CN107326464B - 聚脯氨酸螺旋纳米纤维的制备方法 - Google Patents

聚脯氨酸螺旋纳米纤维的制备方法 Download PDF

Info

Publication number
CN107326464B
CN107326464B CN201611175520.1A CN201611175520A CN107326464B CN 107326464 B CN107326464 B CN 107326464B CN 201611175520 A CN201611175520 A CN 201611175520A CN 107326464 B CN107326464 B CN 107326464B
Authority
CN
China
Prior art keywords
polyproline
spiral
preparation
solution
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611175520.1A
Other languages
English (en)
Other versions
CN107326464A (zh
Inventor
张阿方
邵烽
张修强
赵鑫
刘坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201611175520.1A priority Critical patent/CN107326464B/zh
Publication of CN107326464A publication Critical patent/CN107326464A/zh
Application granted granted Critical
Publication of CN107326464B publication Critical patent/CN107326464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/82Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyester amides or polyether amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种聚脯氨酸螺旋纳米纤维的制备方法。该聚脯氨酸螺旋纳米纤维是一种侧链经过烷氧醚基团修饰而成的聚脯氨酸,其通过氯仿溶剂蒸汽退火后制得;本发明成功的在非溶液环境下的干燥表面制得了聚脯氨酸螺旋高分子纳米纤维,因为螺旋结构在生物领域具有重要的作用,因此在生物材料上有良好的应用价值,且此材料具有温度响应功能。

Description

聚脯氨酸螺旋纳米纤维的制备方法
技术领域
本发明涉及一种聚脯氨酸螺旋纳米纤维的制备方法,特别通过一种通过溶剂蒸汽退火制备聚脯氨酸螺旋纳米纤维的方法。
背景技术
螺旋结构是一种在生命体广泛存在的结构,对人类的生命活动具有极大的意义。螺旋结构存在各种各样的物质之中,从复杂的DNA、蛋白质到结构简单的聚丙烯酸甲酯。螺旋结构的存在赋予了DNA、蛋白等物质各种奇妙的物理与化学性质。在市场应用上,许多的温敏传感器都依靠螺旋结构来实现热响应的功能。然而,不论是在自然界中还是人工材料中,螺旋结构多存在于溶液之中,在干燥的物体表面上难以存在。为了在人造材料中更加广泛的应用螺旋结构,在非溶液的环境下得到螺旋纤维是开发应用这种材料的重要手段。
国际上有很多人对在界面制备螺旋纳米纤维展开了研究。其中,Tang等人以聚苯乙炔为原料,在云母表面制得了螺旋纳米纤维(Tang,B.Z.;Li,B.S.;Macromolecules2003,36,77-85)。Yashima等人,以聚苯乙炔为原料,通过溶剂蒸汽退火的方法从而在高定向热裂解石墨上形成螺旋纳米纤维(Yashima,E;Ohsawa,S.;Sakurai,S;Nagai,K;J.Am.Chem.Soc.2010.133:108-114)。Yashima等人运用LB膜的方法,以聚甲基丙烯酸甲酯为原料在云母表面制得了螺旋纳米纤维(Yashima,E;Kumaki,J;Angew.Chem.Int.Ed.2007,46,5348–5351)。这些研究充分证明了螺旋结构是可以独立于溶液之外,稳定存在于固体表面的。对于螺旋纤维制备而言,目前主要有直接制备法,溶剂蒸汽退火法和LB膜法。其中直接制备法制得的螺旋纤维结构受溶剂蒸发、分子结构的影响,难以获得可靠的结果;LB膜法难以应用在结构复杂的分子上;溶剂蒸汽退火法对分子结构的要求低,可靠性好受到人们的广泛关注。
近年来我们课题组制备了一种侧链带有烷氧醚基团的聚脯氨酸(Zhang,A.;Zhang,X.Q.Macromol.Rapid Commun.2013,34,1701-1707.),这种聚脯氨酸在溶液中呈现螺旋状态并具有良好的生物相容性。目前,国际上制备出的纳米螺旋纤维都不具有温度响应功能,而我们课题组制备出的聚脯氨酸是一种具有温度响应性质的功能材料。因此,将这种聚脯氨酸制备成具有温度响应功能的螺旋纳米纤维具有十分重大的意义。
发明内容
本发明的目的在于解决现有技术空缺,提供一种基于溶剂蒸汽退火的方法,以聚脯氨酸为原料,通过溶剂蒸汽与固态的聚脯氨酸作用从而在干燥表面制备聚脯氨酸螺旋高分子纳米纤维的方法。
为了实现以上发明目的,本发明采用如下技术方案:
一种聚脯氨酸螺旋纳米纤维的制备方法,其特征在于该方法的具体步骤为:
a.将侧链带有一代烷氧醚基团的聚脯氨酸溶解于氯仿溶液中配置成0.02g/L-0.002g/L溶液;
b.在惰性气氛保护下,将步骤a所得的溶液滴于干燥表面,所述的干燥表面为:为洁净的云母、高定向热裂解石墨或单晶硅片,干燥30分钟后,放入密闭的容器内;往该密闭容器内每立方米通入1至3mL氯仿,时间为60至80小时进行溶剂蒸汽退火。
上述的侧链带有一代烷氧醚基团的聚脯氨酸的分子式为:
Figure GDA0001420088740000021
Z为一代烷氧醚基团,n的范围为25至40;
上述的一代烷氧醚基团为:
a.
Figure GDA0001420088740000022
b.
Figure GDA0001420088740000031
c.
Figure GDA0001420088740000032
上述的步骤a配置的溶液需静置30分钟至6小时。
该聚脯氨酸螺旋纳米纤维在纳米尺度上具有螺旋结构。与其他螺旋结构的材料相比,本材料是一种不需要溶剂存在即可保持螺旋结构的纳米纤维。因此,在各种生物医用材料领域有良好的应用价值。
本发明具有如下突出特点和显著优点:
1.本发明可以在干燥表面制得具有螺旋结构的聚脯氨酸纳米纤维。
2.本发明的制备方法简单。
附图说明
图1为聚脯氨酸螺旋高分子纳米纤维的原子力显微镜图。
具体实施方式
本发明的优选实施例详述如下:
本发明涉及聚脯氨酸螺旋纳米纤维的制备。
1.在10mL的样品瓶中,将一定量的聚合物溶解在氯仿中配置成浓度为0.02g/L~0.002g/L的氯仿溶液,静置30分钟后取8μL的溶液滴加在3×3mm的云母上。
2.将云母放置于氮气氛围下30分钟后放入400mL容器内并加入0.8mL的氯仿,密闭容器并保持72小时。聚脯氨酸螺旋纳米纤维的原子力显微镜图参见附图1。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造目的做出多种变化,凡依据本发明技术方案的精神实质和原理做的改变、修饰、替代、组合、简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明智能型树枝化聚合物的制备方法和应用的技术原理和发明构思,都属于本发明的保护范围。

