CN107357992B - Composite structure correction method for finite element model based on cluster analysis - Google Patents

Composite structure correction method for finite element model based on cluster analysis Download PDF

Info

Publication number
CN107357992B
CN107357992B CN201710568512.1A CN201710568512A CN107357992B CN 107357992 B CN107357992 B CN 107357992B CN 201710568512 A CN201710568512 A CN 201710568512A CN 107357992 B CN107357992 B CN 107357992B
Authority
CN
China
Prior art keywords
mrow
parameters
msub
modal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710568512.1A
Other languages
Chinese (zh)
Other versions
CN107357992A (en
Inventor
费庆国
曹芝腑
姜东�
刘璟泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710568512.1A priority Critical patent/CN107357992B/en
Publication of CN107357992A publication Critical patent/CN107357992A/en
Application granted granted Critical
Publication of CN107357992B publication Critical patent/CN107357992B/en
Priority to PCT/CN2018/083368 priority patent/WO2019011026A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于聚类分析的复合材料结构有限元模型修正方法,建立初始有限元分析模型,测得结构的实验模态频率和模态振型,计算待修正参数的相对灵敏度矩阵,利用分层聚类算法对待修正参数进行参数分组,再对聚类参数进行相对灵敏度分析,选择各参数中相对灵敏度平均值最大的聚类参数进行修正,构造分析模型的模态频率和实测模态频率的残差向量,建立分析模型修正所需的目标函数,构建目标函数的优化反问题对复合材料结构的有限元模型进行修正。本发明结合数值模拟、试验和优化技术,采用参数的相对灵敏度矩阵进行聚类分析,减少待修正参数数量,提高修正程序稳定性,为工程应用提供了一种准确的基于数值模拟、试验和优化相结合的复合材料等效有限元模型参数修正方法。

The invention provides a method for correcting the finite element model of composite material structure based on cluster analysis, establishes the initial finite element analysis model, measures the experimental modal frequency and mode shape of the structure, and calculates the relative sensitivity matrix of the parameters to be corrected, Use the hierarchical clustering algorithm to group the parameters to be corrected, and then analyze the relative sensitivity of the clustering parameters, select the clustering parameter with the largest relative sensitivity average value among the parameters for correction, and construct the modal frequency and measured mode of the analysis model The residual vector of the frequency is used to establish the objective function required for the correction of the analytical model, and the optimization inverse problem of the objective function is constructed to correct the finite element model of the composite material structure. The present invention combines numerical simulation, test and optimization technology, adopts the relative sensitivity matrix of parameters to carry out cluster analysis, reduces the number of parameters to be corrected, improves the stability of the correction program, and provides an accurate method based on numerical simulation, test and optimization for engineering applications. Combination of equivalent finite element model parameter correction method for composite materials.

Description

基于聚类分析的复合材料结构有限元模型修正方法Modification Method of Finite Element Model of Composite Material Structure Based on Cluster Analysis

技术领域technical field

本发明涉及一种复合材料结构,具体涉及一种复合材料结构有限元模型修正方法。The invention relates to a composite material structure, in particular to a correction method for a finite element model of a composite material structure.

背景技术Background technique

复合材料结构具有高比强度、高比刚度、耐疲劳等优异性能,广泛应用于航空航天、汽车及船舶工业。但同时由于其材料组分多样,制作工艺复杂,复合材料结构细观材料参数各异。在结构分析及设计的过程中,如果采用复合材料结构的细观分析模型,将大幅增加建模难度,以及产品设计阶段的时间成本。因此建立复合材料结构的有限元分析模型并对其进行模型修正,对提高复合材料结构分析的准确性具有十分重要的意义。Composite material structures have excellent properties such as high specific strength, high specific stiffness, and fatigue resistance, and are widely used in aerospace, automobile, and shipbuilding industries. But at the same time, due to its various material components and complex manufacturing process, the mesoscopic material parameters of the composite material structure are different. In the process of structural analysis and design, if the mesoscopic analysis model of the composite material structure is used, the difficulty of modeling and the time cost of the product design stage will be greatly increased. Therefore, it is of great significance to establish the finite element analysis model of composite material structure and modify it to improve the accuracy of composite material structure analysis.

复合材料结构有限元模型通常采用正交各向异性材料,对多层复合材料结构而言,其待修正参数的数量将远多于实验数据,从而产生修正过程中的病态问题。如何在非完备的实测数据的情况下,减少修正过程中参数的同时,得到准确高效的复合材料结构有限元分析模型,已成为亟待解决的实际工程问题。The finite element model of composite material structure usually adopts orthotropic materials. For multilayer composite material structure, the number of parameters to be corrected will be far more than the experimental data, resulting in ill-conditioned problems in the correction process. How to obtain an accurate and efficient finite element analysis model of composite material structure while reducing the parameters in the correction process in the case of incomplete measured data has become a practical engineering problem to be solved urgently.

发明内容Contents of the invention

发明目的:本发明的目的在于针对现有技术的不足,提供一种基于聚类分析的复合材料结构有限元模型修正方法,利用待修正参数的相对灵敏度矩阵对参数进行聚类分析,通过不完备的实验数据,对多参数的等效复合材料有限元模型进行参数修正的方法,提高了参数修正精度和效率。Purpose of the invention: the purpose of the present invention is to address the deficiencies in the prior art, to provide a method for correcting the finite element model of composite material structure based on cluster analysis, which uses the relative sensitivity matrix of the parameters to be corrected to carry out cluster analysis on the parameters, through incomplete The method of modifying the parameters of the multi-parameter equivalent composite finite element model improves the accuracy and efficiency of parameter modification.

技术方案:本发明提供了一种基于聚类分析的复合材料结构有限元模型修正方法,包括以下步骤:Technical solution: The present invention provides a method for correcting the composite material structure finite element model based on cluster analysis, comprising the following steps:

(1)根据复合材料结构几何特征和组分构成,利用正交各向异性的材料关系对实际复合材料结构进行建模,简化细节组分,仅考虑复合材料结构的宏观构型,建立等效的初始有限元分析模型;(1) According to the geometric characteristics and component composition of the composite material structure, the actual composite material structure is modeled using the orthotropic material relationship, the detailed components are simplified, and only the macroscopic configuration of the composite material structure is considered to establish an equivalent The initial finite element analysis model of ;

(2)根据复合材料结构实际几何参数,建立实验模型,利用动力学模态实验技术,测得结构的实验模态频率和模态振型;(2) According to the actual geometric parameters of the composite material structure, the experimental model is established, and the experimental modal frequency and mode shape of the structure are measured by using the dynamic modal experiment technology;

(3)计算待修正参数的相对灵敏度矩阵,利用分层聚类算法对待修正参数进行参数分组,再对聚类参数进行相对灵敏度分析,选择各参数中相对灵敏度平均值最大的聚类参数进行修正;(3) Calculate the relative sensitivity matrix of the parameters to be corrected, use the hierarchical clustering algorithm to group the parameters to be corrected, and then analyze the relative sensitivity of the clustering parameters, and select the clustering parameter with the largest relative sensitivity average among each parameter for correction ;

(4)构造分析模型的模态频率和实测模态频率的残差向量,建立分析模型修正所需的目标函数,构建目标函数的优化反问题对复合材料结构的有限元模型进行修正。(4) Construct the modal frequency of the analytical model and the residual vector of the measured modal frequency, establish the objective function required for the correction of the analytical model, and construct the optimization inverse problem of the objective function to correct the finite element model of the composite material structure.

进一步,步骤(2)得到实验模态频率和模态振型的过程包括以下步骤:Further, step (2) obtains the process of experimental mode frequency and mode shape and comprises the following steps:

2.1)根据复合材料结构的几何参数,建立其实验模型;2.1) Establish its experimental model according to the geometric parameters of the composite material structure;

2.2)结构测点布置,在结构边界远离模态驻点处选取拾振点;2.2) Structural measurement point layout, select the vibration pickup point at the structure boundary away from the modal stagnation point;

2.3)用橡胶绳将复合材料结构进行悬挂,定义垂直于悬挂面的方向为Z轴方向,并使其处于自由-自由状态,将加速度传感器固定于所选的拾振点;2.3) Suspend the composite material structure with a rubber rope, define the direction perpendicular to the suspension surface as the Z-axis direction, and make it in a free-free state, and fix the acceleration sensor at the selected vibration pickup point;

2.4)将力锤和加速度传感器分别接入信号采集仪;2.4) Connect the force hammer and the acceleration sensor to the signal acquisition instrument respectively;

2.5)利用动力学试验系统的模态分析模块,设置模态分析参数;2.5) Use the modal analysis module of the dynamic test system to set the modal analysis parameters;

2.6)用力锤依次对结构上的激振点沿Z轴方向施加脉冲力,依次采集每个测点在受到脉冲激励时的输入力与拾振点处输出加速度信号;2.6) Use a force hammer to sequentially apply pulse force to the excitation points on the structure along the Z-axis direction, and sequentially collect the input force of each measuring point when it is excited by the pulse and the output acceleration signal at the vibration pickup point;

2.7)用试验系统的信号分析仪对输入输出信号进行模态参数修正,通过各点频响函数的集总、拟合和修正得到复合材料结构的实测模态频率和模态振型。2.7) Use the signal analyzer of the test system to correct the modal parameters of the input and output signals, and obtain the measured modal frequency and mode shape of the composite material structure through the aggregation, fitting and correction of the frequency response functions of each point.

进一步,步骤(3)包括以下步骤:Further, step (3) includes the following steps:

3.1)根据相对灵敏度计算公式,计算模态频率相对于弹性参数的相对灵敏度矩阵:3.1) Calculate the relative sensitivity matrix of the modal frequency relative to the elastic parameters according to the relative sensitivity calculation formula:

式中,Sr是相对灵敏度矩阵,f是输出模态频率向量,p是待修正弹性参数向量;where S r is the relative sensitivity matrix, f is the output modal frequency vector, and p is the elastic parameter vector to be corrected;

3.2)计算相对灵敏度列向量gα、gβ的距离d:3.2) Calculate the distance d between the relative sensitivity column vectors g α and g β :

利用分层聚类算法将相对灵敏度距离接近的参数进行分类,从而得到弹性参数的分层树表达,再利用距离阈值0.2作为参数分组标准,对弹性参数进行分组p={p1;p2;…;pj},n1,n2,…,nj分别为各组参数的数目,且n1+n2+…+nj=N,N表示弹性参数总数;Utilize the hierarchical clustering algorithm to classify the parameters with close relative sensitivity distances to obtain the hierarchical tree expression of the elastic parameters, and then use the distance threshold 0.2 as the parameter grouping standard to group the elastic parameters p={p 1 ; p 2 ; ...; p j }, n 1 , n 2 ,...,n j are the number of parameters in each group respectively, and n 1 +n 2 +...+n j =N, N represents the total number of elastic parameters;

3.3)定义聚类参数θj为第j组弹性参数的相对变化:3.3) Define the clustering parameter θ j as the relative change of the elastic parameter of the jth group:

式中,pj为第j组弹性参数向量,表示第j组弹性参数初值,θj为第j组弹参数对应的聚类参数;In the formula, p j is the jth group of elastic parameter vectors, Indicates the initial value of the j-th group of elastic parameters, and θ j is the clustering parameter corresponding to the j-th group of elastic parameters;

利用聚类参数的灵敏度计算公式,对聚类参数进行选取,确定待修正的聚类参数:Use the sensitivity calculation formula of the clustering parameters to select the clustering parameters and determine the clustering parameters to be corrected:

式中,Sc表示聚类参数的灵敏度矩阵,θ是聚类参数向量,该向量的元素由聚类参数θj组成。In the formula, S c represents the sensitivity matrix of clustering parameters, θ is a clustering parameter vector, and the elements of this vector are composed of clustering parameters θ j .

进一步,步骤(4)包括以下步骤:Further, step (4) includes the following steps:

4.1)对所得到的复合材料结构实验模态频率,利用模态置信度MAC确定实验模态振型所对应的各阶分析模态频率,进行模态振型匹配:4.1) For the obtained experimental modal frequency of the composite material structure, use the modal confidence MAC to determine the corresponding analytical modal frequency of each order of the experimental modal shape, and perform the modal shape matching:

式中,M表示模态置信度矩阵,Φa和Φe分别表示分析和实验模态振型,最后确定如下的目标优化函数:In the formula, M represents the modal confidence matrix, Φ a and Φ e represent the analytical and experimental mode shapes respectively, and finally determine the following objective optimization function:

式中,p为待修正弹性参数向量,J(p)表示目标函数,ε(p)为模态频率fa和模态频率fe构造的残差向量且ε(p)=fe-fa(p),Wε=round(max(fe)·diag(fe)),表示根据实验模态频率值得到的加权矩阵,round(·)、max(·)和diag(·)分别表示四舍五入取整、最大值运算和对角矩阵运算;该目标函数的物理含义是:在参数的变化范围[pl,pu]内,寻找最优化参数使得实验模态频率和分析模态频率向量差的二范数最小;In the formula, p is the elastic parameter vector to be corrected, J(p) represents the objective function, ε(p) is the residual vector constructed by modal frequency f a and modal frequency f e and ε(p)=f e -f a (p), Wε=round(max(f e ) diag(f e )), represents the weighting matrix obtained according to the experimental modal frequency values, round(·), max(·) and diag(·) represent Rounding, maximum value operation and diagonal matrix operation; the physical meaning of the objective function is: within the variation range of the parameters [p l , p u ], find the optimal parameters so that the experimental modal frequency and the analytical modal frequency vector The two-norm of the difference is the smallest;

4.3)基于所构造的目标函数(12)构建优化反问题对复合材料有限元模型的弹性参数进行修正,得到有效的弹性参数。4.3) Construct an optimization inverse problem based on the constructed objective function (12) to modify the elastic parameters of the composite finite element model to obtain effective elastic parameters.

有益效果:本发明提供了基于聚类分析根据参数的相对灵敏度矩阵进行待修正参数分组选取的方法,建立了复合材料板的有限元初始分析模型和实验模型,同时通过构造模态频率目标优化函数,修正了等效复合材料板结构的有限元模型,具有十分重要的工程应用价值。Beneficial effects: the present invention provides a method for grouping and selecting parameters to be corrected based on the relative sensitivity matrix of the parameters based on cluster analysis, establishes the finite element initial analysis model and experimental model of the composite material plate, and simultaneously constructs the modal frequency target optimization function , the finite element model of the equivalent composite plate structure is revised, which has very important engineering application value.

本发明结合数值模拟、试验和优化技术,能够修正具有多参数的复合材料等效有限元模型的材料参数,考虑等效有限元模型所选取的材料本构关系参数较多,导致参数修正准确性较低的问题,采用参数的相对灵敏度矩阵进行聚类分析,减少待修正参数数量,提高修正程序稳定性,为工程应用提供了一种准确的基于数值模拟、试验和优化相结合的复合材料等效有限元模型参数修正方法。The present invention combines numerical simulation, test and optimization technology to correct the material parameters of the multi-parameter composite material equivalent finite element model, considering that the equivalent finite element model selects more material constitutive relation parameters, resulting in the accuracy of parameter correction For lower problems, the relative sensitivity matrix of parameters is used for cluster analysis, which reduces the number of parameters to be corrected, improves the stability of the correction program, and provides an accurate composite material based on the combination of numerical simulation, experiment and optimization for engineering applications. Effective finite element model parameter correction method.

附图说明Description of drawings

图1为实施例中的等效复合材料板结构;Fig. 1 is the equivalent composite material plate structure in the embodiment;

图2为待修正参数相对灵敏度图;Figure 2 is a relative sensitivity diagram of the parameters to be corrected;

图3为待修正参数分层树状图;Fig. 3 is a layered dendrogram of parameters to be corrected;

图4为聚类参数灵敏度分析图;Figure 4 is a sensitivity analysis diagram of clustering parameters;

图5为本发明方法的流程图。Fig. 5 is a flowchart of the method of the present invention.

具体实施方式Detailed ways

下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。The technical solutions of the present invention will be described in detail below, but the protection scope of the present invention is not limited to the embodiments.

实施例:一种基于聚类分析的复合材料结构有限元模型修正方法,如图5所示,具体过程如下:Embodiment: A method for correcting the composite material structure finite element model based on cluster analysis, as shown in Figure 5, the specific process is as follows:

步骤1,采用壳单元和实体单元对复合材料板结构进行建模,得到等效有限元模型,如图1所示,其中1表示上面板壳单元,2表示芯层实体单元,3表示下面板壳单元,结构初始弹性参数值为 Step 1, use shell elements and solid elements to model the composite plate structure to obtain an equivalent finite element model, as shown in Figure 1, where 1 represents the shell element of the upper panel, 2 represents the solid element of the core layer, and 3 represents the lower panel Shell element, the initial elastic parameter value of the structure is

步骤2,对利用动力学模态实验技术得到结构实验模态频率和模态振型:Step 2, using the dynamic modal experimental technique to obtain the structural experimental modal frequency and mode shape:

2.1)根据复合材料结构的几何参数,建立其实验模型;2.1) Establish its experimental model according to the geometric parameters of the composite material structure;

2.2)结构测点布置,在结构边界远离模态驻点处选取拾振点;2.2) Structural measurement point layout, select the vibration pickup point at the structure boundary away from the modal stagnation point;

2.3)用橡胶绳将复合材料结构进行悬挂,定义垂直于悬挂面的方向为Z轴方向,并使其处于自由-自由状态;用胶水将加速度传感器黏结与所选的边界拾振位置处;2.3) Suspend the composite material structure with a rubber rope, define the direction perpendicular to the suspension surface as the Z-axis direction, and make it in a free-free state; use glue to bond the acceleration sensor to the selected boundary vibration pickup position;

2.4)用连接线将力锤和加速度传感器分别接入信号采集仪的对应接口;2.4) Connect the force hammer and the acceleration sensor to the corresponding interface of the signal acquisition instrument with the connection line;

2.5)利用动力学试验系统的模态分析模块,设置模态分析参数;2.5) Use the modal analysis module of the dynamic test system to set the modal analysis parameters;

2.6)用力锤依次对结构上的激振点沿Z轴方向施加脉冲力,依次采集每个测点在受到脉冲激励时的输入力与拾振点处输出加速度信号;2.6) Use a force hammer to sequentially apply pulse force to the excitation points on the structure along the Z-axis direction, and sequentially collect the input force of each measuring point when it is excited by the pulse and the output acceleration signal at the vibration pickup point;

2.7)用试验系统的信号分析仪对输入输出信号进行模态参数修正,通过各点频响函数的集总、拟合和修正得到复合材料结构的实测模态频率fe和模态振型Φe2.7) Use the signal analyzer of the test system to correct the modal parameters of the input and output signals, and obtain the measured modal frequency f e and mode shape Φ of the composite material structure through aggregation, fitting and correction of the frequency response functions of each point e .

步骤3,利用聚类分析对待修正参数进行分组选择:Step 3, use cluster analysis to group and select the parameters to be corrected:

3.1)根据相对灵敏度计算公式,计算模态频率相对于弹性参数的相对灵敏度矩阵,相对灵敏度矩阵计算公式如下:3.1) According to the relative sensitivity calculation formula, calculate the relative sensitivity matrix of the modal frequency relative to the elastic parameters. The relative sensitivity matrix calculation formula is as follows:

式中,Sr是相对灵敏度矩阵,f是输出模态频率向量,p是弹性参数向量,得到的弹性参数的相对灵敏度如图2所示;In the formula, S r is the relative sensitivity matrix, f is the output modal frequency vector, p is the elastic parameter vector, and the relative sensitivity of the obtained elastic parameters is shown in Figure 2;

3.2)聚类分析,根据步骤3.1得到的弹性参数相对灵敏度矩阵,计算相对灵敏度列向量gα,gβ的距离d:3.2) cluster analysis, according to the elastic parameter relative sensitivity matrix obtained in step 3.1, calculate the relative sensitivity column vector g α , the distance d of g β :

利用分层聚类算法将相对灵敏度距离接近的参数进行分类,从而得到弹性参数分层聚类树状图,如图3所示,再利用距离阈值0.2作为参数分组标准,如图2中虚线所示,对弹性参数进行分组,从图3可以看出,分组情况如下:p={p1;p2;…;pj}={{p1,p11};{p2,p3};{p4,p10};{p5};{p6,p9,p12};{p7,p13};{p8,p14,p15};},n1=2,n2=2,n3=2,n4=1,n5=3,n6=2,n7=3;The hierarchical clustering algorithm is used to classify the parameters with close relative sensitivity distances, so as to obtain the hierarchical clustering dendrogram of elastic parameters, as shown in Figure 3, and then use the distance threshold of 0.2 as the parameter grouping standard, as shown by the dotted line in Figure 2 It can be seen from Figure 3 that the grouping is as follows: p={p 1 ;p 2 ;...;p j }={{p 1 ,p 11 };{p 2 ,p 3 } {p 4 , p 10 }; {p 5 }; {p 6 , p 9 , p 12 }; { p 7 , p 13 } ; , n 2 =2, n 3 =2, n 4 =1, n 5 =3, n 6 =2, n 7 =3;

3.3)定义聚类参数θj为第j组弹性参数的相对变化:3.3) Define the clustering parameter θ j as the relative change of the elastic parameter of the jth group:

式中,pj为第j组弹性参数向量,表示第j组弹性参数初值,θj为第j组弹性参数对应的聚类参数;利用聚类参数的灵敏度计算公式,对聚类参数进行选取,确定待修正的聚类参数:In the formula, p j is the jth group of elastic parameter vectors, Indicates the initial value of the j-th group of elastic parameters, θ j is the clustering parameter corresponding to the j-th group of elastic parameters; use the sensitivity calculation formula of the clustering parameter to select the clustering parameter and determine the clustering parameter to be corrected:

式中,Sc表示聚类参数的灵敏度矩阵,θ是聚类参数向量,该向量的元素由聚类参数θj组成;In the formula, S c represents the sensitivity matrix of clustering parameters, θ is a clustering parameter vector, and the elements of this vector are composed of clustering parameters θ j ;

根据相对灵敏度数值大小,选择各参数中相对灵敏度平均值最大的聚类参数进行修正,最终得到的聚类参数灵敏度如图4所示,聚类参数θ2和θ4的灵敏度值得数量级相比于其他五个聚类参数较低,故最终确定的带修正参数从15个减少为5个,降低了修正过程中的病态性。According to the value of relative sensitivity, select the clustering parameter with the largest average value of relative sensitivity in each parameter for correction, and finally obtain the sensitivity of clustering parameters as shown in Figure 4. The sensitivity values of clustering parameters θ 2 and θ 4 are in magnitude The other five clustering parameters are relatively low, so the final parameters with correction are reduced from 15 to 5, which reduces the ill-conditionedness in the correction process.

步骤4,利用优化方法对等效复合材料有限元模型进行参数修正:Step 4, use the optimization method to modify the parameters of the equivalent composite finite element model:

4.1)根据有限元分析模型得到的模态频率fa和实测模态频率fe构造残差向量ε(p)=fe-fa(p);4.1) According to the modal frequency f a obtained by the finite element analysis model and the measured modal frequency f e , the residual error vector ε(p)=f e −f a (p) is constructed;

4.2)确定目标优化函数:根据步骤2得到的实验模态频率和模态振型,利用模态置信度MAC进行模态振型匹配,确定实验模态振型所对应的各阶分析模态频率,4.2) Determine the target optimization function: According to the experimental modal frequency and modal shape obtained in step 2, use the modal confidence MAC to perform modal shape matching, and determine the corresponding analysis modal frequencies of each order of the experimental modal shape ,

式中,M表示模态置信度矩阵,Φa和Φe分别表示分析和实验模态振型,最后确定如下的目标优化函数:In the formula, M represents the modal confidence matrix, Φ a and Φ e represent the analytical and experimental mode shapes respectively, and finally determine the following objective optimization function:

式中,W=round(max(fe)·diag(fe))表示根据实验模态频率值得到的加权矩阵,round(·),max(·)和diag(·)分别表示四舍五入取整,最大值运算和对角矩阵运算,p表示待修正参数向量,该目标函数的物理含义是:在参数的变化范围[pl,pu]内,寻找最优化参数使得实验模态频率和分析模态频率向量差的二范数最小;In the formula, W=round(max(f e ) diag(f e )) represents the weighting matrix obtained according to the experimental modal frequency values, and round(·), max(·) and diag(·) respectively represent rounding , the maximum value operation and diagonal matrix operation, p represents the parameter vector to be corrected, the physical meaning of the objective function is: within the parameter range [p l , p u ], find the optimal parameters so that the experimental modal frequency and analysis The two-norm of the modal frequency vector difference is the smallest;

4.3)基于所构造的目标函数(18)构建优化反问题对复合材料有限元模型的弹性参数进行修正,得到准确有效的有限元分析模型。4.3) Construct an optimization inverse problem based on the constructed objective function (18) to modify the elastic parameters of the finite element model of the composite material to obtain an accurate and effective finite element analysis model.

Claims (3)

1.一种基于聚类分析的复合材料结构有限元模型修正方法,其特征在于:包括以下步骤:1. A composite material structure finite element model correction method based on cluster analysis, is characterized in that: comprise the following steps: (1)根据复合材料结构几何特征和组分构成,利用正交各向异性的材料关系对实际复合材料结构进行建模,简化细节组分,仅考虑复合材料结构的宏观构型,建立等效的初始有限元分析模型;(1) According to the geometric characteristics and component composition of the composite material structure, the actual composite material structure is modeled using the orthotropic material relationship, the detailed components are simplified, and only the macroscopic configuration of the composite material structure is considered to establish an equivalent The initial finite element analysis model of ; (2)根据复合材料结构实际几何参数,建立实验模型,利用动力学模态实验技术,测得结构的实验模态频率和模态振型;(2) According to the actual geometric parameters of the composite material structure, the experimental model is established, and the experimental modal frequency and mode shape of the structure are measured by using the dynamic modal experiment technology; (3)计算待修正参数的相对灵敏度矩阵,利用分层聚类算法对待修正参数进行参数分组,再对聚类参数进行相对灵敏度分析,选择各参数中相对灵敏度平均值最大的聚类参数进行修正;(3) Calculate the relative sensitivity matrix of the parameters to be corrected, use the hierarchical clustering algorithm to group the parameters to be corrected, and then analyze the relative sensitivity of the clustering parameters, and select the clustering parameter with the largest relative sensitivity average among each parameter for correction ; (4)构造分析模型的模态频率和实测模态频率的残差向量,建立分析模型修正所需的目标函数,构建目标函数的优化反问题对复合材料结构的有限元模型进行修正;(4) Construct the modal frequency of the analytical model and the residual vector of the measured modal frequency, establish the objective function required for the correction of the analytical model, and construct the optimization inverse problem of the objective function to correct the finite element model of the composite material structure; 其中,步骤(3)包括以下步骤:Wherein, step (3) comprises the following steps: 3.1)根据相对灵敏度计算公式,计算模态频率相对于弹性参数的相对灵敏度矩阵:3.1) Calculate the relative sensitivity matrix of the modal frequency relative to the elastic parameters according to the relative sensitivity calculation formula: <mrow> <msub> <mi>S</mi> <mi>r</mi> </msub> <mo>=</mo> <mi>f</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>p</mi> </mrow> </mfrac> <mi>p</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>S</mi><mi>r</mi></msub><mo>=</mo><mi>f</mi><mfrac><mrow><mo>&amp;part;</mo><mi>f</mi></mrow><mrow><mo>&amp;part;</mo><mi>p</mi></mrow></mfrac><mi>p</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mo>mn><mo>)</mo></mrow></mrow> 式中,Sr是相对灵敏度矩阵,f是输出模态频率向量,p是待修正弹性参数向量;where S r is the relative sensitivity matrix, f is the output modal frequency vector, and p is the elastic parameter vector to be corrected; 3.2)计算相对灵敏度列向量gα、gβ的距离d:3.2) Calculate the distance d between the relative sensitivity column vectors g α and g β : <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>g</mi> <mi>&amp;alpha;</mi> <mi>T</mi> </msubsup> <msub> <mi>g</mi> <mi>&amp;beta;</mi> </msub> </mrow> <msqrt> <mrow> <mo>(</mo> <msubsup> <mi>g</mi> <mi>&amp;alpha;</mi> <mi>T</mi> </msubsup> <msub> <mi>g</mi> <mi>&amp;alpha;</mi> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <mo>(</mo> <msubsup> <mi>g</mi> <mi>&amp;beta;</mi> <mi>T</mi> </msubsup> <msub> <mi>g</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>d</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mrow><msubsup><mi>g</mi><mi>&amp;alpha;</mi><mi>T</mi></msubsup><msub><mi>g</mi><mi>&amp;beta;</mi></msub></mrow><msqrt><mrow><mo>(</mo><msubsup><mi>g</mi><mi>&amp;alpha;</mi><mi>T</mi></msubsup><msub><mi>g</mi><mi>&amp;alpha;</mi></msub><mo>)</mo><mo>&amp;CenterDot;</mo><mo>(</mo><msubsup><mi>g</mi><mi>&amp;beta;</mi><mi>T</mi></msubsup><msub><mi>g</mi><mi>&amp;beta;</mi></msub><mo>)</mo></mrow></msqrt></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 利用分层聚类算法将相对灵敏度距离接近的参数进行分类,从而得到弹性参数的分层树表达,再利用距离阈值0.2作为参数分组标准,对弹性参数进行分组p={p1;p2;…;pj},n1,n2,…,nj分别为各组参数的数目,且n1+n2+…+nj=N,N表示弹性参数总数;Utilize the hierarchical clustering algorithm to classify the parameters with close relative sensitivity distances to obtain the hierarchical tree expression of the elastic parameters, and then use the distance threshold 0.2 as the parameter grouping standard to group the elastic parameters p={p 1 ; p 2 ; ...; p j }, n 1 , n 2 ,...,n j are the number of parameters in each group respectively, and n 1 +n 2 +...+n j =N, N represents the total number of elastic parameters; 3.3)定义聚类参数θj为第j组弹性参数的相对变化:3.3) Define the clustering parameter θ j as the relative change of the elastic parameter of the jth group: <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>p</mi> <mi>j</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>p</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>p</mi><mi>j</mi><mn>0</mn></msubsup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>&amp;theta;</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 式中,pj为第j组弹性参数向量,表示第j组弹性参数初值,θj为第j组弹参数对应的聚类参数;In the formula, p j is the jth group of elastic parameter vectors, Indicates the initial value of the j-th group of elastic parameters, and θ j is the clustering parameter corresponding to the j-th group of elastic parameters; 利用聚类参数的灵敏度计算公式,对聚类参数进行选取,确定待修正的聚类参数:Use the sensitivity calculation formula of the clustering parameters to select the clustering parameters and determine the clustering parameters to be corrected: <mrow> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>p</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>p</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>S</mi><mi>c</mi></msub><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><mi>f</mi></mrow><mrow><mo>&amp;part;</mo><mi>p</mi></mrow></mfrac><mfrac><mrow><mo>&amp;part;</mo><mi>p</mi></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 式中,Sc表示聚类参数的灵敏度矩阵,θ是聚类参数向量,该聚类参数向量的元素由聚类参数θj组成。In the formula, S c represents the sensitivity matrix of clustering parameters, θ is a clustering parameter vector, and the elements of the clustering parameter vector are composed of clustering parameters θ j . 2.根据权利要求1所述的基于聚类分析的复合材料结构有限元模型修正方法,其特征在于:步骤(2)得到实验模态频率和模态振型的过程包括以下步骤:2. the composite material structure finite element model correction method based on cluster analysis according to claim 1, is characterized in that: the process that step (2) obtains experimental mode frequency and mode shape comprises the following steps: 2.1)根据复合材料结构的几何参数,建立其实验模型;2.1) Establish its experimental model according to the geometric parameters of the composite material structure; 2.2)结构测点布置,在结构边界远离模态驻点处选取拾振点;2.2) Structural measurement point layout, select the vibration pickup point at the structure boundary away from the modal stagnation point; 2.3)用橡胶绳将复合材料结构进行悬挂,定义垂直于悬挂面的方向为Z轴方向,并使其处于自由-自由状态,将加速度传感器固定于所选的拾振点;2.3) Suspend the composite material structure with a rubber rope, define the direction perpendicular to the suspension surface as the Z-axis direction, and make it in a free-free state, and fix the acceleration sensor at the selected vibration pickup point; 2.4)将力锤和加速度传感器分别接入信号采集仪;2.4) Connect the force hammer and the acceleration sensor to the signal acquisition instrument respectively; 2.5)利用动力学试验系统的模态分析模块,设置模态分析参数;2.5) Use the modal analysis module of the dynamic test system to set the modal analysis parameters; 2.6)用力锤依次对结构上的激振点沿Z轴方向施加脉冲力,依次采集每个测点在受到脉冲激励时的输入力与拾振点处输出加速度信号;2.6) Use a force hammer to sequentially apply pulse force to the excitation points on the structure along the Z-axis direction, and sequentially collect the input force of each measuring point when it is excited by the pulse and the output acceleration signal at the vibration pickup point; 2.7)用试验系统的信号分析仪对输入输出信号进行模态参数修正,通过各点频响函数的集总、拟合和修正得到复合材料结构的实测模态频率和模态振型。2.7) Use the signal analyzer of the test system to correct the modal parameters of the input and output signals, and obtain the measured modal frequency and mode shape of the composite material structure through the aggregation, fitting and correction of the frequency response functions of each point. 3.根据权利要求1所述的基于聚类分析的复合材料结构有限元模型修正方法,其特征在于:步骤(4)包括以下步骤:3. the composite material structure finite element model correction method based on cluster analysis according to claim 1, is characterized in that: step (4) comprises the following steps: 4.1)对所得到的复合材料结构实验模态频率,利用模态置信度MAC确定实验模态振型所对应的各阶分析模态频率,进行模态振型匹配:4.1) For the obtained experimental modal frequency of the composite material structure, use the modal confidence MAC to determine the corresponding analytical modal frequency of each order of the experimental modal shape, and perform the modal shape matching: <mrow> <mi>M</mi> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msubsup> <mi>&amp;Phi;</mi> <mi>a</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;Phi;</mi> <mi>e</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>&amp;Phi;</mi> <mi>a</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;Phi;</mi> <mi>a</mi> </msub> <mo>)</mo> <mo>(</mo> <msubsup> <mi>&amp;Phi;</mi> <mi>e</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;Phi;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>M</mi><mo>=</mo><mfrac><mrow><mo>|</mo><msubsup><mi>&amp;Phi;</mi><mi>a</mi><mi>T</mi></msubsup><msub><mi>&amp;Phi;</mi><mi>e</mi></msub><msup><mo>|</mo><mn>2</mn></msup></mrow><mrow><mo>(</mo><msubsup><mi>&amp;Phi;</mi><mi>a</mi><mi>T</mi></msubsup><msub><mi>&amp;Phi;</mi><mi>a</mi></msub><mo>)</mo><mo>(</mo><msubsup><mi>&amp;Phi;</mi><mi>e</mi><mi>T</mi></msubsup><msub><mi>&amp;Phi;</mi><mi>e</mi></msub><mo>)</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 式中,M表示模态置信度矩阵,Φa和Φe分别表示分析和实验模态振型,最后确定如下的目标优化函数:In the formula, M represents the modal confidence matrix, Φ a and Φ e represent the analytical and experimental mode shapes respectively, and finally determine the following objective optimization function: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi> </mi> <mi>J</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;epsiv;</mi> <msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>W</mi> <mi>&amp;epsiv;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <msub> <mi>p</mi> <mi>l</mi> </msub> <mo>&amp;le;</mo> <mi>p</mi> <mo>&amp;le;</mo> <msub> <mi>p</mi> <mi>u</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>min</mi><mi></mi><mi>J</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mi>&amp;epsiv;</mi><msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mi>T</mi></msup><mi>W</mi><mi>&amp;epsiv;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>s</mi><mo>.</mi>mo><mi>t</mi><mo>.</mo><msub><mi>p</mi><mi>l</mi></msub><mo>&amp;le;</mo><mi>p</mi><mo>&amp;le;</mo><msub><mi>p</mi><mi>u</mi></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 式中,p为待修正弹性参数向量,J(p)表示目标函数,ε(p)为模态频率fa和模态频率fe构造的残差向量且ε(p)=fe-fa(p),Wε=round(max(fe)·diag(fe)),表示根据实验模态频率值得到的加权矩阵,round(·)、max(·)和diag(·)分别表示四舍五入取整、最大值运算和对角矩阵运算;该目标函数的物理含义是:在参数的变化范围[pl,pu]内,寻找最优化参数使得实验模态频率和分析模态频率向量差的二范数最小;In the formula, p is the elastic parameter vector to be corrected, J(p) represents the objective function, ε(p) is the residual vector constructed by modal frequency f a and modal frequency f e and ε(p)=f e -f a (p), Wε=round(max(f e ) diag(f e )), represents the weighting matrix obtained according to the experimental modal frequency values, round(·), max(·) and diag(·) represent Rounding, maximum value operation and diagonal matrix operation; the physical meaning of the objective function is: within the variation range of the parameters [p l , p u ], find the optimal parameters so that the experimental modal frequency and the analytical modal frequency vector The two-norm of the difference is the smallest; 4.3)基于所构造的目标函数(6)构建优化反问题对复合材料有限元模型的弹性参数进行修正,得到有效的弹性参数。4.3) Construct an optimization inverse problem based on the constructed objective function (6) to modify the elastic parameters of the composite finite element model to obtain effective elastic parameters.
CN201710568512.1A 2017-07-13 2017-07-13 Composite structure correction method for finite element model based on cluster analysis Active CN107357992B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710568512.1A CN107357992B (en) 2017-07-13 2017-07-13 Composite structure correction method for finite element model based on cluster analysis
PCT/CN2018/083368 WO2019011026A1 (en) 2017-07-13 2018-04-17 Composite material structure finite element model correction method based on cluster analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710568512.1A CN107357992B (en) 2017-07-13 2017-07-13 Composite structure correction method for finite element model based on cluster analysis

Publications (2)

Publication Number Publication Date
CN107357992A CN107357992A (en) 2017-11-17
CN107357992B true CN107357992B (en) 2018-03-23

Family

ID=60292568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710568512.1A Active CN107357992B (en) 2017-07-13 2017-07-13 Composite structure correction method for finite element model based on cluster analysis

Country Status (2)

Country Link
CN (1) CN107357992B (en)
WO (1) WO2019011026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283071A (en) * 2018-10-30 2019-01-29 济南大学 A low test cost acquisition method for CFRP low-velocity impact damage samples

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357992B (en) * 2017-07-13 2018-03-23 东南大学 Composite structure correction method for finite element model based on cluster analysis
CN107992709B (en) * 2017-12-28 2021-05-14 南京林业大学 Thermal Structure Model Correction Method Based on Intermediate Function
CN108416080B (en) * 2018-01-19 2019-05-14 东南大学 Composite material modeling method based on repetitive substructure
CN108287970B (en) * 2018-01-31 2019-01-29 东南大学 Sensitivity Analysis Method of the hot-die state based on two-dimensional quadrature anisotropic composite material plate to structural parameters
CN108595781A (en) * 2018-03-30 2018-09-28 东南大学 The elastic parameter recognition methods of fiber and matrix after a kind of composite molding
CN108959686A (en) * 2018-04-17 2018-12-07 中国科学院沈阳自动化研究所 A kind of correction method for finite element model based on sensitivity analysis
CN108984887B (en) * 2018-07-06 2023-04-25 南京林业大学 A Multi-Stage Identification Method for Deterministic Parameters of Composite Materials
CN109241559B (en) * 2018-08-01 2019-06-18 东南大学 A substructure-based method for identifying elastic parameters of composite materials
CN109885896B (en) * 2019-01-25 2020-04-24 东南大学 Nonlinear structure finite element model correction method based on complex variation differential sensitivity
CN110222413B (en) * 2019-06-03 2022-10-14 中船动力研究院有限公司 Oil pan optimization method and device, computer equipment and medium
CN111931396B (en) * 2020-06-28 2025-05-30 中国电力科学研究院有限公司 Modal analysis method and device for oil tank structure of distribution transformer
CN112016222B (en) * 2020-07-13 2024-06-25 苏州睿友智能装备有限公司 Modal optimization method based on assembly finite element model and orthogonal test method
CN112036062B (en) * 2020-08-07 2024-12-27 丽水学院 A method for predicting the springback angle of metal material bending
CN112231954B (en) * 2020-10-15 2023-11-21 中国水利水电科学研究院 Method for establishing digital twin model of hydraulic structure
CN113128083B (en) * 2021-03-15 2024-04-19 西安理工大学 Actuator optimal arrangement method for vibration control of hydraulic arc-shaped steel gate
CN113204739A (en) * 2021-05-24 2021-08-03 桂林电子科技大学 Frequency response function quality line optimization method based on K-means clustering
CN113849907B (en) * 2021-08-31 2025-03-07 东风汽车集团股份有限公司 Modal frequency avoidance method, device and storage medium based on mass discretization model
CN113779837B (en) * 2021-09-13 2024-02-13 长春工程学院 Structural modal sensitivity analysis method based on novel actual measurement normalization technology
CN113987855B (en) * 2021-09-22 2024-11-08 东南大学 Uncertain material parameter identification method for structural interval based on two-level surrogate model
CN114139322B (en) * 2021-11-08 2025-03-18 淄博市水务集团有限责任公司 A design method for an asynchronous sensor system for real-time verification of water demand at water supply network nodes
CN114398808B (en) * 2021-12-10 2024-03-29 航天科工火箭技术有限公司 Quick model correction method for bolt connection joint surface
CN114386284B (en) * 2022-01-17 2024-08-06 北京源清慧虹信息科技有限公司 Automatic modal parameter identification method based on cluster analysis and data fusion
CN114580080B (en) * 2022-03-03 2025-03-14 山东大学 A strain field reconstruction method and system based on Bayesian finite element model modification
CN114757076B (en) * 2022-04-21 2024-10-22 中国石油大学(华东) Intelligent design and manufacturing method for marine drilling typhoon-preventing suspension single unit
CN114815586B (en) * 2022-04-28 2024-09-10 南阳煜众精密机械有限公司 Digital twin process model construction method and application of machine tool feeding system
CN114970243A (en) * 2022-05-05 2022-08-30 西安交通大学 A Reverse Identification Method and System of Joint Surface Stiffness Parameters
CN114840939A (en) * 2022-05-06 2022-08-02 中国华能集团清洁能源技术研究院有限公司 Suction type pile-barrel composite foundation design optimization and installation method
CN115166055B (en) * 2022-06-07 2024-07-09 中国航空规划设计研究总院有限公司 Ancient building wood structure mechanical parameter identification method and auxiliary test device thereof
CN115062514B (en) * 2022-06-21 2024-07-12 重庆邮电大学 Modal parameter-based generator stator end winding physical parameter identification and mathematical model establishment method
CN115422650B (en) * 2022-07-21 2025-06-06 北京科技大学 A method and system for auxiliary development of powertrain suspension system
CN115495962B (en) * 2022-10-18 2024-10-22 江苏师范大学 A bolt connection modeling method based on layered virtual materials
CN115828673B (en) * 2022-11-21 2024-06-04 中国人民解放军96901部队22分队 Analysis method for vibration characteristics of rocket
CN116118189B (en) * 2023-01-16 2024-11-01 石家庄铁道大学 3D printing technology-based rutting test block structure modulus targeting design method
CN116822282B (en) * 2023-06-16 2024-10-25 南京航空航天大学 Method for realizing dynamic model of 2.5-dimensional composite material in damp-heat environment
CN117669027B (en) * 2023-11-24 2025-02-18 中国航空工业集团公司沈阳飞机设计研究所 Method and device for determining shock wave parameters of emission port of airborne emission device
CN117852351B (en) * 2024-01-08 2024-08-16 北京建筑大学 A method and system for calculating and placing monitoring sensor positions in a wooden structure building
CN118332883B (en) * 2024-06-17 2024-10-29 西安航天动力研究所 Simulation calculation method and device for detail stress of metal hose
CN118627387B (en) * 2024-06-18 2025-04-15 哈尔滨工业大学 A method for clustering optimization design of system actions
CN118690614A (en) * 2024-08-23 2024-09-24 西北工业大学 A parameter optimization method for local resonance metamaterial of Archimedean spiral beam
CN119989848A (en) * 2025-04-15 2025-05-13 浙江大学 Self-adaptive polymerization process dynamic parameter adjusting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529055A (en) * 2016-11-18 2017-03-22 南京航空航天大学 Model updating method based on strain modal shape correlation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567582B (en) * 2011-12-30 2015-05-20 南京航空航天大学 Finite-element analysis-based method for designing profile of autoclave molding fixture of composite material member
CN103077286B (en) * 2013-01-18 2016-01-13 大连理工大学 A kind of frequency error correction method of plane flutter model
CN105184390A (en) * 2015-08-12 2015-12-23 中国运载火箭技术研究院 Integrated optimization method of static strength, rigidity, stability of wallboard structure
CN107357992B (en) * 2017-07-13 2018-03-23 东南大学 Composite structure correction method for finite element model based on cluster analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529055A (en) * 2016-11-18 2017-03-22 南京航空航天大学 Model updating method based on strain modal shape correlation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
The sensitivity method in finite element model updating: A tutorial;John E. Mottershead等;《Mechanical Systems and Signal Processing》;20111231;第2275-2296页 *
一种有限元模型修正中的参数选择方法;姜东等;《固体力学学报》;20111031;全文 *
复合材料结构有限元模型修正技术研究;刘国青;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20110715;摘要、第3-8页、第52-62页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283071A (en) * 2018-10-30 2019-01-29 济南大学 A low test cost acquisition method for CFRP low-velocity impact damage samples

Also Published As

Publication number Publication date
CN107357992A (en) 2017-11-17
WO2019011026A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
CN107357992B (en) Composite structure correction method for finite element model based on cluster analysis
US6799081B1 (en) Fiber placement and fiber steering systems and corresponding software for composite structures
CN105843073B (en) A kind of wing structure aeroelastic stability analysis method not knowing depression of order based on aerodynamic force
CN101866378B (en) Method for solving rigidity of plate spring by using automatic dynamic analysis of mechanical system (ADAMS)
CN103345545B (en) A kind of compound substance π shape on-plane surface based on triangle envelope glueds joint strength of joint Forecasting Methodology
CN104462785B (en) A kind of two benches formula building frame construction damage detecting method
CN103106305B (en) Space grid structure model step-by-step correction method based on actual measurement mode
CN107085633B (en) Device and method for multi-point vibration response frequency domain prediction based on support vector machine
CN104573274B (en) Structural finite element model correction method based on displacement time-course area under vehicle load
CN106768574B (en) Method for measuring cable force of linear model after cable anchoring based on magnetic flux method correction
CN103823406A (en) Numerical control machine tool sensitive-link identification method based on modal mass distribution matrix
CN112529842B (en) Multi-excitation fusion plate structure damage identification method based on wavelet packet energy
CN110162822B (en) Time domain fast unsteady aerodynamic force calculation method of coupling structure mode
CN107679301A (en) A kind of segmented heavy duty crossbeam scale model design method
CN107389284A (en) A kind of measuring method of the frame structure elastic deformation based on strain
CN109241559A (en) A kind of composite material elastic parameter recognition methods based on minor structure
CN106055769A (en) Performance recognition method of bolt interfaces under different tightening torques
CN104239658A (en) Inverse solution method for nonlinear stiffness characteristic parameters and curve of suspension of air spring seat
CN108108559A (en) A kind of structural response acquisition methods and sensitivity acquisition methods based on minor structure
CN112926241B (en) Method for constructing lightweight lattice structure unit
CN102162728A (en) Method for evaluating minimum area of line profile error of cross section of skirt part of variable-ellipse piston
Sun et al. Design of a novel Six-axis force/torque sensor based on strain gauges by finite element method
CN111191186A (en) Multi-cell filtering method for positioning position of mobile robot in production workshop
CN105550383B (en) A kind of design method of unsteady aerodynamic force measurement pilot system
CN110580391B (en) A Fundamental Frequency Modal Measurement Method for Flexible Structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant