CN107365254B - 一种聚合物微球在拉曼检测中的应用 - Google Patents

一种聚合物微球在拉曼检测中的应用 Download PDF

Info

Publication number
CN107365254B
CN107365254B CN201610312523.9A CN201610312523A CN107365254B CN 107365254 B CN107365254 B CN 107365254B CN 201610312523 A CN201610312523 A CN 201610312523A CN 107365254 B CN107365254 B CN 107365254B
Authority
CN
China
Prior art keywords
raman
polymer
monomer
group
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610312523.9A
Other languages
English (en)
Other versions
CN107365254A (zh
Inventor
汤新景
金庆庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610312523.9A priority Critical patent/CN107365254B/zh
Publication of CN107365254A publication Critical patent/CN107365254A/zh
Application granted granted Critical
Publication of CN107365254B publication Critical patent/CN107365254B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/39Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups
    • C07C205/42Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups having nitro groups or esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C247/00Compounds containing azido groups
    • C07C247/02Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C247/04Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C247/00Compounds containing azido groups
    • C07C247/16Compounds containing azido groups with azido groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/11Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton
    • C07C255/14Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton containing cyano groups and esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/55Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公布了一种聚合物微球在拉曼检测中的应用。将含炔基、氰基、叠氮基或碳氘键基团的甲基丙烯酸酯/酰胺类聚合物单体或苯乙烯类聚合物单体,通过乳液聚合或分散聚合的方法制备成粒径为纳米级至微米级的聚合物微球,这种聚合物微球在没有金属增敏结构的情况下具有明显的拉曼信号,其拉曼特征峰信号处于生物体内的拉曼静默区(1800‑2800cm‑1),可作为标记物应用于生物成像。

Description

一种聚合物微球在拉曼检测中的应用
技术领域
本发明涉及拉曼光谱技术,特别涉及一种具有拉曼效应的聚合物微球在生物成像领域的应用。
背景技术
拉曼光谱是基于光子激发振动发生非弹性散射而建立起来的一种无损光谱技术,具有指纹识别特征,能从分子水平获得物质的结构及组成信息。拉曼探针相对于荧光探针具有近红外激发、光谱窄以及光稳定性等优点而使其很快应用到探针、细胞成像、体内成像等方面。但是拉曼散射与生俱来的弱信号导致检测限太低,始终限制着拉曼光谱的进一步发展与应用。科学家们一直都在寻求更好的方法来获得更强的拉曼信号,获得更低的检测限。1974年,Fleischmann等人观测到粗糙的银电极表面吡啶分子的高强度拉曼散射信号。当物质分子吸附在一些特定的金属表面时,分子的拉曼散射强度可增加103~106倍,称为表面增强拉曼散射(SERS)。
表面增强拉曼光谱能够提供更丰富的化学分子的结构信息,而且检测灵敏度大大提高。与红外、荧光等其他光谱手段相比,它还具有不受水干扰、不易淬灭、可用红光激发、光谱带宽窄等优点,因此非常适合于生物体系,特别是在单个活细胞的研究,很快在生物体系中低浓度分子检测、表面化学、医学等领域得到广泛地应用。但是SERS探针的强信号依赖于金属基底的增强效应,而且存在重现性差导致定量分析困难等问题。
发明内容
本发明的目的是摆脱金属粒子的增敏效应,提供一种在没有金属增敏结构的情况下,能够提高拉曼散射信号强度的方法。
拉曼谱带的强度与待测物的浓度遵守比尔定律,即信号基团浓度越大,拉曼散射越强。样品分子量增加,拉曼散射强度一般也会增加。基于此,本发明用聚合的方法增加信号基团的局部浓度,从而提高拉曼散射的强度。首先,本发明选择炔基、氰基、叠氮基、碳氘键作为信号基团,因为其拉曼谱带均处于生物体内拉曼静默区(细胞中天然生物分子在1800-2800cm-1区间没有拉曼信号),有利于应用到生物体中。接着,本发明设计合成了一系列含有这四种基团的甲基丙烯酸酯/酰胺类聚合物单体或苯乙烯类聚合物单体,然后通过乳液聚合或分散聚合的方法制备成粒径为纳米级至微米级的聚合物微球。这种聚合物微球具有独特的拉曼效应,可作为标记物应用于生物成像。
本发明提供的第一类具有拉曼散射信号的聚合物单体是甲基丙烯酸酯/酰胺类聚合物单体,具有如下式I所示的结构:
Figure BDA0000987847910000021
式I中,m为0或1,n为大于等于0的整数,X为O或NH,Ar为芳基,R代表含炔基的基团、氰基、叠氮基或含碳氘键的基团。
优选的,式I中n优选为0、1、2、3、4或5。
当式I中含有Ar时(即m=1),Ar为取代或未取代的苯基、萘基、五元芳杂化基或六元芳杂环基。所述五元芳杂环基例如吡咯基、噻吩基等;上述六元芳杂环基例如吡啶基等。所述苯基、萘基、五元芳杂化基或六元芳杂环基上可具有一个或多个取代基,所述取代基可以是卤素、氰基、硝基、羟基、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
上述式I中,当R为含炔基的基团时,R为
Figure BDA0000987847910000022
R1为氢、C1~C6烷基、C2~C6烯基、C2~C6炔基、卤素、三甲基硅基、C5~C12的取代或未取代芳基。这里所述取代或未取代芳基可以是取代或未取代的苯基、萘基、五元芳杂化基或六元芳杂环基,所述五元芳杂环基例如吡咯基、噻吩基等,上述六元芳杂环基例如吡啶基等。芳基上可具有一个或多个取代基,所述取代基可以是羟基、硝基、卤素、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
当R为含碳氘键的基团时,可以是一个或多个D取代的烷基、芳基或烯基,优选为一个或多个D取代的C1~C6烷基,一个或多个D取代的C5~C12芳基,一个或多个D取代的C2~C6烯基。其中所述C5~C12芳基可以是取代或未取代的苯基、萘基、五元芳杂化基或六元芳杂环基,所述五元芳杂环基例如吡咯基、噻吩基等,上述六元芳杂环基例如吡啶基等,其上的取代基可以是羟基、硝基、卤素、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
本发明的第一类具有拉曼散射信号的聚合物单体具体举例如下,其中化合物m-1至m-9是R为含炔基的基团的式I化合物,化合物m-CN-1和m-CN-2是R为氰基的式I化合物例,化合物m-N3-1和m-N3-2是R为叠氮基的式I化合物,化合物m-D-1和m-D-2是R为含碳氘键的式I化合物。
Figure BDA0000987847910000031
本发明提供的第二类具有拉曼散射信号的聚合物单体是苯乙烯类聚合物单体,为一个或多个氢被氘取代的苯乙烯,或者具有如下式II所示的结构:
Figure BDA0000987847910000032
式II中,R代表含炔基的基团、氰基、叠氮基或含碳氘键的基团。
式II中,当R为含炔基的基团时,R代表
Figure BDA0000987847910000033
R1为氢、C1~C6烷基、C2~C6烯基、C2~C6炔基、卤素、三甲基硅基、C5~C12的取代或未取代芳基。这里所述取代或未取代芳基可以是取代或未取代的苯基、萘基、五元芳杂化基或六元芳杂环基,所述五元芳杂环基例如吡咯基、噻吩基等,上述六元芳杂环基例如吡啶基等。芳基上可具有一个或多个取代基,所述取代基可以是羟基、硝基、卤素、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
式II中,当R为含碳氘键的基团时,可以是一个或多个D取代的烷基、芳基或烯基,优选为一个或多个D取代的C1~C6烷基,一个或多个D取代的C5~C12芳基,一个或多个D取代的C2~C6烯基。其中所述C5~C12芳基可以是取代或未取代的苯基、萘基、五元芳杂化基或六元芳杂环基,所述五元芳杂环基例如噻吩基等,上述六元芳杂环基例如吡啶基等,其上的取代基可以是羟基、硝基、卤素、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
本发明的第二类具有拉曼散射信号的聚合物单体的具体例子例如:
Figure BDA0000987847910000041
上述甲基丙烯酸酯/酰胺类聚合物单体或苯乙烯类聚合物单体可以通过聚合反应获得具有独特拉曼效应的聚合物微球,其制备方法主要包括:微乳聚合法和分散聚合法。
所述微乳聚合法的一般制备步骤如下:
1)制备油相:将聚合物单体、交联剂和必要的引发剂溶解在有机溶剂中,作为油相;
2)将含有表面活性剂的水相加入步骤1)制备的油相中,超声处理后采用相应引发手段引发聚合反应;
3)将有机溶剂挥发干,透析除去表面活性剂和未聚合的单体,得到聚合物微球。
步骤1)中所述交联剂可以是乙二醇二甲基丙烯酸酯(EGDMA)、二乙烯基苯(DVB)等;所述引发剂可以是热引发剂、光引发剂等,或者不用引发剂;热引发剂例如偶氮二异丁腈(AIBN)、过氧化苯甲酰(BPO)、过硫酸钾(KPS)、过硫酸铵等,光引发剂例如异丙基硫杂蒽酮等。所述有机溶剂优选为二氯甲烷(DCM)、乙腈等。
为了获得较好的聚合效果,交联剂与聚合物单体的摩尔比优选为5~25:100,引发剂与聚合物单体的摩尔比优选为0.3~3:100。
步骤2)中所述水相中表面活性剂通常为十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠、季铵盐、聚乙烯醇等,优选为十二烷基硫酸钠的水溶液,其中SDS的浓度优选为0.1~10mg/mL;所述超声处理是60~200W的功率下超声1~20min(优选80W下超声3~8min);所述引发手段可以是加热(温度为30~100℃,优选为60~80℃)或光照,也可以是超声辐照等无引发剂引发手段。反应时间为6~20h(优选为12~18h)。油相和水相的体积比优选为5~20:100。
步骤2)的聚合反应优选在除氧条件下进行,通常是采用通氮气的方法除氧。
上述微乳聚合法得到的聚合物微球的粒径主要在10~800nm范围内,多在100nm左右。要得到更大粒径的聚合物微球,可采用分散聚合的方法,具体是:将聚合物单体、分散剂和必要的引发剂溶于溶剂中,采用相应引发手段引发聚合反应;反应完毕后将有机溶剂挥发干,透析除去分散剂和未聚合的单体,即得更大粒径的聚合物微球。
在分散聚合法中,所述的分散剂可以是聚乙烯基吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚丙烯酸(PAA)、纤维素及其衍生物等均聚物稳定剂,或者是聚氧乙烯(PEO)等大单体稳定剂、嵌段聚合物等,优选为聚乙烯基吡咯烷酮;所述引发剂可以是热引发剂、光引发剂等,热引发剂例如偶氮二异丁腈(AIBN)、过氧化苯甲酰(BPO)、过硫酸钾(KPS)等,光引发剂例如异丙基硫杂蒽酮等,优选采用引发剂偶氮二异丁腈;所述反应溶剂为已烷和庚烷等非极性介质,或者是水、乙腈、低级醇及醚醇类等极性介质,也可以是它们的混合溶剂,优选为H2O和EtOH的混合溶剂,二者体积比0~50:100。所述引发手段可以是加热(温度为30~100℃,优选为60~80℃)或光照,也可以是超声辐照等无引发剂引发手段。
为了调控粒径大小,聚合物单体、分散剂、引发剂的摩尔比可以进行调整。通常,分散剂与聚合物单体的摩尔比为0.01~1:100,引发剂与聚合物单体的摩尔比优选为0.1~10:100。
聚合反应优选在除氧条件下进行,可采用通氮气的方法。反应时间为6~20h(优选为12~18h)。
分散聚合法制备的聚合物微球的粒径大于100nm,可达到微米级的10μm,甚至更大,粒径越大,拉曼效应越强。
本发明制备的甲基丙烯酸酯/酰胺类分散聚合产物如下式III所示,苯乙烯类分散聚合产物的结构如下式IV所示:
Figure BDA0000987847910000051
利用马尔文激光粒度仪(Nano-ZS,DLS)对聚合物微球的粒径大小和电势进行表征,采用日立S-4800扫描电子显微镜(SEM)进行外观形貌的观察,可以看到本发明所得聚合物微球粒径均一、结构稳定,呈表面光滑的球形结构。拉曼光谱的采集及拉曼成像(LabRAMHR)等实验证实,本发明的聚合物微球在没有金属增敏结构的情况下,具有明显的拉曼信号,而且检测信号处于生物体内的拉曼静默区(1800-2800cm-1)。基于它们独特的拉曼效应,这两类聚合物微球可以用作一种标记物,用于生物成像领域。通过对其适当的表面修饰,具有潜在的应用价值,如与核酸适配体偶联可起到肿瘤靶向成像的作用等。
附图说明
图1.几种甲基丙烯酸酯类聚合物微球的拉曼光谱,其中(a)和(c)为532nm激发,(b)为785nm激发。
图2.四种苯乙烯类聚合物微球的拉曼光谱,其中(a)为532nm激发,(b)为785nm激发。
图3.m-1,m-4,m-9,m-CN-2单体分别制备三种不同粒径的聚合物微球的扫描电子显微镜图像,其中三种粒径分别为100nm、400nm和1000nm。
图4.聚合物微球的拉曼信号强度与粒径的关系图,其中(a)为m-1、(b)为m-4、(c)为m-9、(d)为m-CN-2单体制备得到微球。
图5.m-CN-2单体制备的100nm粒径微球的拉曼成像,其中(a)明场下的形态;(b)氰基拉曼峰重构的分布图,扫描区域为X:-10μm到10μm,Y:-10μm到10μm,increment:2.5μm,2.5μm;9×9个像素点,81个光谱。
图6.混合聚合物微球的拉曼成像,其中(a)明场下的形态;(b)所有拉曼光谱的叠加图;(c)对每种微球分别成像,及拉曼多色成像。扫描区域X:-30μm到30μm,Y:-25μm到25μm,increment:2.5μm,2.5μm。25×21个像素点,525个光谱。
具体实施方式
下面通过实施例进一步说明本发明。
表1.实验所用试剂
Figure BDA0000987847910000061
Figure BDA0000987847910000071
Figure BDA0000987847910000081
三乙胺(TEA)、乙酸乙酯(EA)、石油醚(PE)、二氯甲烷(DCM)、丙酮、氯化钠(NaCl)、碳酸氢钠(NaHCO3)、无水硫酸钠(Na2SO4)、35%的浓盐酸、300-400目硅胶均购自北京化工厂,规格均为分析纯。而其中用于无水反应的二氯甲烷(DCM)、三乙胺(TEA)用CaH2干燥重蒸。
核磁(1H-NMR和13C-NMR)测试在AVANCE III型400M核磁共振仪上进行。使用氘代二甲基亚砜(DMSO-D6)和氘代氯仿(CDCl3)作溶剂,四甲基硅烷(TMS)作内标。
实施例1.化合物m-1单体的合成
Figure BDA0000987847910000082
将原料炔丁醇(700mg,10mmol)溶解于20mL的无水DCM中,加入4.15mL(30mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(1.65mL,17mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到940mg单体m-1,无色油状液体。产率为68.1%。
1H NMR(400MHz,CDCl3)δ6.14(s,1H),5.58(s,1H),4.25(t,J=6.8Hz,2H),2.57(td,J=6.8,2.7Hz,2H),1.95(s,3H).
13C NMR(101MHz,CDCl3)δ167.29,136.25,126.04,80.20,70.02,62.49,19.16,18.42.
实施例2.化合物m-2单体的合成
Figure BDA0000987847910000083
将原料2戊炔-1-醇(840mg,10mmol)溶解于20mL的无水DCM中,加入4.15mL(30mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(1.65mL,17mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到1.23g单体m-2,无色油状液体。产率为80.9%。
MS[M+Na]+:实测值:175.2;C9H12O2理论值:175.08.
1H NMR(400MHz,CDCl3)δ6.15(s,1H),6.15(s,1H),5.64–5.54(m,1H),5.62–5.57(m,1H),4.73(s,2H),4.73(s,2H),2.23(dt,J=7.5,2.2Hz,2H),1.95(s,3H),1.14(t,J=7.5Hz,4H).
13C NMR(101MHz,CDCl3)δ136.09,126.28,88.94,73.58,53.20,18.45,13.71,12.63.
实施例3.化合物m-3单体的合成
Figure BDA0000987847910000091
将原料三甲基硅基丙炔醇(1.28g,10mmol)溶解于20mL的无水DCM中,加入4.15mL(30mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(1.65mL,17mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到1.22g单体m-3,无色油状液体。产率为62.2%。
1H NMR(400MHz,CDCl3)δ6.17(s,1H),5.63–5.58(m,1H),4.75(s,2H),1.96(s,3H),0.18(s,9H).
13C NMR(101MHz,CDCl3)δ166.70,135.89,126.49,99.27,92.08,53.10,18.42.
实施例4.化合物m-4单体的合成
Figure BDA0000987847910000092
将3-苯基-2-丙炔-1-醇(396mg,3mmol)溶解于15ml的无水DCM中,加入1.4mL(9mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(0.53mL,5.1mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应4h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比10∶1)过柱纯化,得到无色油状液体474mg,产率79.1%。
MS(EI):实测值[M]+:200.2;C13H12O2理论值:200.08.
1H NMR(400MHz,CDCl3)δ7.50–7.43(m,2H),7.36–7.28(m,3H),6.21(s,1H),5.65–5.61(m,1H),4.99(s,2H),1.99(s,3H).
13C NMR(101MHz,CDCl3)δ166.80,135.89,132.02,131.95,128.84,128.47,128.40,126.53,122.31,86.45,83.20,53.16,18.42.
实施例5.化合物m-5单体的合成
Figure BDA0000987847910000101
(1)化合物1的合成
Figure BDA0000987847910000102
将对溴苯甲醚(2.80g,15mmol)溶解于20mL的无水THF中,加入炔丁醇(1.4g,20mmol),双三苯基磷二氯化钯(105mg,0.15mmol),碘化亚铜(57mg,0.3mmol),以及5ml三乙胺。于40℃反应3h。旋干THF,经柱分离纯化(PE∶DCM=1∶1,体积比),得到400mg化合物1,无色油状液体。产率为40%。
1H NMR(400MHz,CDCl3)δ7.35(d,J=8.7Hz,2H),6.82(d,J=8.7Hz,2H),3.89–3.71(m,5H),2.68(t,J=6.2Hz,2H).
13C NMR(101MHz,CDCl3)δ159.48,133.20,115.58,114.04,84.84,82.49,61.41,55.44,
24.02.
(2)化合物m-5单体的合成
Figure BDA0000987847910000103
将4-对甲氧基苯基-3-丁炔-1-醇(880mg,5mmol)溶解于20mL的无水DCM中,加入2.0mL(15mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(0.8mL,8.5mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应过夜。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到608mg单体m-5,无色油状液体。产率为49.9%。
MS(EI):实测值[M]+:244.2;C15H16O3理论值:244.11.
1H NMR(400MHz,CDCl3)δ7.33(d,J=8.9Hz,2H),6.81(d,J=8.9Hz,2H),6.16(dd,J=1.5,0.9Hz,1H),5.60–5.57(m,1H),4.32(t,J=7.0Hz,2H),3.79(s,3H),2.77(t,J=7.0Hz,2H),1.98–1.95(m,3H).
13C NMR(101MHz,CDCl3)δ167.36,159.45,136.34,133.14,125.97,115.66,114.01,83.98,81.93,62.83,55.42,20.10,18.47.
实施例6.化合物m-6单体的合成
Figure BDA0000987847910000111
将对溴硝基苯(2.02g,10mmol)溶解于20mL的无水THF中,加入炔丁醇(1.05g,15mmol),双三苯基磷二氯化钯(140mg,0.2mmol),碘化亚铜(76mg,0.4mmol),以及5mL三乙胺。于30℃反应3h。旋干THF,以DCM为洗脱剂过柱纯化(PE∶DCM=1∶1,体积比),得到1.9g化合物2,白色固体。产率为99.5%。
MS(EI):实测值[M]+:191.1;C10H9NO3理论值:191.06.
1H NMR(400MHz,CDCl3)δ8.16(d,J=8.9Hz,2H),7.54(d,J=8.9Hz,2H),3.85(t,J=6.3Hz,2H),2.74(t,J=6.3Hz,2H).
13C NMR(101MHz,CDCl3)δ147.02,132.59,130.58,123.70,92.79,80.94,61.04,24.06.
(2)化合物m-6单体的合成
Figure BDA0000987847910000112
将4-对硝基苯基-3-丁炔-1-醇(1.91g,10mmol)溶解于20mL的无水DCM中,加入4.15mL(30mmol)的干燥TEA,通入N2保护,通入N2保护,将甲基丙烯酰氯(1.65mL,17mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应过夜。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到1.54g单体m-6,白色固体。产率为59.5%。
MS(EI):实测值[M]+:259.2;C14H13NO4理论值:259.08.
1H NMR(400MHz,CDCl3)δ8.16(d,J=8.9Hz,2H),7.52(d,J=8.9Hz,2H),6.16(s,1H),5.61(s,1H),4.35(t,J=6.8Hz,2H),2.84(t,J=6.8Hz,2H),1.99–1.95(m,3H).
13C NMR(101MHz,CDCl3)δ167.27,147.07,136.20,132.55,130.53,126.21,123.71,91.73,80.72,62.20,20.29,18.47.
实施例7.化合物m-7单体的合成
Figure BDA0000987847910000121
(1)化合物3的合成
Figure BDA0000987847910000122
将间溴硝基苯(2.02g,10mmol)溶解于20ml的无水THF中,加入炔丁醇(1.05g,15mmol),双三苯基磷二氯化钯(140mg,0.2mmol),碘化亚铜(76mg,0.4mmol),以及5mL三乙胺。于30℃反应3h。旋干THF,以DCM为洗脱剂过柱纯化(PE∶DCM=1∶1,体积比),得到1.81g化合物3,白色固体。产率为99%。
MS(EI):实测值[M]+:191.3;C10H9NO3理论值:191.06.
1H NMR(400MHz,CDCl3)δ8.23(s,1H),8.12(d,J=8.3Hz,1H),7.69(d,J=7.7Hz,1H),7.46(t,J=8.0Hz,1H),3.84(t,J=6.3Hz,2H),2.72(d,J=6.3Hz,2H).
13C NMR(101MHz,CDCl3)δ147.99,137.36,129.20,126.47,125.18,122.61,89.65,80.02,60.88,23.67.
(2)化合物m-7单体的合成
Figure BDA0000987847910000123
将4-间硝基苯基-3-丁炔-1-醇(1.91g,10mmol)溶解于20mL的无水DCM中,加入4.15mL(30mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(1.65mL,17mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应过夜。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶2)过柱纯化,得到1.46g单体m-7,白色固体。产率为56.4%。
MS(EI):实测值[M]+:259.2;C14H13NO4理论值:259.08.
1H NMR(400MHz,CDCl3)δ8.22(s,1H),8.17–8.09(m,1H),7.67(d,J=7.7Hz,1H),7.46(t,J=8.0Hz,1H),6.16(s,1H),5.60(s,1H),4.34(t,J=6.8Hz,2H),2.82(t,J=6.8Hz,2H),1.96(s,3H).
13C NMR(101MHz,CDCl3)δ167.21,148.17,137.46,136.14,129.36,126.58,126.13,125.29,122.79,88.76,79.95,62.22,20.05,18.39.
实施例8.化合物m-8单体的合成
Figure BDA0000987847910000131
(1)化合物4的合成
Figure BDA0000987847910000132
将对溴苯甲醛(1.85g,10mmol)溶解于15mL的无水THF中,加入三甲基硅基乙炔(1.47g,15mmol),双三苯基磷二氯化钯(70mg,0.1mmol),碘化亚铜(38mg,0.2mmol),以及5ml三乙胺。于40℃反应2h。旋干THF,以PE和DCM(体积比2∶1)为洗脱剂过柱纯化,得到2.0g化合物4,白色固体。产率为99%。
1H NMR(400MHz,CDCl3)δ10.00(s,1H),7.82(d,J=8.4Hz,2H),7.60(d,J=8.2Hz,2H),0.27(s,9H).
13C NMR(101MHz,CDCl3)δ191.38,135.58,132.46,129.41,103.81,99.01,-0.23.
(2)化合物5的合成
Figure BDA0000987847910000141
将化合物4(727mg,3.6mmol)溶解于15mL的无水THF中,加入2mL KOH水溶液(298mg,4mmol),常温下反应2h。旋干THF,反应液用EA萃取,饱和NaCl溶液洗三次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶1)过柱纯化,得到450mg化合物5,淡黄色固体。产率为97%。
1H NMR(400MHz,CDCl3)δ10.02(s,1H),7.84(d,J=8.3Hz,2H),7.64(d,J=8.2Hz,2H),3.29(s,1H).
13C NMR(101MHz,CDCl3)δ191.33,135.95,132.69,129.46,128.29,82.61,81.03.
(3)化合物6的合成
Figure BDA0000987847910000142
将对炔基苯甲醛(390mg,3mmol)溶解于15mL的干燥EtOH中,将硼氢化钠(567mg,15mmol)溶解在少量干燥EtOH中,缓慢滴加到反应体系,常温下反应8h。反应完全后,向体系中滴加H2O淬灭未反应的硼氢化钠,然后旋干溶剂,用DCM萃取,饱和NaCl洗三次。有机相用无水Na2SO4干燥,过滤,浓缩,以MeOH和DCM为洗脱剂(体积比1∶3)过柱纯化,得到264mg化合物1,淡黄色固体。产率为66.7%。
(4)化合物m-8单体的合成
Figure BDA0000987847910000143
将化合物1(264mg,2mmol)溶解于15mL的无水DCM中,加入780μL(6mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(330μL,3.4mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以PE和DCM为洗脱剂(体积比1∶1)过柱纯化,得到248mg单体m-8,淡黄色固体。产率为62.0%。
1H NMR(400MHz,CDCl3)δ7.49(d,J=8.1Hz,2H),7.33(d,J=8.0Hz,2H),6.16(s,1H),5.60(s,1H),5.19(s,2H),1.97(s,3H).
13C NMR(101MHz,CDCl3)δ167.27,137.03,136.28,132.48,127.98,126.18,122.11,83.44,77.73,66.01,18.50.
实施例9.化合物m-9单体的合成
Figure BDA0000987847910000151
(1)化合物7的合成
Figure BDA0000987847910000152
将对甲酰苯甲酸甲酯(1.64g,3mmol)和CBr4(5.50g)溶解于15mL干燥DCM中,冰浴下,分四次加入PPh3的DCM溶液,常温下反应1h。向反应体系中加入正己烷和乙酸乙酯的混合液,过滤除去白色固体,滤液减压浓缩,以PE和DCM为洗脱剂(体积比3∶2)柱分离纯化,得到2.57g白色固体,产率80.4%。
MS(EI):实测值[M]+:320.1;C10H8Br2O2理论值:319.89.
1H-NMR(400MHz,CDCl3)δ8.04(dt,J=1.9,8.4Hz,2H),7.60(dt,J=1.8,8.5Hz,2H),7.52(s,1H),3.92(s,3H).
13C-NMR(101MHz,CDCl3)δ166.72,139.76,136.21,129.93,128.50,92.14,52.41
(2)化合物8的合成
Figure BDA0000987847910000153
将化合物7(3.2g,10mmol),苯乙炔(1.53g,20mmol)和PPh3(105mg,0.4mmol)溶解在10mL DMF中,滴加TEA(4.1mL,30mmol),Pd2dba3(90mg,0.10mmol)用少量DMF溶解后,加入反应器中。通氮,在85℃下反应4h。反应结束,冷却到室温,用200mL的EA/正己烷=1∶1(体积比)混合液稀释,依次用200mL 1M HCl,300mL 1M NaOH,适量的H2O,饱和NaCl溶液洗涤。有机相用无水Na2SO4干燥4h,过滤,浓缩,以4%EA/PE为洗脱剂过柱纯化,得到1.99g白色固体,产率78.0%。
MS(EI):实测值[M]+:260.2;C18H12O2理论值:260.08.
1H-NMR(400MHz,CDCl3)δ8.00(d,J=8.4Hz,2H),7.60–7.51(m,4H),7.42–7.32(m,3H),3.92(s,3H).
13C-NMR(101MHz,CDCl3)δ166.44,132.73,132.53,130.43,129.69,129.65,128.65,126.63,121.61,83.19,80.64,76.89,73.74,52.46.
(3)化合物9的合成
Figure BDA0000987847910000161
将化合物8(400mg,1.52mmol)用20ml THF溶解,将10mL的LiBH4(436.8mg,25mmol)THF溶液冰浴下滴加,常温下反应过夜。反应完毕后,滴加EA、滴加H2O淬灭剩余的LiBH4,旋蒸至干。反应液用EA萃取,饱和NaCl溶液洗三次。有机相用无水Na2SO4干燥,过滤,减压浓缩至干,得到356mg化合物9的粗产物,淡黄色固体。未经进一步分离纯化。
MS(EI):实测值[M]+:232.2;C17H12O理论值:232.09.
1H-NMR(400MHz,CDCl3)δ7.53(t,J=6.7Hz,4H),7.35(dt,J=11.1,7.5Hz,5H),4.68(s,2H).
13C-NMR(101MHz,CDCl3)δ142.22,132.81,132.64,129.38,128.59,126.95,121.88,121.03,81.78,81.58,74.12,74.06,64.87.
(4)化合物m-9单体的合成
Figure BDA0000987847910000162
将化合物9的粗产物356mg与10mLTHF共沸以除去其中微量的水分,将其溶解在30mL的无水DCM中,加入400μL(2.9mmol)的干燥TEA,将甲基丙烯酰氯(0.6mL,5.1mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相干燥后浓缩,以EA和PE为洗脱剂(体积比1∶30)过柱纯化,得到339mg化合物m-9单体,淡黄色固体,两步反应收率70.0%。
MS(EI):实测值[M]+:300.2;C17H12O理论值:300.12.
1H NMR(400MHz,CDCl3)δ7.56–7.50(m,4H),7.40–7.31(m,5H),6.17(s,1H),5.63–5.59(m,1H),5.20(s,2H),1.98(d,J=1.0Hz,3H).
13C NMR(101MHz,CDCl3)δ167.25,137.50,136.23,132.84,132.69,129.44,128.63,128.05,126.26,121.90,121.77,81.96,81.32,74.48,74.02,65.96,18.51.
实施例10.化合物m-CN-1单体的合成
Figure BDA0000987847910000171
将3-羟基丙腈(1.4g,20mmol)溶解于30mL的无水DCM中,加入8mL(60mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(3.3mL,34mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应10h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,以DCM和PE为洗脱剂(体积比3∶1)过柱纯化,得到1.78g单体m-CN-1,无色油状液体。产率为64.0%。
MS(EI):实测值[M]+:139.2;C7H9NO2理论值:139.06.
1H NMR(400MHz,CDCl3)δ6.14(s,1H),5.61(s,1H),4.31(t,J=6.3Hz,2H),2.72(t,J=6.3Hz,2H),2.01–1.84(m,3H).
13C NMR(101MHz,CDCl3)δ166.69,135.44,126.88,116.91,58.96,18.16,18.05.
实施例11.化合物m-CN-2单体的合成
Figure BDA0000987847910000172
将4-氰基苯甲醛(393mg,3mmol)溶解于15mL的干燥EtOH中,将硼氢化钠(171mg,4.5mmol)溶解在少量干燥EtOH中,缓慢滴加到反应体系,常温下反应5h。反应完全后将无水EtOH蒸干,用DCM将其溶解,用去离子水洗三次,有机相用无水Na2SO4干燥,过滤,旋干,该步没有对产物进行纯化。
(2)化合物m-CN-2单体的合成
Figure BDA0000987847910000173
将化合物11的粗产物与10mLTHF共沸以除去其中微量的水分,将其溶解在20mL的无水DCM中,加入1.5mL(9mmol)的干燥TEA,通入N2保护,将甲基丙烯酰氯(0.6mL,5.1mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相经干燥,过滤浓缩,以EA和PE为洗脱剂(体积比1∶20)过柱纯化,得到410mg单体m-CN-2,白色固体,两步产率68.0%。
1H NMR(400MHz,CDCl3)δ7.58(d,J=8.3Hz,2H),7.40(d,J=8.4Hz,2H),6.11(s,1H),5.58–5.54(m,1H),5.16(s,2H),1.90(s,3H).
13C NMR(101MHz,CDCl3)δ166.84,141.49,135.81,132.38,128.12,126.43,118.57,111.93,65.19,18.29.
实施例12.化合物m-N3-1单体的合成
Figure BDA0000987847910000181
(1)化合物12的合成
Figure BDA0000987847910000182
将2-溴乙醇(3.0g,24mmol)溶解于20mL水中,慢慢滴加5mL叠氮化钠(3.12g,48mmol)的水溶液,65℃下反应16h。反应完全后,将反应液倒入饱和NaHCO3溶液中,用二氯甲烷萃取三次,有机相用无水Na2SO4干燥,过滤,40℃下减压浓缩至干,得到1.21g无色油状液体,即为化合物12,产率60.5%。
1H NMR(400MHz,CDCl3)δ3.77(t,2H),3.43(t,2H).
13C NMR(101MHz,CDCl3)δ61.62,53.67.
(2)化合物m-N3-1单体的合成
Figure BDA0000987847910000183
将化合物12(1.21g,13.8mmol)溶解于20mL无水DCM中,加入干燥TEA(5.7mL,41.4mmol),通入N2保护,将甲基丙烯酰氯(2.2mL,23.6mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤,浓缩,DCM∶PE=1:1(体积比)过柱纯化,得到1.28g无色油状液体,产率60.0%。
MS(EI):实测值[M]+:156.2;C6H9N3O2理论值:155.07.
1H NMR(400MHz,CDCl3)δ6.15(s,1H),5.68–5.56(m,1H),4.40–4.26(t,2H),3.56–3.42(t,2H),1.96(s,3H).
13C NMR(101MHz,CDCl3)δ167.14,135.89,126.61,63.57,50.02,18.40.
实施例13.化合物m-N3-2单体的合成
Figure BDA0000987847910000191
将4-氨基苯甲醇(1g,8.12mmol)溶解于5mL 5M盐酸溶液,再向溶液中滴加亚硝酸钠溶液(840mg,12.18mmol,溶解于20mL去离子水中),30分钟内滴加完全,混合溶液在冰水浴中剧烈搅拌反应,叠氮化钠(2.1g,32.3mmol)分批加入到反应体系中,得到的混合液在室温下搅拌过夜反应。反应完全后,将残余物倒入饱和NaHCO3溶液中,用乙酸乙酯萃取,有机层用饱和NaCl溶液洗涤,无水Na2SO4干燥,过滤浓缩,粗产品用硅胶柱层析分离纯化(EA∶PE=1∶3,体积比),得到950mg黄色油状液体,产率78.0%。
MS(EI):实测值[M]+:148.06;C7H7N3O理论值:149.06.
1H NMR(400MHz,CDCl3)δ7.34(d,J=8.4Hz,2H),7.01(d,J=8.4Hz,2H),4.65(s,2H).
13C NMR(101MHz,CDCl3)δ139.37,137.55,128.51,119.10,64.68.
(2)化合物m-N3-2单体的合成
Figure BDA0000987847910000192
将化合物13(950mg,6.37mmol)溶解于20mL无水DCM中,加入干燥TEA(2.65ml,19.1mmol),通入N2保护,将甲基丙烯酰氯(1.05mL,10.8mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应10h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤浓缩,粗产品用硅胶柱层析分离纯化(EA∶PE=1∶15,体积比),得到880mg淡黄色油状液体,产率64.0%。
1H NMR(400MHz,CDCl3)δ7.37(d,J=8.4Hz,2H),7.02(d,J=8.5Hz,2H),6.14(s,1H),5.62–5.55(m,1H),5.16(s,2H),1.96(s,3H).
13C NMR(101MHz,CDCl3)δ167.08,139.93,136.11,132.82,129.70,125.83,119.08,65.72,18.26.
实施例14.化合物m-D-1单体的合成
Figure BDA0000987847910000201
将氘代甲醇(721.4mg,20mmol)溶解于10mL无水DCM中,加入干燥TEA(4.15mL,30mmol),通入N2保护,将甲基丙烯酰氯(3.3mL,34mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应10h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤浓缩,以低沸点PE(30-60℃)和DCM为洗脱剂(PE∶DCM=4∶1,体积比)过柱纯化,得到1.1g油状液体,产率53.1%。
MS(EI):实测值[M+Na]+:123.3;C5H5D3O2理论值:100.07.
1H NMR(400MHz,CDCl3)δ6.00(s,1H),5.32(s,1H),2.02(s,3H).
13C NMR(101MHz,CDCl3)δ172.24,110.00,51.57,17.55.
实施例15.化合物m-D-2单体的合成
Figure BDA0000987847910000202
将氘代苯酚(420mg,2.9mmol)溶解于10mL无水DCM中,加入干燥TEA(1.2mL,8.7mmol),通入N2保护,将甲基丙烯酰氯(0.5mL,4.93mmol)在冰浴下滴加入溶液,滴加完毕后,移至常温反应6h。反应液用DCM萃取,饱和NaHCO3溶液洗两次,饱和NaCl溶液洗一次。有机相用无水Na2SO4干燥,过滤浓缩,粗产品用硅胶柱层析分离纯化(洗脱剂EA∶PE=1∶15,体积比),得到520mg无色油状液体,产率83.0%。
MS(EI):实测值[M]+:167.3;C10H5D5O2理论值:167.10
1H NMR(400MHz,CDCl3)δ6.38(s,1H),5.82–5.75(m,1H),2.10(s,3H).
13C NMR(101MHz,CDCl3)δ165.96,151.00,136.07,129.01,127.24,125.56,121.08,18.49.
实施例16.化合物m-10单体的合成
Figure BDA0000987847910000211
将1.44g化合物9(6.2mmol)溶解于30mL的无水THF中,加入4.2g(48.3mmol)
活性二氧化锰,加热回流反应过夜。TLC检测反应完全后,过滤除去固体,以PE和EA为洗脱剂(体积比5∶1)过柱纯化,得到800mg化合物10,淡黄色固体。产率为56.1%。
MS(EI):实测值[M]+:230.2;C17H10O理论值:230.07.
1H NMR(400MHz,CDCl3)δ9.98(s,1H),7.95–7.28(m,9H).
13C NMR(101MHz,CDCl3)δ191.02,135.82,132.83,132.46,129.50,129.38,128.69,128.40,126.37,121.16,83.58,80.20,77.65,73.46.
(2)化合物m-10单体的合成
Figure BDA0000987847910000212
将制备好磷盐(2.1g,5.2mmol)溶解于20mL的无水THF中,滴加K2CO3(717mg,5.2mmol)的THF溶液,加热到50℃,在N2的环境下反应3h。冷却到室温,向其中加入化合物5(800mg,3.48mmol)的THF溶液,在N2的环境下加热回流反应过夜。TLC检测反应完全后,滤除沉淀,蒸干THF,溶解在EA中,用饱和NaCl溶液洗两次。有机相用无水Na2SO4,过滤浓缩,以EA和PE为洗脱剂(体积比1∶10)过柱纯化,得到640mg化合物m-10单体,淡黄色固体。产率为80.7%。
MS(EI):实测值[M]+:228.0;C18H12理论值:228.09.
1H NMR(400MHz,CDCl3)δ7.49–7.37(m,4H),7.32–7.21(m,6H),6.61(dd,J=17.6,10.9Hz,1H),5.70(d,J=17.6Hz,1H),5.24(d,J=11.0Hz,1H).
13C NMR(101MHz,CDCl3)δ137.34,135.02,131.68,131.46,128.18,127.41,125.21,120.77,119.92,114.43,80.91,80.60,73.56,72.96.
实施例17.化合物m-CN-3单体的合成
Figure BDA0000987847910000221
将制备好磷盐(1.6g,4mmol)溶解于20mL的无水THF中,滴加K2CO3(552mg,4mmol)的THF溶液,加热到70℃,在N2的环境下反应2h。冷却到室温,向其中加入4-氰基苯甲醛(393mg,3mmol)的THF溶液,在N2的环境下加热回流反应过夜。TLC检测反应完全后,滤除沉淀,蒸干THF,用EA萃取,饱和NaCl溶液洗涤两次。有机相用无水Na2SO4,过滤浓缩,以EA和PE为洗脱剂(体积比1∶100)过柱纯化,得到200mg产物,产率为51.3%。
1H NMR(400MHz,CDCl3)δ7.55(d,J=8.4Hz,2H),7.43(d,J=8.3Hz,2H),6.67(dd,J=17.6,10.9Hz,1H),5.83(d,J=17.6Hz,1H),5.40(d,J=10.9Hz,1H).
实施例18.化合物m-N3-3单体的合成
Figure BDA0000987847910000222
将4-氨基苯乙烯(595mg,5mmol)溶解于5mL 5M盐酸溶液,再向溶液中滴加亚硝酸钠溶液(517mg,7.5mmol,溶解于5mL去离子水中),30分钟内滴加完全,混合溶液在冰水浴中剧烈搅拌反应,叠氮化钠(1.3g,20mmol)分批加入到反应体系中,得到的混合液在室温下反应3h。反应完全后,将残余物倒入饱和NaHCO3溶液中,用EA萃取,有机层用饱和NaCl溶液洗涤,无水Na2SO4干燥,过滤浓缩,粗产品用硅胶柱层析分离纯化(PE),得到515mg产物,产率71.0%。
1H NMR(400MHz,CDCl3)δ7.48(d,J=8.4Hz,2H),7.30(d,J=8.4Hz,2H),6.69(dd,J=17.6,10.9Hz,1H),5.78(d,J=17.6Hz,1H),5.32(d,J=10.9Hz,1H).
FTIR(Nicolet,KBr,cm-1):2124.5(m,N3),1608.2(w,C=C).
实施例19.聚合物微球的制备
仪器与设备:厚壁耐压瓶:型号(P1600014),生产厂家(Synthware);超声波细胞粉碎机:型号(JY92-ⅡN),生产厂家(宁波新芝生物)。
对于上述合成的一系列含炔基、氰基、叠氮基、碳氘键的聚合物单体,采用微乳聚合法和分散聚合法制备不同粒径的聚合物微球。对于下列四种单体m-1、m-4、m-9和m-CN-2,分别制备了100nm、400nm、1000nm左右不同粒径的微球。其余单体只制备出400nm左右的微球。
Figure BDA0000987847910000231
(一)微乳聚合法
分散相:将50mg的聚合物单体溶于0.5mL的DCM中,加入AIBN(10μL,5%(w/w)二氯甲烷溶液)作为引发剂,以及交联剂4μL(单体10%,摩尔比)。
连续相:5mL预先通N2 15min的水,加0.5mg SDS。
将分散相加入连续相中,在80W强度下冰浴超声(99次,1s超声,3s间歇)。将该乳液体系加入到事先通N2的厚壁耐压瓶,加热到80℃,缓慢搅拌,反应18h。聚合完毕,在水中透析两天,每6h换一次透析液,收集样品定容至10mL,待用。
(二)分散聚合法
将拉曼单体、分散剂聚乙烯吡咯烷酮(PVP)和引发剂偶氮二异丁腈(AIBN)溶于溶剂中,在通N2条件下升温进行聚合反应。其中,反应溶剂为EtOH和H2O的混合溶剂。为了调控粒径大小,小分子单体、分散剂、引发剂的摩尔比可以进行调整。挥干有机溶剂,透析除去PVP和未聚合的单体,即得大粒径的纳米拉曼微球。
在传统的乳液聚合和无皂乳液聚合中,合成的纳米微球粒径一般小于1μm,悬浮聚合制备的微球粒径从数十到数百微米不等,且粒径分布较宽,均不能满足在生物医学领域中的应用要求。因此,采用微乳聚合法制备100nm左右微球,分散聚合法制备200-1000nm粒径范围的单分散微球,并通过改变聚合体系中各组分的配比,控制微球粒径的大小。
100nm左右聚合物微球(m-1-1)的制备
取m-1单体50mg,交联剂乙二醇二甲基丙烯酸酯(摩尔比为单体的10%),10μL引发剂AIBN(5%(w/w)二氯甲烷溶液,摩尔比为单体的1.8%),十六烷4μL,溶解在500μL重蒸的二氯甲烷中,作为油相。同时5mL十二烷基硫酸钠(SDS)的水溶液(1mg/mL)作为水相加入到上述油相中,80W的功率下超声5min(99次,1s超声,3s间歇)。通氮气80℃下反应18h。挥干有机溶剂,在水中透析(透析袋MWO=8000~14000)2天,除去表面信号剂和未聚合的单体,即得m-1单体100nm左右的聚合物微球样品,记作m-1-1。
微乳聚合中,我们选用的油相是DCM,其溶解性能强,但是沸点只有39.8℃,需要采用耐压的厚壁瓶作为反应容器。水相中加入表面活性剂SDS,作为乳化剂;AIBN作为聚合反应的引发剂;在配方中加入十六烷HD,是由于其疏水性极强,能够稳定乳液,即使在80℃长达18h的聚合条件下,仍然稳定的存在并进行聚合反应。此方法制备出的纳米粒较小,分散性更窄。本发明中乳液聚合均是采用该配方制备得到。
400nm左右聚合物微球(m-1-2)的制备
取m-1单体50mg,分散剂PVP为50mg,引发剂AIBN为2.0mg,溶于EtOH和H2O的混合溶剂(1.9mL+0.1mL)中,充氮气升温到65℃进行聚合反应18h。反应完全后,挥干有机溶剂加去离子水定容至15mL。用水透析2天,除去PVP和未聚合的单体,即得400nm左右的聚合物微球,记作m-1-2。
1000nm左右聚合物微球(m-1-3)的制备
制备方法同400nm左右聚合物微球(m-1-2)的制备,所不同的是取m-1单体50mg,引发剂2.0mg,分散剂25mg,溶于EtOH和H2O的混合溶剂(1.9mL+0.1mL)中,温度80℃。
100nm左右聚合物微球(m-4-1,m-9-1,m-CN-2-1,m-10-1)的制备
制备方法同100nm左右聚合物微球(m-1-1)的制备,换为相应单体即可。
其他聚合物微球的制备
制备方法同400nm左右聚合物微球(m-1-2)的制备,所不同的是各组分的比例,具体如表2所示。
表2.分散聚合法制备聚合物微球的具体反应参数
Figure BDA0000987847910000241
Figure BDA0000987847910000251
通过微乳聚合法制备得到的纳米聚合物微球,扫描电镜观察到纳米微球的粒径分布在100-200nm,通过分散聚合法制备得到的聚合物微球,粒径分布在200nm到几微米之间,形态为表面光滑的圆球形,大小均一。
实施例20.聚合物微球的形态表征
分析仪器:马尔文Zetasizer激光粒度仪(DLS),用以测定聚合物微球的粒径大小、多分散性(PDI);日本HITACHI公司S-4300和S-4800型号的扫描电子显微镜(SEM),用以观察聚合物微球的表面形貌。
供试材料:m-1、m-4、m-9、m-CN-2四种单体制备的不同种粒径微球;m-1、m-2、m-3、m-5、m-6、m-7、m-8单体制备的相同粒径微球。
(1)粒径大小和电势
将上述制备出的透析完全的各种粒径微球定容至15mL,然后稀释50倍。DLS测量其粒径分布和zeta电势,温度25℃。实验结果如表3所示。DLS结果显示我们制得的样品PDI值较小,说明粒径分布比较均匀。
表3.m-1、m-4、m-9、m-CN-2不同粒径微球的粒径与电势
Figure BDA0000987847910000261
(2)扫描电镜对拉曼微球表面形态进行观察
利用SEM来观察聚合物微球表面的形貌。将透析完全后的微球样品用水稀释400倍置于硅片上,37℃下过夜自然挥干,然后在其表面喷金后,测定。
扫描电镜图像如图3所示。SEM证实了我们的拉曼微球呈球形,微乳聚合法制备得到的粒径分布在100nm到200nm之间,分散聚合法制备得到的微球粒径可以在200nm到几微米,由制备过程中各组分的比例不同进行粒径大小的调控。由于制备SEM样品时,纳米粒存在一个失水的过程,会随着水分的蒸发而延展并增强了纳米粒之间的接触作用,因而出现塌陷或者粘连。
实施例21.拉曼光谱的采集及拉曼成像
1.拉曼微球光谱的采集
由于本发明的聚合物单体结构中含有炔基、氰基、叠氮基或碳氘键,由此聚合得到的纳米微球在没有金属增敏结构的情况下,仍有明显的拉曼特征峰信号,区别于现有增强拉曼光谱技术,这里称之为拉曼微球(Raman Beads)。各种拉曼微球的位移如表4所示。
表4.各种拉曼微球的拉曼位移
Figure BDA0000987847910000271
炔基、氰基、叠氮基和碳氘键的拉曼特征峰信号均在2000-2300cm-1范围内,处于生物体内的拉曼静默区(1800-2800cm-1),细胞中天然生物分子不会对其干扰,这有利于在生物体中的应用。
(一)相同粒径不同微球的拉曼光谱
通过改变炔基两侧的取代基,本发明设计了六个不同结构类型的含炔基拉曼单体。对于不同单体制备的400nm拉曼微球在相同条件下采集拉曼光谱,如图1所示。我们发现,同样是炔基,不同的单体结构会影响拉曼位移。由拉曼光谱可以发现,m-1,m-2,m-3,m-4,m-5,m-8单体制备的微球采用532nm激光器激发,拉曼位移分别2121cm-1,2239cm-1,2186cm-1,2236cm-1,2231cm-1,2108cm-1左右,见图1(a)。m-6,m-7,m-9单体制备的微球采用785nm激发,拉曼位移分别为2238cm-1,2239cm-1,2218cm-1左右,见图1(b)。
我们发现,端炔的拉曼位移最小,当炔基的一端被烷基、芳基、或者硅取代时,拉曼位移会增大,烷基取代和芳基取代使拉曼位移增大的幅度相近。如果取代芳基上连有给电子基,拉曼信号增强;取代芳基上连有吸电子基,拉曼信号减弱。而且吸电子基在苯环上的位置对拉曼位移影响不大。
对于含氰基的m-CN-1和m-CN-2,拉曼位移分别为2254cm-1,2231cm-1;对于含叠氮的m-N3-1拉曼位移分别为2105cm-1;对于含碳氘键的m-D-1和m-D-2,拉曼位移分别为2213cm-1和2298cm-1。我们发现,炔基、氰基连在苯环比连在烷基链上拉曼位移小,碳氘键连在苯环比连在烷基链上拉曼位移大,见图1(c)。
另外,本发明设计了四种含炔基、氰基、叠氮基、碳氘键的苯乙烯类拉曼单体,并制备为400nm左右的拉曼微球,其拉曼光谱如图2所示。m-10采用785nm激发,炔基的拉曼位移在2218cm-1,与m-9拉曼位移一致。其余三个样品采用532nm激发,m-CN-3的拉曼位移在2230cm-1,与m-CN-2拉曼位移是一致的。m-N3-3的叠氮峰的位移在2231cm-1左右。m-D-3样品有两个碳氘键的拉曼峰,其中2144cm-1是烷基链上的碳氘键,2290cm-1是苯环上的碳氘键,与m-D-1和m-D-2样品基本一致,偏差可能是由于m-D-3单体中的共轭效应引起的。由此可见,苯乙烯类微球的拉曼位移与甲基丙烯酸酯类微球是一致的,聚合方式并不会影响相关官能团的拉曼位移。
(二)不同粒径同种微球的拉曼光谱
对于同种单体制备的三种粒径100nm、400nm、1000nm拉曼微球在相同条件下采集拉曼光谱,如图4所示。我们发现,m-1,m-4,m-9,m-CN-2单体制备的微球拉曼位移分别在2121cm-1,2236cm-1,2218cm-1,2231cm-1左右,只是拉曼强度不同,并且拉曼信号强度随粒径的增大而增强。
2.单一拉曼微球的拉曼成像
拉曼微球在没有金属增敏的情况下,能够有效检测到拉曼特征峰信号。随后,我们以m-CN-2单体制备的微球为例,采用拉曼光谱仪进行拉曼成像分析,图5为载玻片上400nm左右氰基纳米粒子拉曼成像图(Raman mapping),其中(a)为明场下的形态,图中方框为成像(mapping)区域;(b)为氰基拉曼峰重构的分布图。
3.混合拉曼微球的多色拉曼成像
基于各种微球的拉曼光谱结果,我们选择其中拉曼位移差距较大的六种微球均匀混合,尝试根据特征峰的差异,对不同纳米粒子进行拆分。
取每种纳米粒子50μL,均匀混合后,稀释合适倍数后,滴在石英片上,自然晾干之后,进行拉曼成像。用532nm波长作为激发光源,50倍镜下进行成像。每条光谱曝光时间为5s,累积5次。混合纳米粒子的拉曼成像如图6所示,(a)为在明场下的形态,扫描区域为60μm×50μm的长方形;(b)为所有拉曼光谱的叠加图,图中可以明显看出五个不同的炔基峰2121cm-1,2186cm-1,2231cm-1,2254cm-1,2290cm-1,分别对五个峰进行成像,得到m-1,m-3,m-6,m-CN-1,m-D-2五种纳米粒子的分布图,如(c)所示,Merged为混合纳米粒子的多色拉曼成像图,实现每种纳米粒子进行拆分。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是,凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (11)

1.一种聚合物微球作为标记物在非诊断和治疗目的的生物拉曼检测和成像分析中的应用,其特征在于,所述聚合物微球是甲基丙烯酸酯/酰胺类聚合物单体聚合得到的粒径为纳米级至微米级的聚合物微球;所述聚合物微球的拉曼特征峰信号处于生物体内的拉曼静默区1800-2800cm-1范围内,且在没有金属增敏结构的情况下作为标记物应用于生物拉曼成像分析;所述甲基丙烯酸酯/酰胺类聚合物单体的结构如式I所示:
Figure FDA0002992552030000011
其中,m为0或1,n为0、1、2、3、4或5,X为O或NH,Ar为取代或未取代的苯基、萘基、五元芳杂环基或六元芳杂环基;R代表含炔基的基团、氰基、叠氮基或含碳氘键的基团,其中所述含炔基的基团为
Figure FDA0002992552030000012
R1为氢、C1~C6烷基、C2~C6烯基、C2~C6炔基、卤素、三甲基硅基或取代或未取代苯基、萘基、五元芳杂环基、六元芳杂环基;所述含碳氘键的基团为一个或多个D取代的C1~C6烷基、C2~C6烯基或取代或未取代苯基、萘基、五元芳杂环基、六元芳杂环基;其中,取代基是卤素、硝基、羟基、C1~C4烷基、C1~C4烷氧基,或者是被一个或多个卤素取代的C1~C4烷基或C1~C4烷氧基。
2.如权利要求1所述的应用,其特征在于,式I中m=1。
3.如权利要求1所述的应用,其特征在于,所述五元芳杂环基为吡咯基或噻吩基。
4.如权利要求1所述的应用,其特征在于,所述六元芳杂环基为吡啶基。
5.如权利要求1所述的应用,其特征在于,所述甲基丙烯酸酯/酰胺类聚合物单体选自下列所示结构的单体之一:
Figure FDA0002992552030000021
6.一种聚合物微球作为标记物在非诊断和治疗目的的生物拉曼检测和成像分析中的应用,其特征在于,所述聚合物微球是甲基丙烯酸酯类聚合物单体聚合得到的粒径为纳米级至微米级的聚合物微球;所述聚合物微球的拉曼特征峰信号处于生物体内的拉曼静默区1800-2800cm-1范围内,且在没有金属增敏结构的情况下作为标记物应用于生物拉曼成像分析;所述甲基丙烯酸酯类聚合物单体的结构如下所示:
Figure FDA0002992552030000022
7.如权利要求1或6所述的应用,其特征在于,将甲基丙烯酸酯/酰胺类聚合物单体通过微乳聚合法或分散聚合法获得所述聚合物微球。
8.如权利要求7所述的应用,其特征在于,所述聚合物微球采用微乳聚合法制备,包括以下步骤:
1)制备油相:将聚合物单体、交联剂和必要的引发剂溶解在有机溶剂中,作为油相;
2)将含有表面活性剂的水相加入步骤1)制备的油相中,超声处理后采用相应引发手段引发聚合反应;
3)将有机溶剂挥发干,透析除去表面活性剂和未聚合的单体,得到聚合物微球。
9.如权利要求8所述的应用,其特征在于,步骤1)中所述引发剂是热引发剂或光引发剂,或者不用引发剂;步骤2)中油相和水相的体积比为5~20:100;超声处理是60~200W的功率下超声1~20min;所述引发手段是加热或光照,或者是无引发剂的超声辐照;聚合反应在除氧条件下进行。
10.如权利要求7所述的应用,其特征在于,所述聚合物微球采用分散聚合法制备,包括:
将聚合物单体、分散剂和必要的引发剂溶于溶剂中,采用相应引发手段引发聚合反应;反应完毕后将有机溶剂挥发干,透析除去分散剂和未聚合的单体,得到聚合物微球。
11.如权利要求10所述的应用,其特征在于,所述引发剂是热引发剂或光引发剂,或者不用引发剂;所述引发手段是加热或光照,或者是无引发剂的超声辐照;聚合反应在除氧条件下进行。
CN201610312523.9A 2016-05-12 2016-05-12 一种聚合物微球在拉曼检测中的应用 Expired - Fee Related CN107365254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610312523.9A CN107365254B (zh) 2016-05-12 2016-05-12 一种聚合物微球在拉曼检测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610312523.9A CN107365254B (zh) 2016-05-12 2016-05-12 一种聚合物微球在拉曼检测中的应用

Publications (2)

Publication Number Publication Date
CN107365254A CN107365254A (zh) 2017-11-21
CN107365254B true CN107365254B (zh) 2021-06-04

Family

ID=60303490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610312523.9A Expired - Fee Related CN107365254B (zh) 2016-05-12 2016-05-12 一种聚合物微球在拉曼检测中的应用

Country Status (1)

Country Link
CN (1) CN107365254B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706598B (zh) * 2017-01-14 2020-06-09 南京简智仪器设备有限公司 一种拉曼增强剂的制备及应用
CN108444977B (zh) * 2018-05-15 2020-10-02 上海应用技术大学 检测有机溶剂中含水量的表面增强拉曼基底材料、制备方法
KR20220054818A (ko) * 2019-08-22 2022-05-03 케이프 브레톤 유니버시티 피분석물의 sers 신호 강도를 증가시키기 위해 피분석물을 포함하는 액체 샘플을 수정하는 방법 및 sers를 사용하여 피분석물의 원격 감지를 위한 프로브
CN112170832A (zh) * 2020-09-10 2021-01-05 上海交通大学 拉曼探针及其制备方法、应用
CN113549712B (zh) * 2021-09-22 2022-03-08 广州金域医学检验中心有限公司 基于拉曼光谱的新型冠状病毒核酸检测试剂盒及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063828A1 (en) * 2000-03-29 2002-05-30 Masayuki Negoro Optically anisotropic sheet comprising aligned discotic liquid crystal molecules
JP2009191107A (ja) * 2008-02-12 2009-08-27 Fujifilm Corp ナノインプリント用硬化性組成物およびパターン形成方法
CN103127890A (zh) * 2013-03-07 2013-06-05 复旦大学 一种拉曼增强活性微球及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063828A1 (en) * 2000-03-29 2002-05-30 Masayuki Negoro Optically anisotropic sheet comprising aligned discotic liquid crystal molecules
JP2009191107A (ja) * 2008-02-12 2009-08-27 Fujifilm Corp ナノインプリント用硬化性組成物およびパターン形成方法
CN103127890A (zh) * 2013-03-07 2013-06-05 复旦大学 一种拉曼增强活性微球及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Bioorthogonal Raman Reporter Strategy for SERS Detection of Glycans on Live Cells;Liang Lin, et al.,;《Angew.Chem.》;20130523;第125卷;第7407-7412页 *

Also Published As

Publication number Publication date
CN107365254A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN107365254B (zh) 一种聚合物微球在拉曼检测中的应用
Jiang et al. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging
CN101260219B (zh) 一种用于实现可逆荧光调控的三嵌段共聚物胶束体系的制备方法
Yang et al. Micellar assembly of a photo-and temperature-responsive amphiphilic block copolymer for controlled release
CN102516988B (zh) 一类可聚合荧光染料、其制备方法及应用
Li et al. Ultrasound responsive block copolymer micelle of poly (ethylene glycol)–poly (propylene glycol) obtained through click reaction
Breed et al. Functionalization of polymer microspheres using click chemistry
Blechinger et al. Perylene‐Labeled Silica Nanoparticles: Synthesis and Characterization of Three Novel Silica Nanoparticle Species for Live‐Cell Imaging
Ding et al. D–A–D type chromophores with aggregation-induced emission and two-photon absorption: synthesis, optical characteristics and cell imaging
CN108752512B (zh) 温度响应型aie荧光聚合物纳米粒子及其合成方法和应用
TW200906980A (en) Functionalized nanoparticles
Qiu et al. CO2-responsive nano-objects with assembly-related aggregation-induced emission and tunable morphologies
US20170355797A1 (en) Molecularly imprinted copolymer compounds and methods of preparation and use thereof
CN111057174A (zh) 一种聚苯乙烯高荧光微球及其制备方法
CN106085409A (zh) 水相中铜离子荧光检测用杂化探针及其制备方法
US8133411B2 (en) Fluorescent polymers soluble in an aqueous solution and a method for the production thereof
WO2009134822A2 (en) Fluorescent organic nanoparticles
Siirilä et al. Soft poly (N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field
CN110283275A (zh) 碳量子点分子印迹纳米凝胶荧光传感器的合成及其应用
Qiu et al. A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products
CN107814867A (zh) 一种pmma荧光共聚物微球及其制备方法
CN110776440B (zh) 通过pisa法制备偶氮还原酶响应性聚合物荧光探针及其应用
Hoji et al. Syntheses of BODIPY-incorporated polymer nanoparticles with strong fluorescence and water compatibility
Deng et al. Polymeric nanoparticles based on CDs with photoreversible dual-color fluorescence modulation
Jańczewski et al. Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210604

CF01 Termination of patent right due to non-payment of annual fee