CN107331716A - 一种高温石墨烯基底上直接生长Ge量子点的方法 - Google Patents

一种高温石墨烯基底上直接生长Ge量子点的方法 Download PDF

Info

Publication number
CN107331716A
CN107331716A CN201710519733.XA CN201710519733A CN107331716A CN 107331716 A CN107331716 A CN 107331716A CN 201710519733 A CN201710519733 A CN 201710519733A CN 107331716 A CN107331716 A CN 107331716A
Authority
CN
China
Prior art keywords
growth
substrate
quantum dots
pyrographite
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710519733.XA
Other languages
English (en)
Inventor
杨宇
童领
龙佳
邱锋
王荣飞
张瑾
杨杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201710519733.XA priority Critical patent/CN107331716A/zh
Publication of CN107331716A publication Critical patent/CN107331716A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明属于半导体纳米复合材料制备技术领域,特别是涉及一种高温石墨烯基底上直接生长Ge量子点的方法。本发明采用溅射沉积技术,在高温条件下的石墨烯基的衬底上,直接溅射生长Ge量子点,溅射生长时间为100 s~500 s。本发明通过工艺简单的溅射沉积技术在高温石墨烯基的衬底上直接生长出了结晶性好、高密度、尺寸均匀的Ge量子点,有效地解决了室温下制备的Ge点不结晶、低密度、尺寸大、均匀性差的不足,为高性能红外光电探测器等半导体光电器件的研发提供了有效途径。

Description

一种高温石墨烯基底上直接生长Ge量子点的方法
技术领域
本发明属于半导体纳米复合材料制备技术领域,特别是涉及一种高温石墨烯基底上直接生长Ge量子点的方法。
背景技术
随着科技的不断发展,半导体光电器件逐渐趋于小型化,器件的实体尺寸已经缩小到十几个纳米的量级,单位面积上的芯片集成度提高,以纳米材料为核心元件的器件性能有了大幅提高。块体Ge材料是间接带隙半导体,光吸收性能不好。但零维Ge量子点,当尺寸接近或小于激子波尔半径时,由间接带隙光跃迁表现出准直接带隙的光吸收特性,电子跃迁的速率获得极大地提高,进而获得较大的吸收系数,比块体Ge高出几个数量级。并且Ge量子点的带隙随直径的减小而增大,光响应可实现从可见到近红外区域的调制。因而,Ge量子点作为近红外高灵敏探测和光纤通信领域上的重要光电材料而被广泛研究。石墨烯是由碳六元环组成的二维周期性蜂窝状点阵结构,其特殊的能带结构造就了石墨烯非同寻常的电学性质,其理论载流子迁移率甚至高达200000 cm2V-1s-1。除此之外,石墨烯还具有极好的光学透明性、高热导率、高杨氏模量、大比表面积等优异的光电特性,在光电探测、光电子学、新能源等领域展现出高灵敏度、响应速度快、高比容量、柔性衬底等的优势。
量子点与石墨烯集成的复合材料,不仅结合量子点尺寸调制的高效光学吸收和石墨烯的高迁移率特性,而且高温下生长能提高Ge量子点的结晶性及减少石墨烯的缺陷,这会很大程度提高其物理特性,如光吸收、载流子浓度等,可开发出高量子效率、高增益、高灵敏性的光电器件,而石墨烯作为基底的锗量子点/石墨烯复合材料,因具有协同效应和光选择效应,可有效提高器件的光电性能,突破硅基量子点材料的瓶颈。此外,室温条件下溅射生长的锗点/石墨烯复合材料中,石墨烯的缺陷较多,且锗的结晶性较差,从而导致锗点的尺寸较大、均匀性较差,并阻碍了器件光电性能的提高。
经文献检索,未见与本发明相同的公开报道。
发明内容
本发明要解决的技术问题是:为解决背景技术中提到的现有技术问题,提供一种在高温条件下石墨烯基底上直接生长的尺寸均匀、结晶性较好、密度较高的Ge量子点的方法。
本发明通过下列技术方案实现:
一种高温石墨烯基底上直接生长Ge量子点的方法,其结构自下而上依次为:衬底层、石墨烯层、Ge量子点层。所述Ge量子点层采用溅射沉积技术生长,生长温度为100 ℃~590 ℃,生长时间为100 s~500 s,Ge量子点层的溅射生长过程中,采用停顿生长的工艺。
优选的,所述的衬底层为聚对苯二甲酸乙二醇酯(PET)柔性衬底、氧化铟锡(ITO)衬底、氟掺杂的氧化锡(FTO)衬底、铝掺杂的氧化锌(AZO)衬底、SiC衬底、SiO2衬底的任一种。
优选的,所述的衬底层的厚度为300 μm~500 μm,尺寸为1 cm×1 cm ~3 cm×3 cm的正方形或直径为1 cm ~3 cm的圆形。
优选的,所述的衬底层为聚对苯二甲酸乙二醇酯柔性衬底时,Ge量子点层的生长温度为100℃~200℃。
优选的,所述的石墨烯层的层数为1~10层,所述石墨烯层的尺寸为1 cm×1 cm~3cm×3 cm的正方形或直径为1 cm ~3 cm的圆形。
优选的,所述的停顿生长工艺为:在溅射生长时间为50 s~250 s时,停止溅射10 s~20 min,再继续溅射50 s~250 s。
本发明与现有技术相比具有下列优点和效果:本发明所述的一种高温石墨烯基底上直接生长Ge量子点的方法,采用上述方案,即在高生长温度的条件下,通过溅射沉积技术在石墨烯基的衬底上直接生长出了结晶性好、高密度、尺寸均匀的Ge量子点,有效地解决了低温和大溅射速率下制备的Ge点不结晶、低密度、尺寸均匀性差的不足,是制备石墨烯基Ge量子点的一种简单而高效的方法,为高性能红外光电探测器等半导体光电器件的研发提供了有效途径。
附图说明
图 1 是本发明的复合材料的结构示意图。
图 2 是本发明实施例1所得样品的二维AFM表征图。
图 3 是本发明实施例1所得样品的三维AFM表征图。
图 4 是本发明中所用单层石墨烯/SiO2衬底的Raman图谱。
图 5 是本发明实施例1所得样品的 Raman图谱。
图中标号为:1. 衬底层,2. 石墨烯层,3. Ge量子点层。
具体实施方式
下面结合附图和实施例进一步阐明本发明的内容,但这些实施并不限制本发明的保护范围。
实施例1
本实施例所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其结构自下而上依次为:衬底层1、石墨烯层2、Ge量子点层3。所述的衬底层1为SiO2衬底,SiO2的厚度为400 μm,尺寸为2 cm×2 cm的正方形,所述石墨烯层2的层数为1层,尺寸为2 cm×2 cm的正方形,所述Ge量子点层3采用离子束溅射仪溅射生长,生长温度为500 ℃,溅射生长总时间为300 s,溅射速率为0.1 Å/s。Ge量子点层3的溅射生长过程中,采用停顿生长的工艺。具体包括以下步骤。
(1)衬底的预处理:将石墨烯/SiO2衬底用N2吹干净。
(2)Ge量子点层3的溅射生长:将步骤(1)预处理的石墨烯/SiO2衬底置于超高真空离子束溅射仪的溅射室内,然后将溅射室内抽真空至本底真空度为3.0×10-4 Pa,加热升温至生长温度500 ℃,再保温10 min,然后通入Ar气,待环境压强达到所需溅射气压为2.0×10-2 Pa 后,开始溅射,束流电压为1 KV,束流为7 mA,加速电压为100 V,放点电压为70 V,Ge量子点总的溅射生长时间为300 s,溅射生长时间到150 s时,停止溅射10 s,再继续溅射生长150 s。溅射生长完成后,原位保温10 min。
本实施例1的复合材料的结构示意图如图1所示,其结构自下而上依次为:衬底层1、石墨烯层2、Ge量子点层3。图 2 和图3分别为本发明实施例1所得样品的二维和三维AFM表征图,图中Ge量子点的表面粗糙度为0.6 nm,平均底径为50 nm,平均高度为2.0 nm,密度高达4.55´1010 cm-2。图4为本发明中所用石墨烯/SiO2衬底的Raman图谱,图中可以明显看出石墨烯的D峰、G峰和2D峰的峰位。图5为本实施例1所得样品的 Raman图谱,从图中可以看出D峰与G峰强度的比值相比于石墨烯/SiO2衬底的Raman图谱发生了变化,表明Ge的掺杂影响了石墨烯的能带结构,295 cm-1峰位处出现了Ge的结晶峰,表明Ge的结晶性良好。
实施例2
本实施例所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其结构自下而上依次为:衬底层1、石墨烯层2、Ge量子点层3。所述的衬底层1为氧化铟锡(ITO)衬底,氧化铟锡衬底的厚度为500 μm,尺寸为2 cm×2 cm的正方形,所述石墨烯层2的层数为2层,尺寸为2cm×2 cm的正方形,所述Ge量子点层3采用离子束溅射仪溅射生长,生长温度为400 ℃,溅射生长总时间为200 s,溅射速率为0.15 Å/s。Ge量子点层3的溅射生长过程中,采用停顿生长的工艺。具体包括以下步骤。
(1)衬底的预处理:将石墨烯/氧化铟锡衬底用N2吹干净。
(2)Ge量子点层3的溅射生长:将步骤(1)预处理的石墨烯/氧化铟锡衬底置于超高真空离子束溅射仪的溅射室内,然后将溅射室内抽真空至本底真空度为3.0×10-4 Pa,加热升温至生长温度400 ℃,再保温10 min,然后通入Ar气,待环境压强达到所需溅射气压为2.0×10-2 Pa 后,开始溅射,束流电压为1 KV,束流为8 mA,加速电压为90 V,放点电压为80V,Ge量子点总的溅射生长时间为200 s,溅射生长时间到100 s时,停止溅射30s,再继续溅射生长100 s。溅射生长完成后,原位保温5 min。
实施例3
本实施例所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其结构自下而上依次为:衬底层1、石墨烯层2、Ge量子点层3。所述的衬底层1为聚对苯二甲酸乙二醇酯(PET)柔性衬底,聚对苯二甲酸乙二醇酯柔性衬底的厚度为300 μm,尺寸是直径为2 cm的圆形,所述石墨烯层2的层数为1层,尺寸是直径为2 cm的圆形,所述Ge量子点层3采用离子束溅射仪溅射生长,生长温度为180 ℃,溅射生长总时间为300 s,溅射速率为0.15 Å/s。Ge量子点层3的溅射生长过程中,采用停顿生长的工艺。具体包括以下步骤。
(1)衬底的预处理:将石墨烯/聚对苯二甲酸乙二醇酯衬底用N2吹干净。
(2)Ge量子点层3的溅射生长:将步骤(1)预处理的石墨烯/聚对苯二甲酸乙二醇酯衬底置于超高真空离子束溅射仪的溅射室内,然后将溅射室内抽真空至本底真空度为3.0×10-5 Pa,加热升温至生长温度180 ℃,再保温5 min,然后通入Ar气,待环境压强达到所需溅射气压为2.0×10-2 Pa 后,开始溅射,束流电压为0.8 KV,束流为9 mA,加速电压为100V,放点电压为80 V,Ge量子点总的溅射生长时间为300 s,溅射生长时间到150 s时,停止溅射1 min,再继续溅射生长150 s。溅射生长完成后,原位保温5 min。
本发明采用的技术方案具有以下优势:(1)在100 ℃~590 ℃高温条件下生长Ge量子点,可以减少内部缺陷,提高量子点的结晶性,从而提高其电导率及光电性能,而室温下制备的量子点为非晶态,因此光电性能很难进一步提高;(2)生长Ge量子点的过程中,采用停顿生长的工艺,停顿生长可以增加原子扩散迁移的时间,减少晶格畸变导致的应变,增加晶格的完整性,提高量子点的均匀性;(3)采用多层的石墨烯衬底,可以增加复合材料的光学吸收,从而增加光生载流子的数量,提高复合材料的光电性能;(4)石墨烯基锗量子点具有相比于硅基的锗量子点截然不同的生长机理及生长工艺,硅基底生长的质量较好的锗量子点,一般需要预先在硅基底上生长一层非晶的硅缓冲层,以形成锗硅合金,利于应力的释放,而石墨烯基锗量子点可直接溅射生长于石墨烯上,通过碳-硅原子之间的键合作用及石墨烯表面的缺陷,形成锗的形核中心,并长大成锗量子点。此外,采用聚对苯二甲酸乙二醇酯(PET)柔性衬底、氧化铟锡(ITO)衬底、氟掺杂的氧化锡(FTO)衬底等作为最底部的衬底,相比于Si衬底,因增加了导电镀层,提高了复合材料的导电性,有助于光电性能的提高。

Claims (6)

1.一种高温石墨烯基底上直接生长Ge量子点的方法,其结构自下而上依次为:衬底层(1)、石墨烯层(2)和Ge量子点层(3),其特征在于:所述Ge量子点层(3)采用溅射沉积技术生长,生长温度为100 ℃~590 ℃,生长时间为100 s~500 s,Ge量子点层(3)的溅射生长过程中,采用停顿生长的工艺。
2.根据权利要求1所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其特征在于:所述的衬底层(1)为聚对苯二甲酸乙二醇酯柔性衬底、氧化铟锡衬底、氟掺杂的氧化锡衬底、铝掺杂的氧化锌衬底、SiC衬底、SiO2衬底的任一种。
3.根据权利要求2所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其特征在于:所述的衬底层(1)的的厚度为300 μm~500 μm,尺寸为1 cm×1 cm ~3 cm×3 cm的正方形或直径为1 cm ~3 cm的圆形。
4.根据权利要求2所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其特征在于:所述的衬底层(1)为聚对苯二甲酸乙二醇酯柔性衬底时,Ge量子点层(3)的生长温度为100℃~200℃。
5.根据权利要求1所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其特征在于:所述石墨烯层(2)的层数为1~10层,所述石墨烯层(2)的尺寸为1 cm×1 cm~3 cm×3 cm的正方形或直径为1 cm ~3 cm的圆形。
6.根据权利要求1所述的一种高温石墨烯基底上直接生长Ge量子点的方法,其特征在于:所述的停顿生长工艺为:在溅射生长时间为50 s~250 s时,停止溅射10 s~20 min,再继续溅射50 s~250 s。
CN201710519733.XA 2017-06-30 2017-06-30 一种高温石墨烯基底上直接生长Ge量子点的方法 Pending CN107331716A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710519733.XA CN107331716A (zh) 2017-06-30 2017-06-30 一种高温石墨烯基底上直接生长Ge量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710519733.XA CN107331716A (zh) 2017-06-30 2017-06-30 一种高温石墨烯基底上直接生长Ge量子点的方法

Publications (1)

Publication Number Publication Date
CN107331716A true CN107331716A (zh) 2017-11-07

Family

ID=60198368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710519733.XA Pending CN107331716A (zh) 2017-06-30 2017-06-30 一种高温石墨烯基底上直接生长Ge量子点的方法

Country Status (1)

Country Link
CN (1) CN107331716A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055895A (zh) * 2018-07-20 2018-12-21 中国科学院上海微系统与信息技术研究所 在绝缘衬底上直接制备石墨烯量子点阵列的方法
CN109142467A (zh) * 2018-07-23 2019-01-04 杭州电子科技大学 一种高敏感度no2气体传感器及其制备方法
CN109473507A (zh) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 具有石墨烯的器件及其制备方法
CN111766001A (zh) * 2019-04-01 2020-10-13 天津大学 尺度可控的微皱纹金薄膜柔性裂纹传感器
CN111766000A (zh) * 2019-04-01 2020-10-13 天津大学 基于微尺度皱纹的金薄膜柔性裂纹传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182349A (ja) * 2006-01-06 2007-07-19 National Applied Research Laboratories ナノチューブと量子ドットの製造方法
CN101748374A (zh) * 2009-12-25 2010-06-23 云南大学 用离子束溅射技术生长高密度细小自组织Ge量子点的方法
CN104377114A (zh) * 2013-08-13 2015-02-25 国家纳米科学中心 一种锗量子点的生长方法、锗量子点复合材料及其应用
CN105088342A (zh) * 2015-09-16 2015-11-25 云南大学 一种Ge量子点的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182349A (ja) * 2006-01-06 2007-07-19 National Applied Research Laboratories ナノチューブと量子ドットの製造方法
CN101748374A (zh) * 2009-12-25 2010-06-23 云南大学 用离子束溅射技术生长高密度细小自组织Ge量子点的方法
CN104377114A (zh) * 2013-08-13 2015-02-25 国家纳米科学中心 一种锗量子点的生长方法、锗量子点复合材料及其应用
CN105088342A (zh) * 2015-09-16 2015-11-25 云南大学 一种Ge量子点的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张璋: "SiO2/Si衬底上Ge量子点/石墨烯复合结构的制备及其光电响应性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055895A (zh) * 2018-07-20 2018-12-21 中国科学院上海微系统与信息技术研究所 在绝缘衬底上直接制备石墨烯量子点阵列的方法
CN109055895B (zh) * 2018-07-20 2020-09-15 中国科学院上海微系统与信息技术研究所 在绝缘衬底上直接制备石墨烯量子点阵列的方法
CN109142467A (zh) * 2018-07-23 2019-01-04 杭州电子科技大学 一种高敏感度no2气体传感器及其制备方法
CN109473507A (zh) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 具有石墨烯的器件及其制备方法
CN111766001A (zh) * 2019-04-01 2020-10-13 天津大学 尺度可控的微皱纹金薄膜柔性裂纹传感器
CN111766000A (zh) * 2019-04-01 2020-10-13 天津大学 基于微尺度皱纹的金薄膜柔性裂纹传感器

Similar Documents

Publication Publication Date Title
CN107331716A (zh) 一种高温石墨烯基底上直接生长Ge量子点的方法
Wang et al. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer
Wang et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays
Ben et al. 2D III‐Nitride Materials: Properties, Growth, and Applications
Koteeswara Reddy et al. Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN103579419B (zh) 一种石墨烯/MoS2/Si 异质结薄膜太阳能电池及其制备方法
CN104638049B (zh) 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法
CN105023969A (zh) 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
CN106119960B (zh) 正交相二维层状SiP单晶及薄膜的制备方法及其应用
Ismail et al. Effect of rapid thermal annealing on the characteristics of amorphous carbon/n-type crystalline silicon heterojunction solar cells
CN106784115B (zh) 费米能级可调的pin结构石墨烯光探测器及其制备方法
CN113097319B (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
Habubi et al. Enhancing the electrical properties of porous silicon photodetector by depositing MWCNTs
Liu et al. Ge/Si quantum dots thin film solar cells
CN103903973B (zh) 利用旋涂液态金属种子层在石墨烯上生长高k介质的方法
Xu et al. Multilayer graphene with chemical modification as transparent conducting electrodes in organic light-emitting diode
CN107217242A (zh) 一种电子器件介电衬底的表面修饰方法
Tang et al. Structural, electrical and optical properties of AlSb thin films deposited by pulsed laser deposition
CN107123468A (zh) 一种含有功能调节层的透明导电薄膜
Yamada et al. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN101552297B (zh) 太阳能电池
CN104979038B (zh) 拓扑绝缘体/石墨烯复合柔性透明导电薄膜及其制备方法与应用
Le Borgne et al. Figure of merit based maximization of the quantum efficiency of (single-wall-carbon-nanotubes/n-type silicon) hybrid photovoltaic devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171107