Claims (2)

1.一种聚脯氨酸螺旋纳米纤维的制备方法,其特征在于,该方法的具体步骤为:
a.将侧链带有一代烷氧醚基团的聚脯氨酸溶解于氯仿溶液中配置成0.02g/L-0.002g/L溶液;所述侧链带有一代烷氧醚基团的聚脯氨酸的分子式为:
Figure FDA0002524974990000011
Z为一代烷氧醚基团,n的范围为25至40;
所述一代烷氧醚基团为下列之一:
a.
Figure FDA0002524974990000012
b.
Figure FDA0002524974990000021
c.
Figure FDA0002524974990000022
b.在惰性气氛保护下,将步骤a所得的溶液滴于干燥表面,所述的干燥表面为:为洁净的云母、高定向热裂解石墨或单晶硅片,干燥30分钟后,放入密闭的容器内;往该密闭容器内每立方米通入1至3mL氯仿,时间为60至80小时进行溶剂蒸汽退火。
2.据权利要求1所述的聚脯氨酸螺旋纳米纤维的制备方法,其特征在于所述的步骤a配置的溶液需静置30分钟至6小时。
CN201611175520.1A 2016-12-19 2016-12-19 聚脯氨酸螺旋纳米纤维的制备方法 Active CN107326464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611175520.1A CN107326464B (zh) 2016-12-19 2016-12-19 聚脯氨酸螺旋纳米纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611175520.1A CN107326464B (zh) 2016-12-19 2016-12-19 聚脯氨酸螺旋纳米纤维的制备方法

Publications (2)

Publication Number Publication Date
CN107326464A CN107326464A (zh) 2017-11-07
CN107326464B true CN107326464B (zh) 2020-12-15

Family

ID=60193475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611175520.1A Active CN107326464B (zh) 2016-12-19 2016-12-19 聚脯氨酸螺旋纳米纤维的制备方法

Country Status (1)

Country Link
CN (1) CN107326464B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593358A (zh) * 2012-03-05 2012-07-18 江西师范大学 具有螺旋结构的寡聚噻吩纳米纤维的制备方法
CN103642034A (zh) * 2013-10-28 2014-03-19 上海大学 温度敏感型树枝化多肽聚合物及其制备方法
CN103980649A (zh) * 2013-02-08 2014-08-13 罗门哈斯电子材料有限公司 嵌段共聚物组合物及其相关方法
CN104157834A (zh) * 2014-08-26 2014-11-19 四川理工学院 螺旋钠米碳纤维作为锂离子电池负极材料的应用及电池负极制备方法
JP2015034197A (ja) * 2013-08-07 2015-02-19 日本合成化学工業株式会社 乳化重合用分散剤およびそれを用いて得られる酢酸ビニル系樹脂エマルジョン、ならびに接着剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593358A (zh) * 2012-03-05 2012-07-18 江西师范大学 具有螺旋结构的寡聚噻吩纳米纤维的制备方法
CN103980649A (zh) * 2013-02-08 2014-08-13 罗门哈斯电子材料有限公司 嵌段共聚物组合物及其相关方法
JP2015034197A (ja) * 2013-08-07 2015-02-19 日本合成化学工業株式会社 乳化重合用分散剤およびそれを用いて得られる酢酸ビニル系樹脂エマルジョン、ならびに接着剤
CN103642034A (zh) * 2013-10-28 2014-03-19 上海大学 温度敏感型树枝化多肽聚合物及其制备方法
CN104157834A (zh) * 2014-08-26 2014-11-19 四川理工学院 螺旋钠米碳纤维作为锂离子电池负极材料的应用及电池负极制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"树枝化多肽聚合物及双亲树形大分子的合成与表征";张修强;《中国博士学术论文全文数据库 工程科技Ⅰ辑》;20150228;B014-15 *

Also Published As

Publication number Publication date
CN107326464A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
Esfahani et al. Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications
Xie et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification
Zhao et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators
Guo et al. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties
Chen et al. Environmentally friendly gelatin/β-cyclodextrin composite fiber adsorbents for the efficient removal of dyes from wastewater
Thiên-Nga et al. Mechanical purification of single-walled carbon nanotube bundles from catalytic particles
Li et al. Symbiotic aerogel fibers made via in-situ gelation of aramid nanofibers with polyamidoxime for uranium extraction
Joshi et al. Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications—Possibilities and limits
Wicklein et al. Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials
Lalegül‐Ülker et al. Magnetic silk fibroin composite nanofibers for biomedical applications: Fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties
Fang et al. High-throughput preparation of silk fibroin nanofibers by modified bubble-electrospinning
Liang et al. Enhancement of the oil absorption capacity of poly (lactic acid) nano porous fibrous membranes derived via a facile electrospinning method
Zhang et al. Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane
Dodero et al. Investigation of the mechanical and dynamic-mechanical properties of electrospun polyvinylpyrrolidone membranes: A design of experiment approach
Yang et al. Carbonized silk nanofibers in biodegradable, flexible temperature sensors for extracellular environments
Baron et al. Hemostatic cryogels based on oxidized pullulan/dopamine with potential use as wound dressings
Cho et al. Enabling selectively tunable mechanical properties of graphene oxide/silk fibroin/cellulose nanocrystal bionanofilms
Zhang et al. Influence of post-treatment with 75%(v/v) ethanol vapor on the properties of SF/P (LLA-CL) nanofibrous scaffolds
CN107326464B (zh) 聚脯氨酸螺旋纳米纤维的制备方法
Tohamy et al. Temperature-and pH-responsive super-absorbent hydrogel based on grafted cellulose and capable of heavy metal removal from aqueous solutions
Tang et al. Tailoring commercial cellulose membranes into janus conductive electronic skin via diffusion-controlled polymerization
Kubíčková et al. Nonwoven textiles from hyaluronan for wound healing applications
Wang et al. Development of high-sensitivity piezoresistive sensors based on highly breathable spacer fabric with TPU/PPy/PDA coating
Yao et al. Study on the difference of superhydrophobic characteristics of different wood furniture substrates
Ji et al. Silk sericin enrichment through electrodeposition and carbonous materials for the removal of methylene blue from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant