CN107345826A - 一种热式气体流量传感器及其制备方法 - Google Patents

一种热式气体流量传感器及其制备方法 Download PDF

Info

Publication number
CN107345826A
CN107345826A CN201710548164.1A CN201710548164A CN107345826A CN 107345826 A CN107345826 A CN 107345826A CN 201710548164 A CN201710548164 A CN 201710548164A CN 107345826 A CN107345826 A CN 107345826A
Authority
CN
China
Prior art keywords
unit
medium film
gas flow
substrate
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710548164.1A
Other languages
English (en)
Other versions
CN107345826B (zh
Inventor
王家畴
薛丹
李昕欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201710548164.1A priority Critical patent/CN107345826B/zh
Publication of CN107345826A publication Critical patent/CN107345826A/zh
Application granted granted Critical
Publication of CN107345826B publication Critical patent/CN107345826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明提供一种热式气体流量传感器及其制备方法,结构包括:衬底,包括凹槽,开设于衬底上表面;第一介质膜,位于凹槽上方,包括若干个第一介质膜单元及槽型结构,第一介质膜单元与衬底相连接,槽型结构贯穿第一介质膜且位于相邻第一介质膜单元之间,第一介质膜与衬底围成一个隔热腔体;电阻组件,包括至少一个加热单元和至少两个热敏单元,每个加热单元与每个热敏单元位于不同的第一介质膜单元上,热敏单元位于加热单元的两侧。通过上述技术方案,本发明的热式气体流量传感器的加热电阻的热量与衬底彻底隔离,降低了加热电阻热损耗,提高了气体流量的检测灵敏度和响应时间;采用单硅片单面体硅微机械工艺制作,结构尺寸小,成本低、工艺简单。

Description

一种热式气体流量传感器及其制备方法
技术领域
本发明属于硅微机械传感器技术领域,涉及一种热式气体流量传感器及其制备方法。
背景技术
随着MEMS技术迅猛发展,基于MEMS微机械加工技术制作的硅基热式气体流量传感器以其尺寸小、高性能等优势被广泛应用于航空航天、生化检测、医疗仪器等领域。尤其近些年来,精细化工业和医学生物分析的发展对气体流量测量和控制的要求越来越高,传统的流量测量装置很难满足要求。另外由于微电子制造工艺的发展,生物医学和临床诊断上的仪器以及分析方法的小型化引起科研人员的极大关注,这些促使了硅基热式气体流量传感器沿着更小型化、更低成本、更高性能方向发展。
气体流速测量主要依据热式流量传感器表面的温度分布不同,然后通过热敏电阻实现对气体流速的测量。因此,减少硅体的热耗散是提高气体流量传感器性能的重要指标。传统热式气体流量传感器通常是在(100)硅片上通过双面微机械加工方式制作而成,具体步骤如下:首先,在硅片正面沉积一层SiO2-Si3N4复合介质膜,并在该介质膜上分别加工加热电阻和热敏电阻;然后,通过单晶硅背面湿法腐蚀形成隔热腔体,减少复合介质膜下表面单晶硅支撑部分的横截面积,以达到降低发热电阻热耗散,提高检测灵敏度和响应时间的目的。
然而,这种热式气体流量传感器具有以下几点不足:(1)双面微机械加工工艺复杂,成本高且不利用批量生产;(2)从硅片背面湿法腐蚀减薄硅片到介质膜,腐蚀时间过长,制作效率低下;(3)由(100)硅片湿法腐蚀特性可知,介质膜面积与单晶硅背面掩膜开口区域面积比值很小,硅片厚度越大,芯片尺寸越大,成本越高;(4)虽然SiO2-Si3N4复合介质膜导热系数低,但是它也给加热电阻带来不可避免的热损耗。
为了解决上述问题,2016年中电三十八所谷永先等人研制了一种热隔离式的热式气体质量流量传感器。这种工艺主要是在三只铂电阻两侧分别开两个倾斜的槽,然后在各电阻下方通过湿法腐蚀掏空介质膜下方的单晶硅衬底,形成悬空的梁式结构[谷永先,曾鸿江,邬林等,热隔离式MEMS气体质量流量传感器设计,传感器与微系统,2016,35(6):72-74]。虽然,这种热式气体流量传感器采用单硅片单面加工,解决了传统双面微机械加工过程中工艺复杂,芯片尺寸大,成本高的不足。但是,这种结构却存在如下不足:(1)由(100)湿法腐蚀特性可知,加热电阻和热敏电阻所在的梁式结构需要沿(110)晶向偏斜一定的夹角才能实现梁结构湿法腐蚀释放,这就导致了传感器后续安装定位比较困难;此外,梁式结构释放后位于其下方的隔热腔体呈倒梯形结构,即,靠近梁式结构一侧开口大,腔体底部开口小,这导致加热电阻热耗散无法降到最低;(2)由于梁式结构下方隔热腔体结构不对称也导致了热敏电阻所在位置热场分布不均匀,从而影响传感器检测性能。
因此,设计一种可以解决现有技术中热式气体流量传感器热耗散高、尺寸大、响应时间慢等问题的热式气体流量传感器实属必要。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种热式气体流量传感器及其制备方法,用于解决现有技术中热式气体流量传感器热耗散高、尺寸大、响应时间慢等问题。
为实现上述目的及其他相关目的,本发明提供一种热式气体流量传感器,包括:
衬底,包括一凹槽,所述凹槽开设于所述衬底的上表面;
第一介质膜,覆盖于所述凹槽上方,包括若干个第一介质膜单元及槽型结构,所述第一介质膜单元与所述衬底相连接,所述槽型结构贯穿所述第一介质膜且位于相邻所述第一介质膜单元之间,以使各所述第一介质膜单元被所述槽型结构隔开,所述第一介质膜与所述衬底共同围成一个隔热腔体;以及
电阻组件,包括至少一个加热单元和至少两个热敏单元,每个所述加热单元与每个所述热敏单元分别位于不同的所述第一介质膜单元上,且所述热敏单元位于所述加热单元的两侧。
作为本发明的一种优选方案,所述衬底为(111)单晶硅。
作为本发明的一种优选方案,所述第一介质膜包括自下而上依次叠置的氧化层及氮化硅层。
作为本发明的一种优选方案,所述第一介质膜单元包括两个位于两侧的三角形膜及位于两个所述三角形膜之间的多个方形膜。
作为本发明的一种优选方案,多个所述方形膜的尺寸均相同,且所述方形膜与所述衬底相连接的边沿<110>晶向,所述方形膜垂直于所述衬底的边沿<211>晶向。
作为本发明的一种优选方案,两个所述三角形膜的尺寸相同且形状均为等腰三角形,其作为所述等腰三角形的腰的边与所述衬底相连接,其作为所述等腰三角形的底的边沿<211>晶向。
作为本发明的一种优选方案,还包括:第二介质膜,包括若干个第二介质膜单元,所述第二介质膜单元位于所述加热单元及所述热敏单元的表面,且与所述第一介质膜单元共同将单个所述加热单元及单个所述热敏单元包覆。
作为本发明的一种优选方案,还包括若干个引线焊盘,设置于每个所述加热单元以及每个所述热敏单元的两端,且位于所述衬底上。
作为本发明的一种优选方案,所述加热单元以及所述热敏单元均包括依次叠置的粘附层和金属层,且所述粘附层位于所述第一介质膜单元与所述金属层之间。
作为本发明的一种优选方案,所述加热单元的数量为一个,所述热敏单元的数量为偶数个,且所述热敏单元对称地分布于所述加热单元的两侧。
本发明还提供一种热式气体流量传感器的制备方法,其中,所述制备方法为制备上述热式气体流量传感器的方法,包括如下步骤:
1)提供一衬底;
2)于所述衬底表面沉积第一介质膜材料层;
3)于所述第一介质膜材料层表面沉积电阻组件材料层,并将所述电阻组件材料层图形化以得到电阻组件,所述电阻组件包括至少一个加热单元和至少两个热敏单元,且所述热敏单元位于所述加热单元的两侧;
4)于步骤3)所得到的结构上刻蚀形成具有预设深度的沟槽,所述沟槽位于相邻所述加热单元之间或相邻所述热敏单元之间或所述加热单元与所述热敏单元之间;
5)以所述沟槽为窗口腐蚀部分所述衬底形成隔热腔体,以释放所述第一介质膜,所述第一介质膜包括若干个第一介质膜单元以及由所述沟槽形成的槽型结构,所述第一介质膜单元与所述衬底相连接,所述槽型结构贯穿所述第一介质膜且位于相邻所述第一介质膜单元之间,以使各所述第一介质膜单元被所述槽型结构隔开。
作为本发明的一种优选方案,步骤3)与步骤4)之间,还包括于步骤3)所得到的结构表面沉积第二介质膜材料层的步骤,所述第二介质膜材料层用于保护所述电阻组件。
作为本发明的一种优选方案,步骤4)中,形成所述沟槽的具体步骤包括:
4-1)刻蚀所述沟槽所在区域的第一介质膜材料层;
4-2)沿所述沟槽所在区域继续刻蚀预定深度,以形成具有预设深度的所述沟槽。
作为本发明的一种优选方案,步骤4-2)中,所述刻蚀工艺采用硅深度反应离子刻蚀,且所述预定深度为40~60μm。
作为本发明的一种优选方案,步骤3)中,还包括刻蚀形成引线焊盘的步骤,所述引线焊盘形成于每个所述加热单元以及每个所述热敏单元的两端。
作为本发明的一种优选方案,步骤1)中所述衬底为(111)单晶硅,步骤5)中所采用的腐蚀溶液为四甲基氢氧化氨溶液。
如上所述,本发明的热式气体流量传感器及其制备方法,具有以下有益效果:
1)本发明的热式气体流量传感器的加热电阻的热量与衬底彻底隔离,最大程度降低了加热电阻热损耗,提高了气体流量的检测灵敏度和响应时间;
2)本发明的热式气体流量传感器采用单硅片单面体硅微机械工艺制作,结构尺寸小,成本低、工艺简单,适于大批量生产要求。
附图说明
图1显示为本发明提供的热式气体流量传感器的全局结构示意图。
图2显示为本发明提供的热式气体流量传感器三维结构剖面示意图。
图3至图9显示为本发明提供的热式气体流量传感器的制备工艺各步骤的结构示意图:
图3显示为本发明的热式气体流量传感器制备过程中提供衬底的结构示意图;
图4显示为本发明的热式气体流量传感器制备过程中沉积第一介质膜材料层的结构图;
图5显示为本发明的热式气体流量传感器制备过程中沉积电阻组件材料层的结构图;
图6显示为本发明的热式气体流量传感器制备过程中图形化形成电阻组件的结构图;
图7显示为本发明的热式气体流量传感器制备过程中沉积第二介质膜材料层的结构图;
图8显示为本发明的热式气体流量传感器制备过程中形成预设深度沟槽的结构示意图;
图9显示为本发明的热式气体流量传感器制备过程中腐蚀释放隔热腔体的结构示意图。
图10显示为本发明的热式气体流量传感器制备过程中的各步骤流程图。
元件标号说明
1 衬底
11 凹槽
2 第一介质膜
21、22、23、24、25 第一介质膜单元
26 槽型结构
27 第一介质膜材料层
28 氧化层
29 氮化硅层
3 电阻组件
31 加热单元
32 热敏单元
33 电阻组件材料层
4 引线焊盘
5 第二介质膜材料层
51 第二介质膜
511 第二介质膜单元
6 沟槽
S1~S5 步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
如图1、图2以及图9所示,本发明提供一种热式气体流量传感器,包括:
衬底1,包括一凹槽11,所述凹槽11开设于所述衬底1的上表面;
第一介质膜2,覆盖于所述凹槽11上方,包括若干个第一介质膜单元21、22、23、24、25及槽型结构26,其中,所述第一介质膜单元21、22、23、24、25与所述衬底1相连接,所述槽型结构26贯穿所述第一介质膜2且位于相邻所述第一介质膜单元之间,如位于所述第一介质膜单元21和22之间,以使各所述第一介质膜单元21、22、23、24、25被所述槽型结构26隔开,所述第一介质膜2与所述衬底1共同围成一个隔热腔体;以及
电阻组件3,包括至少一个加热单元31和至少两个热敏单元32,每个所述加热单元31与每个所述热敏单元32分别位于不同的所述第一介质膜单元上,如所述第一介质膜单元21、22、23,且所述热敏单元32位于所述加热单元31的两侧。
具体的,各所述第一介质膜单元21、22、23、24、25被所述槽型结构26隔开是指,各所述介质膜单元之间互相不连接,从而可以防止热量在各介质膜单元之间传递,也就是说,使所述加热单元31与所述热敏单元32之间完全通过空气相隔离,从而减少了本申请的加热电阻和热敏电阻通过硅体进行的热传递,提高了传感器的性能。
另外,本申请的热式气体流量传感器的隔热腔体的设置使所述加热单元31以及所述热敏单元32完全悬空与所述衬底,减少了本申请的硅体散热,在本实施例中,所述加热单元31为加热电阻,所述热敏单元32为热敏电阻。
具体的,所述衬底1的厚度可以为350~500μm,优选为430μm,其轴偏切为0±(0.01~0.5)°,优选为0±0.1°;所述凹槽11的长度和宽度150~300μm和2~6μm,优选为250μm和4μm,所述凹槽11的深度为35~75μm,优选为50μm;所述第一介质膜单元的长度300~500μm,优选为465μm,宽度为200~300μm,优选为250μm,厚度为0.5~2μm,优选为1.3μm。另外,所述槽型结构26的长度为200~300μm,优选为250μm,宽度为2~6μm,优选为4μm。
作为示例,所述衬底1为(111)单晶硅。
具体的,所述衬底1可以为单晶硅、多晶硅、金属衬低、有机衬低、PCB衬低等各种衬低材料,在本实施例中,采用(111)单晶硅衬底,进一步可以为N型(或P型)的(111)晶面的单面(或双面)抛光的硅片,其可以改善传统的硅片(如(100)硅片)的诸多缺陷,如由(100)硅片湿法腐蚀特性可知,介质膜面积与单晶硅背面掩膜开口区域面积比值很小,硅片厚度越大,芯片尺寸越大,成本越高,并且所述加热元件和所述热敏元件所在的梁式结构需要沿(110)晶向偏斜一定的夹角才能实现梁结构湿法腐蚀释放,这就导致了传感器后续安装定位比较困难。
作为示例,所述第一介质膜单元包括两个位于两侧的三角形膜21、25及位于两个所述三角形膜之间的多个方形膜22、23、24。
具体的,在本实施例中,所述第一介质膜2包括五部分,该五部分共同形成一个完整的六边形,即2个位于两侧的三角形膜21、25和位于两个所述三角形膜21、25之间的3个方形膜22、23、24,其中,所述加热单元31位于中间的方形膜23上,所述热敏单元32分别位于中间的方形膜23的两侧各一个。进一步,该六边形结构的六个边与所述衬底1相连接,其下方对应所述凹槽,与衬底共同形成隔热腔体。
需要说明的是,基于本发明的上述结构,所述的位于不同第一介质膜单元上的加热电阻与两侧热敏电阻之间分别通过上、下、左、右空气实现了完全热隔离,使得加热电阻所产生的热量几乎完全锁定在加热电阻自身所在的方形复合介质膜上,最大程度避免了不必要的热耗散,只有当待测气体有一定流速通过时气体才会带走器件表面的热量,从而引起上下游热敏电阻阻值的变化,进而实现了对气体流速的测量。由于所述的气体流量传感器结构上的优势,使得传感器结构热耗散远远优于现有的热式气体流量传感器结构,因此可以获得更高的检测灵敏度和更快的响应时间。
作为示例,多个所述方形膜22、23、24的尺寸均相同,且所述方形膜22、23、24与所述衬底1相连接的边沿<110>晶向,所述方形膜22、23、24垂直于所述衬底1的边沿<211>晶向。
作为示例,两个所述三角形膜21、25的尺寸相同且形状均为等腰三角形,其作为所述等腰三角形的腰的边与所述衬底1相连接,其作为所述等腰三角形的底的边沿<211>晶向。
具体的,本发明的所述第一介质膜单元的设计,使方形膜的长边以及等腰三角形的底边沿着<211>晶向排布,使方形膜的短边,即与所述衬底1相连接的一条边沿<110>晶向排布,从而使得本发明的所述加热单元与所述热敏单元沿<211>晶向排布,从而保证了本发明的器件结构可以适应尺寸的缩小,保证了传感器的性能。另外,本实施例中,优选所述热敏单元于所述加热单元两侧均匀对称分布,即三者平行且间距相等,保证了传感器在使用过程中的热场的均匀分布,提高了传感器的检测性能。
作为示例,所述第一介质膜2包括自下而上依次叠置的氧化层281及氮化硅层291。
作为示例,还包括:第二介质膜51,包括若干个第二介质膜单元511,所述第二介质膜单元511位于所述加热单元31及所述热敏单元32的表面,且与所述第一介质膜单元21、22、23、24、25共同将单个所述加热单元31及单个所述热敏单元32包覆。
具体的,所述第一介质膜包括氧化层281及氮化硅层291,其中,所述氧化层281的材料层包括但不限于二氧化硅。另外,本实施例中,还包括设置在所述加热单元31及所述热敏单元32的外围的第二介质膜,所述第二介质膜可以是二氧化硅保护层,也可以是氮化硅膜、二氧化硅和氮化硅复合膜、有机薄膜等各种具有绝缘特性的薄膜材料,其目的是与第一介质膜单元共同将电阻组件包覆,以保护所有金属电阻结构不受外界影响,以增加器件的长期稳定性和可靠性。
作为示例,还包括若干个引线焊盘4,设置于每个所述加热单元31以及每个所述热敏单元32的两端,且位于所述衬底1上。
作为示例,所述加热单元31以及所述热敏单元32均包括依次叠置的粘附层和金属层,且所述粘附层位于所述第一介质膜单元21、22、23、24、25与所述金属层之间。
具体的,所述粘附层可以为TiW等具有粘附性的材料,所述金属层为Pt、Ni、Au、Al、Cu等各种具有加热特性或者测温特性的金属材料,在此不做具体限制,所述粘附层用于增加所述金属层与所述第一介质膜单元之间的粘附性,在本实施例中为TiW-Pt层。
另外,所述加热单元优选为加热电阻,其总长度为800~1500μm,优选为1106μm,宽度为3~8μm,优选为6μm,厚度为0.1~0.5μm,优选为0.3μm;所述热敏单元优选为热敏电阻,其总长度为1200~1800μm,优选为1538μm,宽度为1~5μm,优选为3μm,厚度为0.1~0.5μm,优选为0.3μm。
作为示例,所述加热单元31的数量为一个,所述热敏单元32的数量为偶数个,且所述热敏单元32对称地分布于所述加热单元31的两侧。
具体的,所述热敏单元32的数量可以为多个,优选为偶数个,对称地分布于所述加热单元31的两侧,优选地,相邻所述热敏单元32之间的间距设置为相等,用于更好地进行气体流量检测。
如图1~10所示,本发明还提供一种热式气体流量传感器的制备方法,其中,所述制备方法为制备上述热式气体流量传感器的方法,包括如下步骤:
如图3及图10中的S1所示,进行步骤1),提供一衬底1;
作为示例,所述衬底1为(111)单晶硅。
具体的,所述衬底1可以为单晶硅、多晶硅、金属衬低、有机衬低、PCB衬低等各种衬低材料,在本实施例中,采用(111)单晶硅衬底,进一步可以为N型(或P型)的(111)晶面的单面(或双面)抛光的硅片,其可以改善传统的硅片(如(100)硅片)的诸多缺陷,如由(100)硅片湿法腐蚀特性可知,介质膜面积与单晶硅背面掩膜开口区域面积比值很小,硅片厚度越大,芯片尺寸越大,成本越高,并且所述加热元件和所述热敏元件所在的梁式结构需要沿(110)晶向偏斜一定的夹角才能实现梁结构湿法腐蚀释放,这就导致了传感器后续安装定位比较困难。
如图4及图10中的S2所示,进行步骤2),于所述衬底1表面沉积第一介质膜材料层27;
具体的,所述第一介质膜包括氧化层及氮化硅层,所述氧化层的材料包括但不限于二氧化硅,所述氮化硅层为低应力氮化硅层,所述氧化层靠近所述凹槽11,用于减少热损耗,提高器件的性能。
如图5、图6及图10中的S3所示,进行步骤3),于所述第一介质膜材料层27表面沉积电阻组件材料层33,并将所述电阻组件材料层33图形化以得到电阻组件,所述电阻组件包括至少一个加热单元31和至少两个热敏单元32,且所述热敏单元32位于所述加热单元31的两侧;
具体的,可以通过离子束(Ionbeam)干法刻蚀形成所述加热元件和所述热敏元件,沉积所述电阻组件材料层33的方法包括但不限于溅射法。
作为示例,步骤3)中,还包括刻蚀形成引线焊盘4的步骤,所述引线焊盘4形成于每个所述加热单元31与每个所述热敏单元32的两端。
具体的,所述引线焊盘4在刻蚀所述电阻组件时一同刻蚀形成,进一步,在形成所述第二介质膜材料层后,还包括去除引线焊盘上的材料层的步骤,如可以采用BOE(Buffered OxideEtch,缓冲氧化物刻蚀液)溶液腐蚀掉引线焊盘区域上方的SiO2钝化层。
作为示例,如图7所示,步骤3)之后,还包括于步骤3)所得到的结构表面沉积第二介质膜材料层5的步骤,所述第二介质膜材料层后续形成包括若干个介质膜单元511的第二介质膜51,用于保护所述电阻组件3。
具体的,所述第一介质膜材料层27以及所述第二介质膜材料层5的形成工艺可以包括但不限于氧化、低压化学气相沉积(LPCVD)、等离子增强化学气相沉积(PECVD)、溶胶凝胶工艺、有机材料涂覆固化工艺等。另外,沉积所述第一介质膜材料层包括依次生长氧化层以及低应力Si3N4钝化层的步骤,所述第二介质膜材料层可以是二氧化硅保护层,也可以是氮化硅膜、二氧化硅和氮化硅复合膜、有机薄膜等各种具有绝缘特性的薄膜材料,其目的是与第一介质膜单元共同将电阻组件包覆,以保护所有金属电阻结构不受外界影响,以增加器件的长期稳定性和可靠性。
如图8及图10中的S4所示,进行步骤4),于步骤3)所得到的结构上刻蚀形成沟槽6,所述沟槽6位于相邻所述加热单元之间或相邻所述热敏单元之间或所述加热单元与所述热敏单元之间;
具体的,所述沟槽6用作后续进行衬底腐蚀的窗口,并且也进一步定义了所述衬底1中的所述凹槽11的深度,也即所述隔热腔体的深度,同时,所述沟槽6也作为后续形成所述槽型结构26的沟槽,其具体位置为相邻所述加热元件之间、或者相邻所述热敏元件之间、或者所述加热元件与所述热敏元件之间,也可以是所述热敏元件与所述衬底之间,也可以同时位于以上几种位置,以实际需求而定,其横截面形状优选为为长宽比较大的方条形,其长边与所述热敏元件及所述加热元件同向。
作为示例,步骤4)中,形成所述沟槽的具体步骤包括:
4-1)刻蚀所述沟槽所在区域的第一介质膜材料层27;4-2)沿所述沟槽所在区域继续刻蚀预定深度,以形成所述沟槽6。
具体的,步骤4-1)中的刻蚀可以采用反应离子刻蚀(RIE),其中,步骤4-1)并可以形成位于所述第一介质膜上的所述槽型结构26,步骤4-2)中的刻蚀可以采用深硅反应离子刻蚀(Deep-RIE),当然,也可以采用其他刻蚀工艺,如电感耦合反应离子刻蚀(ICP)、离子束刻蚀(IonBeam)、湿法腐蚀、聚焦离子束刻蚀(FIB)、激光扫描刻蚀等各种刻蚀技术。在其他实施例中,所述具有预设深度的沟槽也可以一次刻蚀形成。这里,所述的“所述沟槽所在区域”是指最终形成所述沟槽时的所述沟槽的位置所对应的第一介质膜材料层以及衬底的区域。
另外,当于步骤3)所得到的结构表面沉积第二介质膜材料层5时,步骤4-1)的刻蚀刻蚀掉第一介质膜材料层的同时还刻蚀掉了第二介质膜材料层。
作为示例,步骤4-2)中,所述刻蚀工艺采用硅深度反应离子刻蚀,且所述预定深度为40~60μm。
具体的,经过步骤4-2)的刻蚀便定义了衬底中的所述凹槽的深度,即所述预定深度,也即所述隔热腔体的深度,在本实施例中,优选为50μm。
如图9及图10中的S5所示,进行步骤5),以所述沟槽6为窗口腐蚀部分所述衬底11形成隔热腔体,以释放第一介质膜2,所述第一介质膜2包括若干个第一介质膜单元21、22、23、24、25以及由所述沟槽形成的槽型结构26,所述第一介质膜单元21、22、23、24、25与所述衬底1相连接,所述槽型结构26贯穿所述第一介质膜2且位于相邻所述第一介质膜单元21、22、23、24、25之间,以使各所述第一介质膜单元被所述槽型结构隔开。
作为示例,步骤1)中所述衬底为(111)单晶硅,步骤5)中所采用的腐蚀溶液为四甲基氢氧化氨溶液。
具体的,在其他实施例中,MEMS体硅腐蚀技术还可以是氢氧化钾(KOH)溶液腐蚀、氟化氙(XeF)等各种硅材料腐蚀技术。
另外,在上述步骤完成后,还包括激光划片,以获取所需的器件结构的步骤。
综上所述,本发明提供一种热式气体流量传感器及其制备方法,包括:衬底,包括一凹槽,所述凹槽开设于所述衬底的上表面;第一介质膜,位于所述凹槽上方,包括若干个第一介质膜单元及槽型结构,其中,所述第一介质膜单元与所述衬底相连接,所述槽型结构贯穿所述第一介质膜且位于相邻所述第一介质膜单元之间,以使各所述第一介质膜单元被所述槽型结构隔开,所述第一介质膜与所述衬底共同围成一个隔热腔体;以及电阻组件,包括至少一个加热单元和至少两个热敏单元,每个所述加热单元与每个所述热敏单元分别位于不同的所述第一介质膜单元上,且所述热敏单元位于所述加热单元的两侧。通过上述技术方案,本发明的热式气体流量传感器的加热电阻的热量与衬底彻底隔离,最大程度降低了加热电阻热损耗,提高了气体流量的检测灵敏度和响应时间;本发明的热式气体流量传感器采用单硅片单面体硅微机械工艺制作,结构尺寸小,成本低、工艺简单,适于大批量生产要求。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (16)

1.一种热式气体流量传感器,其特征在于,包括:
衬底,包括一凹槽,所述凹槽开设于所述衬底的上表面;
第一介质膜,覆盖于所述凹槽上方,包括若干个第一介质膜单元及槽型结构,所述第一介质膜单元与所述衬底相连接,所述槽型结构贯穿所述第一介质膜且位于相邻所述第一介质膜单元之间,以使各所述第一介质膜单元被所述槽型结构隔开,所述第一介质膜与所述衬底共同围成一个隔热腔体;以及
电阻组件,包括至少一个加热单元和至少两个热敏单元,每个所述加热单元与每个所述热敏单元分别位于不同的所述第一介质膜单元上,且所述热敏单元位于所述加热单元的两侧。
2.根据权利要求1所述的热式气体流量传感器,其特征在于,所述衬底为(111)单晶硅。
3.根据权利要求1所述的热式气体流量传感器,其特征在于,所述第一介质膜包括自下而上依次叠置的氧化层、氮化硅层。
4.根据权利要求1所述的热式气体流量传感器,其特征在于,所述第一介质膜单元包括两个位于两侧的三角形膜及位于两个所述三角形膜之间的多个方形膜。
5.根据权利要求4所述的热式气体流量传感器,其特征在于,多个所述方形膜的尺寸均相同,且所述方形膜与所述衬底相连接的边沿<110>晶向,所述方形膜垂直于所述衬底的边沿<211>晶向。
6.根据权利要求4所述的热式气体流量传感器,其特征在于,两个所述三角形膜的尺寸相同且形状均为等腰三角形,其作为所述等腰三角形的腰的边与所述衬底相连接,其作为所述等腰三角形的底的边沿<211>晶向。
7.根据权利要求1所述的热式气体流量传感器,其特征在于,还包括:
第二介质膜,包括若干个第二介质膜单元,所述第二介质膜单元位于所述加热单元及所述热敏单元的表面,且与所述第一介质膜单元共同将单个所述加热单元及单个所述热敏单元包覆。
8.根据权利要求1所述的热式气体流量传感器,其特征在于,还包括若干个引线焊盘,设置于每个所述加热单元以及每个所述热敏单元的两端,且位于所述衬底上。
9.根据权利要求1所述的热式气体流量传感器,其特征在于,所述加热单元以及所述热敏单元均包括依次叠置的粘附层和金属层,且所述粘附层位于所述第一介质膜单元与所述金属层之间。
10.根据权利要求1~9中任一项所述的热式气体流量传感器,其特征在于,所述加热单元的数量为一个,所述热敏单元的数量为偶数个,且所述热敏单元对称地分布于所述加热单元的两侧。
11.一种热式气体流量传感器的制备方法,其特征在于,包括如下步骤:
1)提供一衬底;
2)于所述衬底表面沉积第一介质膜材料层;
3)于所述第一介质膜材料层表面沉积电阻组件材料层,并将所述电阻组件材料层图形化以得到电阻组件,所述电阻组件包括至少一个加热单元和至少两个热敏单元,且所述热敏单元位于所述加热单元的两侧;
4)于步骤3)所得到的结构上刻蚀形成沟槽,所述沟槽位于相邻所述加热单元之间或相邻所述热敏单元之间或所述加热单元与所述热敏单元之间;
5)以所述沟槽为窗口腐蚀部分所述衬底形成隔热腔体,以释放第一介质膜,所述第一介质膜包括若干个第一介质膜单元以及由所述沟槽形成的槽型结构,所述第一介质膜单元与所述衬底相连接,所述槽型结构贯穿所述第一介质膜且位于相邻所述第一介质膜单元之间,以使各所述第一介质膜单元被所述槽型结构隔开。
12.根据权利要求11所述的热式气体流量传感器的制备方法,其特征在于,步骤3)与步骤4)之间,还包括于步骤3)所得到的结构表面沉积第二介质膜材料层的步骤,所述第二介质膜材料层用于保护所述电阻组件。
13.根据权利要求11所述的热式气体流量传感器的制备方法,其特征在于,步骤4)中,形成所述沟槽的具体步骤包括:
4-1)刻蚀所述沟槽所在区域的第一介质膜材料层;
4-2)沿所述沟槽所在区域继续刻蚀预定深度,以形成所述沟槽。
14.根据权利要求13所述的热式气体流量传感器的制备方法,其特征在于,步骤4-2)中,所述刻蚀工艺采用硅深度反应离子刻蚀,且所述预定深度为40~60μm。
15.根据权利要求11所述的热式气体流量传感器的制备方法,其特征在于,步骤3)中,还包括刻蚀形成引线焊盘的步骤,所述引线焊盘形成于每个所述加热单元以及每个所述热敏单元的两端。
16.根据权利要求11~15中任一项所述的热式气体流量传感器的制备方法,其特征在于,步骤1)中所述衬底为(111)单晶硅,步骤5)中所采用的腐蚀溶液为四甲基氢氧化氨溶液。
CN201710548164.1A 2017-07-06 2017-07-06 一种热式气体流量传感器及其制备方法 Active CN107345826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710548164.1A CN107345826B (zh) 2017-07-06 2017-07-06 一种热式气体流量传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710548164.1A CN107345826B (zh) 2017-07-06 2017-07-06 一种热式气体流量传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN107345826A true CN107345826A (zh) 2017-11-14
CN107345826B CN107345826B (zh) 2020-12-18

Family

ID=60257752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710548164.1A Active CN107345826B (zh) 2017-07-06 2017-07-06 一种热式气体流量传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN107345826B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084855A (zh) * 2018-07-23 2018-12-25 北京天创金农科技有限公司 一种气体流量传感器及其制作方法
CN109613085A (zh) * 2018-12-12 2019-04-12 中国电子科技集团公司第四十九研究所 一种基于[111]单晶硅的气体敏感芯片阵列及其制作方法
CN112312600A (zh) * 2019-07-29 2021-02-02 中国科学院上海微系统与信息技术研究所 加热元件、微加热器及其制备方法
CN112484800A (zh) * 2020-11-24 2021-03-12 中国科学院上海微系统与信息技术研究所 热堆式气体质量流量传感器及其制备方法
CN113295224A (zh) * 2021-05-25 2021-08-24 中国科学院上海微系统与信息技术研究所 气液两用热式流量传感器及其制备方法
CN113932865A (zh) * 2021-09-26 2022-01-14 浙江慧勤医疗器械有限公司 一种智能流量测试装置及流量测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501144A (en) * 1982-09-30 1985-02-26 Honeywell Inc. Flow sensor
JPH11148944A (ja) * 1997-11-18 1999-06-02 Yamatake Corp 流速センサ及び流速測定装置
JPH11148945A (ja) * 1997-11-18 1999-06-02 Yamatake Corp 流速センサ及び流速測定装置
CN1501059A (zh) * 2002-11-15 2004-06-02 欧姆龙株式会社 流量传感器及流量计测方法
US20050049805A1 (en) * 2003-08-28 2005-03-03 Ulrich Bonne Methods and systems for temperature compensation of physical property sensors
CN1650175A (zh) * 2002-05-02 2005-08-03 株式会社山武 流速传感器
CN101443635A (zh) * 2006-03-10 2009-05-27 霍尼韦尔国际公司 热质量气体流量传感器及其制造方法
US7908096B2 (en) * 2007-09-28 2011-03-15 Siargo Ltd. Integrated micromachined thermal mass flow sensor and methods of making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501144A (en) * 1982-09-30 1985-02-26 Honeywell Inc. Flow sensor
JPH11148944A (ja) * 1997-11-18 1999-06-02 Yamatake Corp 流速センサ及び流速測定装置
JPH11148945A (ja) * 1997-11-18 1999-06-02 Yamatake Corp 流速センサ及び流速測定装置
CN1650175A (zh) * 2002-05-02 2005-08-03 株式会社山武 流速传感器
CN1501059A (zh) * 2002-11-15 2004-06-02 欧姆龙株式会社 流量传感器及流量计测方法
US20050049805A1 (en) * 2003-08-28 2005-03-03 Ulrich Bonne Methods and systems for temperature compensation of physical property sensors
CN101443635A (zh) * 2006-03-10 2009-05-27 霍尼韦尔国际公司 热质量气体流量传感器及其制造方法
US7908096B2 (en) * 2007-09-28 2011-03-15 Siargo Ltd. Integrated micromachined thermal mass flow sensor and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谷永先 等: "热隔离式MEMS气体流量传感器的设计及标定", 《仪表技术与传感器》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084855A (zh) * 2018-07-23 2018-12-25 北京天创金农科技有限公司 一种气体流量传感器及其制作方法
CN109084855B (zh) * 2018-07-23 2020-11-17 北京天创金农科技有限公司 一种气体流量传感器及其制作方法
CN109613085A (zh) * 2018-12-12 2019-04-12 中国电子科技集团公司第四十九研究所 一种基于[111]单晶硅的气体敏感芯片阵列及其制作方法
CN112312600A (zh) * 2019-07-29 2021-02-02 中国科学院上海微系统与信息技术研究所 加热元件、微加热器及其制备方法
CN112484800A (zh) * 2020-11-24 2021-03-12 中国科学院上海微系统与信息技术研究所 热堆式气体质量流量传感器及其制备方法
CN113295224A (zh) * 2021-05-25 2021-08-24 中国科学院上海微系统与信息技术研究所 气液两用热式流量传感器及其制备方法
CN113932865A (zh) * 2021-09-26 2022-01-14 浙江慧勤医疗器械有限公司 一种智能流量测试装置及流量测试方法
CN113932865B (zh) * 2021-09-26 2023-08-25 浙江慧勤医疗器械有限公司 一种智能流量测试装置及流量测试方法

Also Published As

Publication number Publication date
CN107345826B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN107345826A (zh) 一种热式气体流量传感器及其制备方法
CN104730283B (zh) 一种基于mems技术的三维风速风向传感器及其制备方法
CN105548606B (zh) 基于mems的柔性流速传感器的流速测量方法
US8132455B2 (en) Robust micromachined thermal mass flow sensor with double side passivated polyimide membrane
US20070017285A1 (en) Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
CN101917783A (zh) 具有弧度可调的圆弧形加热膜区的三维微型加热器及方法
CN100439235C (zh) 一种压力传感器硅芯片制作方法
CN101832831A (zh) 一种压阻传感器芯片及其制作方法
CN1851472A (zh) 基于微机械技术的压阻非热式流速流向传感器
CN101344413A (zh) 平膜式气体流量传感器及其制造方法
CN101932146A (zh) 具有圆弧形凹槽加热膜区的三维微型加热器及制作方法
CN105547371A (zh) 基于陶瓷封装的二维热式风速风向传感器及其制作方法
CN107328449B (zh) 一种热电堆式气体流量传感器及其制备方法
CN104406644B (zh) 一种mems热式流量传感器及其制造方法
CN109827654A (zh) 一种空气声质点振速敏感元件及其封装方式
CN102175287A (zh) 一种基于mems技术的流量计芯片的测量部件及其制作方法
CN1323287C (zh) 柔性平板波压差式微流量传感器及其制作方法
CN108011030A (zh) 一种SiC热电堆型高温热流传感器及其制备方法
CN108007580A (zh) 基于SiC热电材料的高温热流传感器及其制备方法
CN102305256B (zh) 一种金属微米/纳米弹簧及其制备方法和应用
CN108318525B (zh) 一种对流量不敏感的微型热导检测器
CN106017587A (zh) 镂空热膜式流量传感器及其制作集成方法
CN206583873U (zh) 薄膜型微热导检测器
CN108027267A (zh) 流量传感器
Viard et al. A robust thermal microstructure for mass flow rate measurement in steady and unsteady flows

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant