CN107365931A - 一种硬质合金滚刀 - Google Patents

一种硬质合金滚刀 Download PDF

Info

Publication number
CN107365931A
CN107365931A CN201710613277.5A CN201710613277A CN107365931A CN 107365931 A CN107365931 A CN 107365931A CN 201710613277 A CN201710613277 A CN 201710613277A CN 107365931 A CN107365931 A CN 107365931A
Authority
CN
China
Prior art keywords
alloy
carbide
base material
parts
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710613277.5A
Other languages
English (en)
Other versions
CN107365931B (zh
Inventor
朱晓东
滕大庆
罗国忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Lida Metal Products Co Ltd
Original Assignee
Wuxi Lida Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Lida Metal Products Co Ltd filed Critical Wuxi Lida Metal Products Co Ltd
Priority to CN201710613277.5A priority Critical patent/CN107365931B/zh
Publication of CN107365931A publication Critical patent/CN107365931A/zh
Application granted granted Critical
Publication of CN107365931B publication Critical patent/CN107365931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • C23C10/54Diffusion of at least chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Mining & Mineral Resources (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种硬质合金滚刀,其技术方案要点是包括合金基材,合金基材的两侧面由里向外依次形成有Ni‑Cr合金层与Cr‑Nb合金层,Cr‑Nb合金层上喷涂有防腐层,防腐层包括碳化钨和按照如下重量百分比计11~20%Cr、25~32%Ni、3~5%Mo、0.1~2.2%Zr以及0.2~1.2%硅,金属钼、金属锆与硅,三者会产生协同作用;通过本发明的配方,制备了兼具有高强度、良好的韧性以及优异的耐腐蚀性能的硬质合金滚刀。

Description

一种硬质合金滚刀
技术领域
本发明涉及硬质合金,特别涉及一种硬质合金滚刀。
背景技术
硬质合金是以高硬度难熔金属的碳化物微米级粉末为硬质相,以钴为粘结相,辅以抑制相,在真空炉或氢气还原炉中烧结形成的粉末冶金制品,目前已被广泛应用于刀具、模具等技术领域中。
随着人们对资源需求的不断增长,在岩层或矿山上进行资源的深层开采作业迫在眉睫,深层开采所需的刀具需要有优良的抵抗破裂和疲劳断裂的强度、韧性和耐磨性,而传统的硬质合金材料并不能完全满足以上各指标。
目前,现有专利中申请公布号为CN105861903A的中国专利公开了一种硬质合金,该硬质合金包括硬质相和Co粘结相,其中Co粘结相中主要含有Cr或/和Mo,并且Co粘结相中不含Ni,通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,该发明的配方合理,提高了硬质合金的切削性能与使用寿命,采用该硬质合金制备的刀具具有硬度高和韧性好的优点。
上述硬质合金具有高强度以及优异的韧性,但是,在合金的加工过程中会发生晶间腐蚀,造成位错断裂等。
发明内容
本发明的目的是提供一种硬质合金滚刀,该滚刀兼具有高强度、良好的韧性以及优异的耐腐蚀性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种硬质合金滚刀,包括合金基材,所述合金基材的两侧面由里向外依次形成有Ni-Cr合金层与Cr-Nb合金层,所述Cr-Nb合金层上喷涂有防腐层,所述防腐层包括碳化钨和按照如下重量百分比计11~20 % Cr、25~32% Ni、3~5% Mo、0.1~2.2% Zr以及0.2~1.2%硅。
通过采用上述技术方案,在合金基材上镀制Ni-Cr合金层、Cr-Nb合金层与防腐层,Ni-Cr合金层提高了合金基材的强度;Cr-Nb合金层提高了合金基材的延展性;防腐层中除含有硬质材料外,还含有金属钼、金属锆与硅,三者会产生协同作用,金属钼和金属锆的熔点均很高,原子间结合力较高,所以强度较高,在常温下不与盐酸、氢氟酸及碱溶液发生反应,仅溶于硝酸或浓硫酸中;添加硅元素一方面可作为稳定该Ni-Cr合金层的有效元素,在高温下不易发生分解;另一方面能够在合金层基材的表面形成二氧化硅氧化膜层,阻碍氧的继续侵入,有利于提高该合金层的屈服强度,改善该合金基材的高温抗蠕变性和抗蠕变断裂能力;通过本发明的配方,制备了兼具有高强度、良好的韧性以及优异的耐腐蚀性能的硬质合金滚刀。
本发明进一步设置为:所述Ni-Cr合金层中Cr含量在32~35%之间。
通过采用上述技术方案,Cr含量越高,Ni-Cr合金层的钝化能力越强,Ni-Cr合金层不仅可以抗高温氧化,还可用于水溶液中,特别是强氧化性水溶液中,在实际应用中,它可用于硫酸、磷酸、低浓度的盐酸、氢氟酸等环境中,在蒸汽以及碱中耐蚀性也极好。
本发明进一步设置为:所述Cr-Nb合金层中Nb含量在18.5~22.5%之间。
通过采用上述技术方案,Cr-Nb合金层中Nb含量在18.5~22.5之间时,在Cr-Nb合金层中发生了Cr的外氧化和内氧化,形成了两层结构的氧化膜,这两层氧化膜的相组成分别为Cr2O3和CrNbO4,保证了Cr-Nb合金层具有优良的高温力学性能,同时还具有优异的高温抗氧化性。
本发明进一步设置为:所述合金基材包括70~80 份硬质相、20~30 份粘结相以及纳米碳管,所述粘结相与纳米碳管的重量百分比为5:1。
通过采用上述技术方案,纳米碳管分散在粘结相内,纳米碳管对粘结相内起到有效的支撑作用,减小了粘结相内晶间的滑移,从而提高该合金基材的强度以及抗切削能力。
本发明进一步设置为:所述硬质相包括重量比为5:2:1:2的碳化钨、硼化锌、六硼化硅与碳化锆。
通过采用上述技术方案,碳化钨是一种由钨和碳组成的化合物,为黑色六方晶体,有金属光泽,硬度与金刚石相近,为电、热的良导体,碳化钨不溶于水、盐酸和硫酸;六硼化硅的熔点为2200℃,不溶于水,具有优异的抗氧化性、抗热冲击性、抗化学腐蚀以及在热冲击下具有很高的强度和稳定性;碳化锆是一种硬度大的高熔点材料和极好的高温耐火材料,具有良好的热稳定性,在通入保护气体的条件下,具有优异的热稳定性;纯的碳化钨易碎,掺入硼化锌、碳化锆与六硼化硅,有效减小脆性,提高该合金基材的抗爆能力。
本发明进一步设置为:所述粘结相包括如下重量百分比的组分:50~60% 纳米钴粉、20~30%纳米铬粉、10~20%纳米石墨以及3~5%聚醚醚酮粉。
通过采用上述技术方案,聚醚醚酮(PEEK)是分子主链中含有链节的线性芳香族高分子化合物,属于半结晶性、热塑性塑料,机械特性方面,PEEK是韧性和刚性兼备的塑料,特别是它对交变应力的优良耐疲劳性是所有塑料中较出众的,可与合金相媲美;自润滑性方面,PEEK在所有塑料中具有出众的滑动特性,特别是与碳纤、石墨混合时PEEK的自润滑性更佳;PEEK具有优异的耐腐蚀性,不溶于普通的盐酸等,它的耐腐蚀性与镍钢相近;纳米石墨可以在高温摩擦下形成一种石墨润滑膜,大大减小摩擦系数,当纳米石墨与纳米碳管复配使用制备合金基材时,纳米碳管能够渗入纳米石墨的片层结构内,对纳米石墨的片层结构起到支撑作用,从而减小纳米石墨晶间滑移,提高该合金基材的抗切削性能。
本发明进一步设置为:所述合金基材通过如下工艺步骤制成:
(1)按照上述比例称取各原料,通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20~25mm;
(2)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在100~120℃,干燥4~5小时;
(3)将干燥后的粉料放置在在高温管式炉中进行烧结成型,持续通入保护气体,烧结温度为780~820℃,烧结时间为2~3小时;
(4)待烧结后的半成品冷却后,从高温管式炉中取出并放入超声波清洗机中,将纳米碳管溶解在去离子水中,作为超声介质,超声震荡10~12小时;
(5)将经过超声震荡后的半成品从超声波清洗机中取出,再次放入高温管式炉中进行烧结,继续通入保护气体,烧结温度为980~1020℃,烧结时间为2~3小时。
通过采用上述技术方案,首先利用滚筒式球磨机对各浆料组分进行充分混合,然后将干燥后的粉料进行预烧结成型,形成半成品后进行超声震荡,使得纳米碳管渗入半成品的晶间内,再次在高温下进行烧结,显著提高了纳米碳管的渗透性,同时提高该合金基材的强度、抗切削性能。
本发明进一步设置为:所述Ni-Cr合金层是以纳米NiO粉体为Ni源、纳米铬粉为Cr源,通过热扩渗在活化后的合金基材的表面上形成。
通过采用上述技术方案,通过热扩渗处理工艺向合金基材的表面上渗入镍元素与铬元素,有助于形成致密均匀的Ni-Cr合金层。
本发明进一步设置为:所述Cr-Nb合金层是在Ni-Cr合金层的表面上采用脉冲电沉积的制成,在沉积过程中先进行低温预热处理,再进行高温重结晶处理。
通过采用上述技术方案,向Ni-Cr合金层上电沉积Cr-Nb合金,进行低温预热处理以及高温重结晶处理均是为了增强Cr-Nb合金层在Ni-Cr合金层表面附着的紧固性。
综上所述,本发明具有以下有益效果:
1、合金基材由硬质相、粘结相以及纳米碳管烧结形成,粘结相与纳米碳管产生协同作用,减小粘结相内的晶间滑移,提高合金基材的高强度与硬度;
2、硬质相采用碳化钨、硼化锌、六硼化硅与碳化锆多种组分制成,多种组分间会产生协同作用,有利于提高硬质相的硬度与抗切削性能;
3、制备合金基材时,纳米碳管是采用超声波震荡的方式渗入合金半成品内的,然后利用再次烧结制备性能优异的合金基材。
具体实施方式
以下结合实施例对本发明作进一步详细说明。
试验材料:合金基材的厚度为0.03mm;35~65nm的NiO纳米粉体;保护气氛采用氢气:氮气为3:1的混合气体。
实施例一:
一种硬质合金滚刀,该合金滚刀的制备方法包括如下步骤:
(1)配料:按照重量份计,70份硬质相、25份粘结相与5份纳米碳管;硬质相是由35份碳化钨、14份硼化锌、7份六硼化硅和14份碳化锆组成;粘结相包括13份纳米钴粉、7份纳米铬粉、4份纳米石墨与1份聚醚醚酮粉;
(2)通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20mm;
(3)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在110℃,干燥4小时;
(4)将干燥后的粉料放置在高温管式炉中进行烧结成型,在烧结过程中通入保护气氛,以10℃/min缓慢升温至800℃,保持烧结时间为2小时;
(5)在保护气氛的作用下,对烧结后的半成品进行冷却,从高温管式炉中取出并放入超声波清洗机中,将5份纳米碳管溶解在去离子水中,作为超声介质,超声震荡10小时;
(6)经过超声震荡后的半成品从超声波清洗机中取出后,再次放入高温管式炉中进行烧结,继续通入保护气体,以10℃/min的速度升温至1000℃,烧结时间为3小时,制成合金基材;
(7)按照摩尔比为66:34:100混合NiO纳米粉体、纳米铬粉和乙醇,由超声清洗机分散制成合金涂覆液,将合金涂覆液注入喷枪,并喷涂在合金基材的表面上,在80℃下干燥30min后将合金基材放入高温管式炉内,在保护气氛中以10℃/min的升温速率加热至1000℃;
(8)按照摩尔比n(NaCl):n(KCl):n(NaF):n(纳米铬粉):n(纳米铌粉)=1:1:3:0.8:0.2称量,充分混合均匀后倒入高纯石墨坩埚中;将装有电沉积液的高纯石墨坩埚置于不锈钢套筒内,采用坩埚电阻炉加热,AI智能温度控制仪控温,升至700℃,保温4小时,继续升温至1000℃,保温6小时;
(9)将步骤(7)镀制有Ni-Cr合金层的合金基材在保护气氛的环境下自然冷却至室温,在氩气气氛下将镀制有Ni-Cr合金层的合金基材浸入高纯石墨坩埚内,将阴极、阳极与SMD-30P型智能多组换向脉冲电镀电源(河北邯郸大舜电镀设备有限公司)连接,电沉积1小时制成Cr-Nb合金层;具体参数为正向脉冲平均电流密度10A/dm2,占空比0.2,周期1000μs,工作时间100ms,反向脉冲平均电流密度0.5A/dm2,占空比0.1,周期1000μs,工作时间10ms;
(10)在Cr-Nb合金层的基材表面上喷涂有防腐层,防腐层的配方按照重量份计,碳化钨60.7份、纳米铬粉 11份、镍粉 25份、钼粉 3份、锆粉 0.1份与硅粉 0.2份,并溶解在100份的乙醇溶液中制成防腐液,利用喷枪喷涂在Cr-Nb合金层的表面上,喷涂后,将试样样品放置高温管式炉内,在保护气氛中以10℃/min的升温速率加热至800℃制成防腐层。
实施例二:
一种硬质合金滚刀,该合金滚刀的制备方法包括如下步骤:
(1)配料:按照重量份计,76份硬质相、20份粘结相与4份纳米碳管;硬质相是由38份碳化钨、15.2份硼化锌、7.6份六硼化硅和15.2份碳化锆组成;粘结相包括10份纳米钴粉、6份纳米铬粉、3份纳米石墨与1份聚醚醚酮粉;
(2)通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20mm;
(3)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在110℃,干燥4小时;
(4)将干燥后的粉料放置在高温管式炉中进行烧结成型,在烧结过程中通入保护气氛,以10℃/min缓慢升温至800℃,保持烧结时间为2小时;
(5)在保护气氛的作用下,对烧结后的半成品进行冷却,从高温管式炉中取出并放入超声波清洗机中,将4份纳米碳管溶解在去离子水中,作为超声介质,超声震荡10小时;
(6)经过超声震荡后的半成品从超声波清洗机中取出后,再次放入高温管式炉中进行烧结,继续通入保护气体,以10℃/min的速度升温至1000℃,烧结时间为3小时,制成合金基材;
(7)按照摩尔比为68:32:100混合NiO纳米粉体、纳米铬粉和乙醇,由超声清洗机分散制成合金涂覆液,将合金涂覆液注入喷枪,并喷涂在合金基材的表面上,在80℃下干燥30min后将合金基材放入高温管式炉内,在保护气氛中以10℃/min的升温速率加热至1000℃;
(8)按照摩尔比n(NaCl):n(KCl):n(NaF):n(纳米铬粉):n(纳米铌粉)=1:1:3:0.81:0.19称量,充分混合均匀后倒入高纯石墨坩埚中;将装有电沉积液的高纯石墨坩埚置于不锈钢套筒内,采用坩埚电阻炉加热,AI智能温度控制仪控温,升至700℃,保温4小时,继续升温至1000℃,保温6小时;
(9)将步骤(7)镀制有Ni-Cr合金层的合金基材在保护气氛的环境下自然冷却至室温,在氩气气氛下将镀制有Ni-Cr合金层的合金基材浸入高纯石墨坩埚内,将阴极、阳极与SMD-30P型智能多组换向脉冲电镀电源(河北邯郸大舜电镀设备有限公司)连接,电沉积1小时制成Cr-Nb合金层;具体参数为正向脉冲平均电流密度10A/dm2,占空比0.2,周期1000μs,工作时间100ms,反向脉冲平均电流密度0.5A/dm2,占空比0.1,周期1000μs,工作时间10ms;
(10)在Cr-Nb合金层的基材表面上喷涂有防腐层,防腐层的配方按照重量份计,碳化钨56份、纳米铬粉 13份、镍粉 27份、钼粉 3份、锆粉 0.5份与硅粉 0.5份,并溶解在100份的乙醇溶液中制成防腐液,利用喷枪喷涂在Cr-Nb合金层的表面上,喷涂后,将试样样品放置高温管式炉内,在保护气氛中以10℃/min的升温速率加热至800℃制成防腐层。
实施例三:
一种硬质合金滚刀,该合金滚刀的制备方法包括如下步骤:
(1)配料:按照重量份计,64份硬质相、30份粘结相与6份纳米碳管;硬质相是由32份碳化钨、12.8份硼化锌、6.4份六硼化硅和12.8份碳化锆组成;粘结相包括18份纳米钴粉、6.5份纳米铬粉、4份纳米石墨与1.5份聚醚醚酮粉;
(2)通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20mm;
(3)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在110℃,干燥4小时;
(4)将干燥后的粉料放置在高温管式炉中进行烧结成型,在烧结过程中通入保护气氛,以10℃/min缓慢升温至800℃,保持烧结时间为2小时;
(5)在保护气氛的作用下,对烧结后的半成品进行冷却,从高温管式炉中取出并放入超声波清洗机中,将6份纳米碳管溶解在去离子水中,作为超声介质,超声震荡10小时;
(6)经过超声震荡后的半成品从超声波清洗机中取出后,再次放入高温管式炉中进行烧结,继续通入保护气体,以10℃/min的速度升温至1000℃,烧结时间为3小时,制成合金基材;
(7)按照摩尔比为65:35:100混合NiO纳米粉体、纳米铬粉和乙醇,由超声清洗机分散制成合金涂覆液,将合金涂覆液注入喷枪,并喷涂在合金基材的表面上,在80℃下干燥30min后将合金基材放入高温管式炉内,在保护气氛中以10℃/min的升温速率加热至1000℃;
(8)按照摩尔比n(NaCl):n(KCl):n(NaF):n(纳米铬粉):n(纳米铌粉)=1:1:3:0.78:0.22称量,充分混合均匀后倒入高纯石墨坩埚中;将装有电沉积液的高纯石墨坩埚置于不锈钢套筒内,采用坩埚电阻炉加热,AI智能温度控制仪控温,升至700℃,保温4小时,继续升温至1000℃,保温6小时;
(9)将步骤(7)镀制有Ni-Cr合金层的合金基材在保护气氛的环境下自然冷却至室温,在氩气气氛下将镀制有Ni-Cr合金层的合金基材浸入高纯石墨坩埚内,将阴极、阳极与SMD-30P型智能多组换向脉冲电镀电源(河北邯郸大舜电镀设备有限公司)连接,电沉积1小时制成Cr-Nb合金层;具体参数为正向脉冲平均电流密度10A/dm2,占空比0.2,周期1000μs,工作时间100ms,反向脉冲平均电流密度0.5A/dm2,占空比0.1,周期1000μs,工作时间10ms;
(10)在Cr-Nb合金层的基材表面上喷涂有防腐层,防腐层的配方按照重量份计,碳化钨44份、纳米铬粉 17份、镍粉 32份、钼粉 5份、锆粉 1.2份与硅粉 0.8份,并溶解在100份的乙醇溶液中制成防腐液,利用喷枪喷涂在Cr-Nb合金层的表面上,喷涂后,将试样样品放置高温管式炉内,在保护气氛中以10℃/min的升温速率加热至800℃制成防腐层。
实施例四:
一种硬质合金滚刀,该合金滚刀的制备方法包括如下步骤:
(1)配料:按照重量份计,73份硬质相、22.5份粘结相与4.5份纳米碳管;硬质相是由36.5份碳化钨、14.6份硼化锌、7.3份六硼化硅和14.6份碳化锆组成;粘结相包括13份纳米钴粉、5份纳米铬粉、3份纳米石墨与1.5份聚醚醚酮粉;
(2)通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20mm;
(3)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在110℃,干燥4小时;
(4)将干燥后的粉料放置在高温管式炉中进行烧结成型,在烧结过程中通入保护气氛,以10℃/min缓慢升温至800℃,保持烧结时间为2小时;
(5)在保护气氛的作用下,对烧结后的半成品进行冷却,从高温管式炉中取出并放入超声波清洗机中,将4.5份纳米碳管溶解在去离子水中,作为超声介质,超声震荡10小时;
(6)经过超声震荡后的半成品从超声波清洗机中取出后,再次放入高温管式炉中进行烧结,继续通入保护气体,以10℃/min的速度升温至1000℃,烧结时间为3小时,制成合金基材;
(7)按照摩尔比为68:32:100混合NiO纳米粉体、纳米铬粉和乙醇,由超声清洗机分散制成合金涂覆液,将合金涂覆液注入喷枪,并喷涂在合金基材的表面上,在80℃下干燥30min后将合金基材放入高温管式炉内,在保护气氛中以10℃/min的升温速率加热至1000℃;
(8)按照摩尔比n(NaCl):n(KCl):n(NaF):n(纳米铬粉):n(纳米铌粉)=1:1:3:0.78:0.22称量,充分混合均匀后倒入高纯石墨坩埚中;将装有电沉积液的高纯石墨坩埚置于不锈钢套筒内,采用坩埚电阻炉加热,AI智能温度控制仪控温,升至700℃,保温4小时,继续升温至1000℃,保温6小时;
(9)将步骤(7)镀制有Ni-Cr合金层的合金基材在保护气氛的环境下自然冷却至室温,在氩气气氛下将镀制有Ni-Cr合金层的合金基材浸入高纯石墨坩埚内,将阴极、阳极与SMD-30P型智能多组换向脉冲电镀电源(河北邯郸大舜电镀设备有限公司)连接,电沉积1小时制成Cr-Nb合金层;具体参数为正向脉冲平均电流密度10A/dm2,占空比0.2,周期1000μs,工作时间100ms,反向脉冲平均电流密度0.5A/dm2,占空比0.1,周期1000μs,工作时间10ms;
(10)在Cr-Nb合金层的基材表面上喷涂有防腐层,防腐层的配方按照重量份计,碳化钨44份、纳米铬粉 17份、镍粉 32份、钼粉 5份、锆粉 1.2份与硅粉 0.8份,并溶解在100份的乙醇溶液中制成防腐液,利用喷枪喷涂在Cr-Nb合金层的表面上,喷涂后,将试样样品放置高温管式炉内,在保护气氛中以10℃/min的升温速率加热至800℃制成防腐层。
对比例:以现有专利中申请公布号为CN105861903A的中国专利公开的硬质合金。
检测手段:
(1)耐腐蚀性评价方法:对实施例和对比例制得的电池钢带进行盐雾试验,采用观察试样表面的定性评价方法。
(2)力学性能:采用《ISO3369:1975》测量电池钢带的密度;采用《ISO3878:1983》测量电池钢带的硬度以及进行拉力试验。
耐腐蚀性能的检测结果如下表所示:
样品 12小时 24小时 36小时 48小时 60小时 72小时
实施例一 0个锈点 0个锈点 0个锈点 0个锈点 1个锈点 1个锈点
实施例二 0个锈点 0个锈点 0个锈点 0个锈点 0个锈点 1个锈点
实施例三 0个锈点 0个锈点 0个锈点 0个锈点 0个锈点 1个锈点
实施例四 0个锈点 0个锈点 0个锈点 0个锈点 1个锈点 1个锈点
对比例 1个锈点 2个锈点 4个锈点 7个锈点 11个锈点 18个锈点
通过上表可知,本实施例的硬质合金滚刀在盐雾试验48小时后开始出现锈点,而对比例的硬质合金不到12小时后就开始出现锈点,实施例的硬质合金滚刀具有优异的耐腐蚀性能。
力学性能的检测结果如下表所示:
样品 密度(g/cm3 硬度(Hv 30) 抗拉强度(MPa) 韧性(MN/mm1.5
实施例一 12.6 1860 396 10.2
实施例二 12.8 1830 403 9.7
实施例三 12.4 1920 421 9.9
实施例四 12.6 1930 423 10.3
对比例 11.8 1050 238 5.1
通过上表可知,本实施例滚刀的密度与对比例硬质合金的密度相近,表明两种硬质合金等体积情况下的重量相当;而实施例试样的硬度、抗拉强度与韧性均很大,表明实施例试样兼具有硬度与韧性,有利于提高滚刀的抗切削性能。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (9)

1.一种硬质合金滚刀,其特征在于:包括合金基材,所述合金基材的两侧面由里向外依次形成有Ni-Cr合金层与Cr-Nb合金层,所述Cr-Nb合金层上喷涂有防腐层,所述防腐层包括碳化钨和按照如下重量百分比计11~20 % Cr、25~32% Ni、3~5% Mo、0.1~2.2% Zr以及0.2~1.2%硅。
2.根据权利要求1所述的一种硬质合金滚刀,其特征在于:所述Ni-Cr合金层中Cr含量在32~35%之间。
3.根据权利要求1所述的一种硬质合金滚刀,其特征在于:所述Cr-Nb合金层中Nb含量在18.5~22.5%之间。
4.根据权利要求1所述的一种硬质合金滚刀,其特征在于:所述合金基材包括70~80 份硬质相、20~30 份粘结相以及纳米碳管,所述粘结相与纳米碳管的重量百分比为5:1。
5.根据权利要求4所述的一种硬质合金滚刀,其特征在于:所述硬质相包括重量比为5:2:1:2的碳化钨、硼化锌、六硼化硅与碳化锆。
6.根据权利要求5所述的一种硬质合金滚刀,其特征在于所述粘结相包括如下重量百分比的组分:50~60% 纳米钴粉、20~30%纳米铬粉、10~20%纳米石墨以及3~5%聚醚醚酮粉。
7.根据权利要求6所述的一种硬质合金滚刀,其特征在于所述合金基材通过如下工艺步骤制成:
(1)按照上述比例称取各原料,通过滚筒式球磨机进行湿磨,介质为去离子水,研磨球为氧化铝球,氧化铝球的粒度为20~25mm;
(2)在真空干燥箱中,将湿磨后的浆料进行干燥,温度控制在100~120℃,干燥4~5小时;
(3)将干燥后的粉料放置在在高温管式炉中进行烧结成型,持续通入保护气体,烧结温度为780~820℃,烧结时间为2~3小时;
(4)待烧结后的半成品冷却后,从高温管式炉中取出并放入超声波清洗机中,将纳米碳管溶解在去离子水中,作为超声介质,超声震荡10~12小时;
(5)将经过超声震荡后的半成品从超声波清洗机中取出,再次放入高温管式炉中进行烧结,继续通入保护气体,烧结温度为980~1020℃,烧结时间为2~3小时。
8.根据权利要求1所述的一种硬质合金滚刀,其特征在于:所述Ni-Cr合金层是以纳米NiO粉体为Ni源、纳米铬粉为Cr源,通过热扩渗在活化后的合金基材的表面上形成。
9.根据权利要求1所述的一种硬质合金滚刀,其特征在于:所述Cr-Nb合金层是在Ni-Cr合金层的表面上采用脉冲电沉积的制成,在沉积过程中先进行低温预热处理,再进行高温重结晶处理。
CN201710613277.5A 2017-07-25 2017-07-25 一种硬质合金滚刀 Active CN107365931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710613277.5A CN107365931B (zh) 2017-07-25 2017-07-25 一种硬质合金滚刀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710613277.5A CN107365931B (zh) 2017-07-25 2017-07-25 一种硬质合金滚刀

Publications (2)

Publication Number Publication Date
CN107365931A true CN107365931A (zh) 2017-11-21
CN107365931B CN107365931B (zh) 2019-03-08

Family

ID=60308552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710613277.5A Active CN107365931B (zh) 2017-07-25 2017-07-25 一种硬质合金滚刀

Country Status (1)

Country Link
CN (1) CN107365931B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444950A (zh) * 2021-07-08 2021-09-28 烟台新钢联冶金科技有限公司 一种硅钢高温加热炉用铬基高氮合金垫块及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241638A (zh) * 1998-07-09 2000-01-19 浙江大学 纳米碳化钨-钴硬质合金的制造方法及设备
CN103737273A (zh) * 2013-12-31 2014-04-23 武汉团结点金激光科技有限公司 一种激光熔覆wc耐磨涂层的新型滚刀的制作工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241638A (zh) * 1998-07-09 2000-01-19 浙江大学 纳米碳化钨-钴硬质合金的制造方法及设备
CN103737273A (zh) * 2013-12-31 2014-04-23 武汉团结点金激光科技有限公司 一种激光熔覆wc耐磨涂层的新型滚刀的制作工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444950A (zh) * 2021-07-08 2021-09-28 烟台新钢联冶金科技有限公司 一种硅钢高温加热炉用铬基高氮合金垫块及其制备方法

Also Published As

Publication number Publication date
CN107365931B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
Li et al. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding
CN105088108B (zh) 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层
Liu et al. Effect of Cu content on microstructure evolution and tribological behaviors of Ni60 composite coatings on 45# steel by laser cladding
Sun et al. Research progress in surface strengthening technology of carbide-based coating
Liu et al. Microstructure and mechanical properties of in situ NiAl–Mo2C nanocomposites prepared by hot-pressing sintering
Li et al. Effect of Ni modified graphene on microstructure and properties of Ni60 composite coatings prepared by laser cladding
CN110004392B (zh) 一种耐高温腐蚀耐磨损的非晶态热喷涂材料
CN106825988B (zh) 一种等离子弧堆焊用耐高温腐蚀及磨损钴基粉末
CN106244856A (zh) 一种铁镍基高温合金
Targhi et al. Hot corrosion behavior of aluminized and Si-modified aluminized coated IN-738LC produced by a novel hot-dip process
WO2022057084A2 (zh) 一种高强度抗氧化耐腐镍铬电热合金及其加工方法
Abdi et al. Study on the effect of the crack closing of AlCoCrFeMnNi high entropy alloy electro-spark deposited coating by plasma nitriding on the corrosion resistance
CN104525900B (zh) 耐磨碳化物涂层及其制备方法
Xue et al. Effect of siliconizing with molten salt on the wear resistance and corrosion resistance of AISI 302 stainless steel
CN106544548B (zh) 一种耐磨耐氢氟酸腐蚀的镍基合金材料及其制备方法
He et al. Impressive high-temperature oxidation resistance of FeCrNiMnAl high entropy alloy coating on the ferritic/martensitic steel with primordial Al2O3 and Mn3O4 gradient films
Yu et al. Microstructures and properties of nickel-titanium carbide composites fabricated by laser cladding
Motallebzadeh et al. Microstructure and tribological properties of PTA deposited Stellite 12 coating on steel substrate
Zhu et al. Influence of Ta2O5 on the micromorphology and high-temperature oxidation resistance of MoSi2-based composite coating for protecting niobium
CN107365931A (zh) 一种硬质合金滚刀
Lin et al. Review on improvements in surface performance of TiAl-based alloys by double glow plasma surface alloying technology
Lai et al. The role of Dy doping on oxidation behavior of Co-40Mn/Co coating for solid oxide fuel cell metal interconnects
CN105543842B (zh) 钛合金表面形成的耐磨-耐高温涂层及其实现方法
Wang et al. Microstructure evolution, wear and corrosion behavior of WC reinforced CoCrFeNiMn high-entropy alloy composite coatings by induction cladding
Shuecamlue et al. Influences of flame remelting and WC-Co addition on microstructure, mechanical properties and corrosion behavior of NiCrBSi coatings manufactured via HVOF process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant