩尔比计S/Cu<1,Al掺杂量为Cu的0.1~6.55%。
该Al掺杂CuS/石墨烯复合物薄膜的制备方法,包括以下操作:
1)准备含Cu前驱体溶液a:其中含有以及掺杂的Al3+,以摩尔比计Al3+掺杂量为Cu2+的2~4%,并含有铜离子摩尔量1-2倍的柠檬酸;在混合前加入石墨烯溶液,以质量比计rGO/CuS为2~8%;
准备含S前驱体溶液b:硫代乙酰胺水溶液,以摩尔比计S/Cu=1~1.1;
2)薄膜沉积:将准备好的玻璃基片垂直置于反应容器内,向反应容器内加入前驱体溶液a、前驱体溶液b混合反应,待玻璃基片上沉积生成沉积薄膜后取出玻璃基片并淋洗,完成一次沉积;在玻璃基片上反复沉积多次;
3)薄膜晶华:沉积的薄膜在80~100℃干燥1~2h;
或用25~40W紫外灯照射2~3h。
进一步的,CuS/rGO复合物薄膜中CuS是晶体粒(如图1所示),rGO为还原态石墨烯(如图2所示);
参见图3-1~图3-3,本发明的复合物薄膜具有较好的光吸收和窄的光带隙;Al含量从0增至2%时,光带隙略有增大,但当进一步增至4%时有使光带隙又变窄。
参见图4,本发明的薄膜具有较好的光导电性能,0-4%的Al含量和0-9%的rGO都可增大光导电率。
参见图5,本发明的薄膜具有低的电阻率,0-4%的Al掺杂和0-9t%的rGO都可增大导电率。
本发明的薄膜中rGO/CuS质量比0.09,大于前驱体溶液中的含量0.05。当前驱体溶液中Al掺杂量为2和4%时,薄膜中的Al含量为3.28%和6.55%。薄膜中S/Cu=~0.86。
本发明薄膜的制备工艺为化学浴沉积法。前驱体溶液中需添加少量盐酸还原添加的氧化石墨烯(GO),需添加柠檬酸减慢沉积速度并且使被还原的氧化石墨烯在薄膜沉积期间保持较长时间的均匀悬浮。前驱体溶液中S/Cu=1。
下面给出具体的实施例。
实施例1
Al掺杂CuS/石墨烯复合物薄膜的制备,包括以下操作:
1、前驱体溶液制备:
(1)Cu2+离子水溶液制备:
乙酸铜(Cu(CH3OO)2·H2O)溶于去离子水,浓度0.02mol/l,即每100ml水0.3993克乙酸铜,Al掺杂量为Cu离子的2-4%(以摩尔比计算),即每100ml溶液加硝酸铝(Al(NO3)39H2O)0.015至0.030克,同时每100ml加HCl(33%,体积浓度)0.5ml、并加铜离子摩尔量1-2倍的柠檬酸(C6H8O7·H2O)0.42-0.84克。
柠檬酸配比大可使形成粒子尺寸小因而使薄膜沉积速度大,制备复合物薄膜时,每100ml再加入GO水溶液(2mg/ml)3.8ml(rGO/CuS质量比5%)。
(2)硫代乙酰胺水溶液制备:浓度0.02mol/l,即每100ml去离子水溶入硫代乙酰胺(CH3CSNH2)0.1503克。经充分搅拌至溶解。
2、薄膜沉积:玻璃基片用洗涤剂和乙醇超声洗涤,然后垂直至于烧杯等容器,等体积的Cu2+离子水溶液和硫代乙酰胺水溶液迅速混合。20min后取出基片,用去离子水淋洗完成有一次沉积。反复沉积5次,根据实际应用要求反复沉积5-10次。沉积过程在室温下进行。
3、薄膜晶华:沉积的薄膜在100℃干燥1h,或用25-40W紫外灯照射2-3h。
实施例2
Al掺杂CuS/石墨烯复合物薄膜的制备,包括以下操作:
1、前驱体溶液制备:
(1)Cu2+离子水溶液制备:
乙酸铜(Cu(CH3OO)2·H2O)溶于去离子水,浓度0.02mol/l,Al掺杂量为Cu离子的3%(以摩尔比计算),即每100ml溶液加硝酸铝(Al(NO3)39H2O)0.0225克,同时每100ml加HCl(33%,体积浓度)0.5ml、并加铜离子摩尔量1.5倍的柠檬酸(C6H8O7·H2O)0.63克。
柠檬酸配比大可使形成粒子尺寸小因而使薄膜沉积速度大,制备复合物薄膜时,每100ml再加入GO水溶液(2mg/ml)1.52ml(rGO/CuS质量比2%)。
(2)硫代乙酰胺水溶液制备:浓度0.02mol/l,即每100ml去离子水溶入硫代乙酰胺(CH3CSNH2)0.1503克。经充分搅拌至溶解。
2、薄膜沉积:玻璃基片用洗涤剂和乙醇超声洗涤,然后垂直至于烧杯等容器,等体积的Cu2+离子水溶液和硫代乙酰胺水溶液迅速混合。20min后取出基片,用去离子水淋洗完成有一次沉积。反复沉积5次,根据实际应用要求反复沉积5-10次。沉积过程在室温下进行。
3、薄膜晶华:沉积的薄膜在100℃干燥1h,或用25-40W紫外灯照射2-3h。
实施例3
Al掺杂CuS/石墨烯复合物薄膜的制备,包括以下操作:
1、前驱体溶液制备:
(1)Cu2+离子水溶液制备:
乙酸铜(Cu(CH3OO)2·H2O)溶于去离子水,浓度0.02mol/l,Al掺杂量为Cu离子的2%(以摩尔比计算),即每100ml溶液加硝酸铝(Al(NO3)39H2O)0.015克,同时每100ml加HCl(33%,体积浓度)0.5ml、并加铜离子摩尔量1.8倍的柠檬酸(C6H8O7·H2O)0.756克。
柠檬酸配比大可使形成粒子尺寸小因而使薄膜沉积速度大,制备复合物薄膜时,每100ml再加入GO水溶液(2mg/ml)2.28ml(rGO/CuS质量比3%)。
(2)硫代乙酰胺水溶液制备:浓度0.02mol/l,即每100ml去离子水溶入硫代乙酰胺(CH3CSNH2)0.1503克。经充分搅拌至溶解。
2、薄膜沉积:玻璃基片用洗涤剂和乙醇超声洗涤,然后垂直至于烧杯等容器,等体积的Cu2+离子水溶液和硫代乙酰胺水溶液迅速混合。20min后取出基片,用去离子水淋洗完成有一次沉积。反复沉积5次,根据实际应用要求反复沉积5-10次。沉积过程在室温下进行。
3、薄膜晶华:沉积的薄膜在100℃干燥1h,或用25-40W紫外灯照射2-3h。
实施例4
Al掺杂CuS/石墨烯复合物薄膜的制备,包括以下操作:
1、前驱体溶液制备:
(1)Cu2+离子水溶液制备:
乙酸铜(Cu(CH3OO)2·H2O)溶于去离子水,浓度0.02mol/l,Al掺杂量为Cu离子的3.5%(以摩尔比计算),即每100ml溶液加硝酸铝(Al(NO3)39H2O)0.026克,同时每100ml加HCl(33%,体积浓度)0.5ml、并加铜离子摩尔量1.5倍的柠檬酸(C6H8O7·H2O)0.63克。
柠檬酸配比大可使形成粒子尺寸小因而使薄膜沉积速度大,制备复合物薄膜时,每100ml再加入GO水溶液(2mg/ml)6.08ml(rGO/CuS质量比8%)。
(2)硫代乙酰胺水溶液制备:浓度0.02mol/l,即每100ml去离子水溶入硫代乙酰胺(CH3CSNH2)0.1503克。经充分搅拌至溶解。
2、薄膜沉积:玻璃基片用洗涤剂和乙醇超声洗涤,然后垂直至于烧杯等容器,等体积的Cu2+离子水溶液和硫代乙酰胺水溶液迅速混合。20min后取出基片,用去离子水淋洗完成有一次沉积。反复沉积5次,根据实际应用要求反复沉积5-10次。沉积过程在室温下进行。
3、薄膜晶华:沉积的薄膜在100℃干燥1h,或用25-40W紫外灯照射2-3h。
以上给出的实施例是实现本发明较优的例子,本发明不限于上述实施例。本领域的技术人员根据本发明技术方案的技术特征所做出的任何非本质的添加、替换,均属于本发明的保护范围。

Claims (8)

1.一种Al掺杂CuS/石墨烯复合物薄膜,其特征在于,是CuS、rGO、Al3+共沉积形成的CuS/rGO复合物薄膜,其中CuS为晶体粒,rGO为还原态石墨烯,Al3+以掺杂形式加入,以质量比计rGO/CuS为0.1~9%,以摩尔比计S/Cu<1,Al掺杂量为Cu的0.1~6.55%。
2.如权利要求1所述的Al掺杂CuS/石墨烯复合物薄膜,其特征在于,所述的Al掺杂含量从0.1%增至2%时,光带隙增大;从2%增至4%时光带隙又变窄。
3.如权利要求1所述的Al掺杂CuS/石墨烯复合物薄膜,其特征在于,所述的Al掺杂含量在0.1~4%、rGO含量在0.1~9%均能够增大光导电率。
4.如权利要求1所述的Al掺杂CuS/石墨烯复合物薄膜,其特征在于,Al掺杂含量在0.1~4%、rGO含量在0.1~9%均能够增大导电率。
5.一种Al掺杂CuS/石墨烯复合物薄膜的制备方法,其特征在于,包括以下操作:
1)准备含Cu前驱体溶液a:其中含有以及掺杂的Al3+,以摩尔比计Al3+掺杂量为Cu2+的2~4%,并含有石墨烯还原剂和铜离子摩尔量1~2倍的柠檬酸;在混合前加入石墨烯溶液,以质量比计rGO/CuS为2~8%;
准备含S前驱体溶液b:硫代乙酰胺水溶液,以摩尔比计S/Cu=1~1.1;
2)薄膜沉积:将准备好的玻璃基片垂直置于反应容器内,向反应容器内加入前驱体溶液a、前驱体溶液b混合反应,待玻璃基片上沉积生成沉积薄膜后取出玻璃基片并淋洗,完成一次沉积;在玻璃基片上反复沉积多次;
3)薄膜晶华:沉积的薄膜在80~100℃干燥1~2h;
或用25~40W紫外灯照射2~3h。
6.如权利要求6所述的Al掺杂CuS/石墨烯复合物薄膜的制备方法,其特征在于,所述含Cu前驱体溶液a的准备为:石墨烯还原剂
乙酸铜溶于水来提供Cu2+,硝酸铝溶于水来提供Al3+,同时添加盐酸作为石墨烯还原剂和铜离子摩尔量1-2倍的柠檬酸;
在制备复合物薄膜前,再加入GO水溶液,rGO/CuS质量比2~8%。
7.如权利要求6所述的Al掺杂CuS/石墨烯复合物薄膜的制备方法,其特征在于,所述含Cu前驱体溶液a的准备为:
Cu(CH3OO)2·H2O溶于去离子水,浓度0.02mol/l,Al掺杂量为Cu离子的2-4%,即每100ml溶液加0.015~0.030g的Al(NO3)39H2O,同时每100ml加浓HCl0.5ml,并加铜离子摩尔量1-2倍的C6H8O7·H2O;
每100ml再加入2mg/ml的GO水溶液3.8ml,rGO/CuS质量比5%;
所述的含S前驱体溶液b的准备为:制备浓度0.02mol/l的硫代乙酰胺水溶液。
8.如权利要求6所述的Al掺杂CuS/石墨烯复合物薄膜的制备方法,其特征在于,所述的薄膜沉积为:将玻璃基片分别用洗涤剂和乙醇超声洗涤,然后垂直至于反应容器,等体积的前驱体溶液a和前驱体溶液b迅速混合;20min后取出基片,用去离子水淋洗完成有一次沉积;反复沉积5~10次,沉积过程在室温下进行。
CN201710686119.2A 2017-08-11 2017-08-11 一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法 Active CN107365981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710686119.2A CN107365981B (zh) 2017-08-11 2017-08-11 一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710686119.2A CN107365981B (zh) 2017-08-11 2017-08-11 一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107365981A true CN107365981A (zh) 2017-11-21
CN107365981B CN107365981B (zh) 2019-10-25

Family

ID=60309929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710686119.2A Active CN107365981B (zh) 2017-08-11 2017-08-11 一种Al掺杂CuS/石墨烯复合物薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107365981B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638777A (zh) * 2009-07-20 2010-02-03 北京工业大学 一种低温快速沉积硫化铜纳米薄膜的方法
CN102560677A (zh) * 2011-12-19 2012-07-11 陕西科技大学 一种片状晶自组装硫化铜薄膜的制备方法
CN103730661A (zh) * 2014-01-28 2014-04-16 常州大学 一种锂离子电池阳极材料CuS@rGO及其制备方法
CN105244499A (zh) * 2015-08-31 2016-01-13 无锡市嘉邦电力管道厂 包覆改性的锂离子电池阳极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638777A (zh) * 2009-07-20 2010-02-03 北京工业大学 一种低温快速沉积硫化铜纳米薄膜的方法
CN102560677A (zh) * 2011-12-19 2012-07-11 陕西科技大学 一种片状晶自组装硫化铜薄膜的制备方法
CN103730661A (zh) * 2014-01-28 2014-04-16 常州大学 一种锂离子电池阳极材料CuS@rGO及其制备方法
CN105244499A (zh) * 2015-08-31 2016-01-13 无锡市嘉邦电力管道厂 包覆改性的锂离子电池阳极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.GÜNERI ET AL.: "Optical properties of amorphous CuS thin films deposited chemically at different pH values", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XIAO-SAI HU ET AL.: "Synthesis of flower-like CuS/reduced graphene oxide (RGO) composites with significantly enhanced photocatalytic performance", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
杨明荣等: "Fe-CuS/还原氧化石墨烯(RGO)的制备及其光催化性能", 《无机化学学报》 *

Also Published As

Publication number Publication date
CN107365981B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Zhou et al. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells
Kim et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS
Cao et al. Progress of lead‐free halide perovskites: from material synthesis to photodetector application
Liu et al. Nano-structured electron transporting materials for perovskite solar cells
Wang et al. Review on low‐cost counter electrode materials for dye‐sensitized solar cells: effective strategy to improve photovoltaic performance
Li et al. ZnWO 4/BiOI heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match
Zheng et al. Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
CN105810831B (zh) 一种铅锡混合钙钛矿薄膜、其制备方法及应用
Umedov et al. A-site tailoring in the vacancy-ordered double perovskite semiconductor Cs2SnI6 for photovoltaic application
Wang et al. Bi 2 Se 3 sensitized TiO 2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light
Feng et al. Switchable synthesis of p-and n-type Cu–In–S grooved pyramid-like microcrystals for unassisted photoelectrochemical water splitting
Zhou et al. Application of ultrathin TiO2 layers in solar energy conversion devices
CN108054284A (zh) 一种大晶粒钙钛矿薄膜的制备方法
CN106654198A (zh) 一种钛、锆原位掺杂镍钴铝前驱体材料的制备方法
Sheela et al. Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells
Zhu et al. Polarization-enhanced photoelectrochemical properties of BaTiO 3/BaTiO 3− x/CdS heterostructure nanocubes
CN111841603A (zh) 一种用于光电催化的g-C3N4复合薄膜材料的制备方法
Mendhe et al. Sequential growth-controlled silver selenide nanoparticles embedded 1D-CdS nanowires: Heterostructure design to enhance power conversion efficiency
Li et al. Solvent evaporation induced preferential crystal orientation BiI3 films for the high efficiency MA3Bi2I9 perovskite solar cells
Zhang et al. Epitaxial grown [hk1] oriented 2D/1D Bi2O2S/Sb2S3 heterostructure with significantly enhanced photoelectrochemical performance
Lv et al. Effect of thickness and Se distribution of Sb2S3-ySey thin films to solar cell efficiency
Xu et al. Centimeter-scale perovskite SrTaO2N single crystals with enhanced photoelectrochemical performance
CN112897483B (zh) TiN(B)@TiO2核-壳颗粒粉末材料及制备方法
Zhang et al. Bi2O2S topological transformation and in-situ regrowth of [hk1]-oriented SbBiS3-xSex 2D skeleton structure for construction of efficient quasi-two-dimensional Sb2S3-xSex-based heterojunction photoanodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant