CN107309273B - 一种低成本、柔性化热成形超高强钢结构件的调控方法 - Google Patents

一种低成本、柔性化热成形超高强钢结构件的调控方法 Download PDF

Info

Publication number
CN107309273B
CN107309273B CN201710627412.1A CN201710627412A CN107309273B CN 107309273 B CN107309273 B CN 107309273B CN 201710627412 A CN201710627412 A CN 201710627412A CN 107309273 B CN107309273 B CN 107309273B
Authority
CN
China
Prior art keywords
structural member
hot forming
high strength
flexibility
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710627412.1A
Other languages
English (en)
Other versions
CN107309273A (zh
Inventor
姚圣杰
冯磊
赵洪运
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201710627412.1A priority Critical patent/CN107309273B/zh
Publication of CN107309273A publication Critical patent/CN107309273A/zh
Application granted granted Critical
Publication of CN107309273B publication Critical patent/CN107309273B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本发明涉及一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法利用低成本原材料,通过简单的预轧制形变处理,获得合适的形变组织、织构及内能状态,配合后续的加热路径调控以及加热后热成形、冷却路径的调控,实现热冲压成形结构件的多尺度和多相化调控,从而实现单一成分坯料的多种性能调节,具有柔性化调控的优势,调控高温微观组织,实现其超细化及(或)多样化制备。

Description

一种低成本、柔性化热成形超高强钢结构件的调控方法
技术领域
本发明涉及一种低成本、柔性化热成形超高强钢结构件的调控方法,属于钢铁冶炼领域。
背景技术
汽车轻量化以及安全性的双重要求,促使高强以及超高强钢在白车身上的应用比例越来越大,甚至连曾经以轻量化著称的Audi A8等豪华型全铝汽车,在2017年也放弃之前的策略,回归采用钢铁材料,极大程度的采用超高强热成形钢,热成形钢材加热前抗拉强度就已达到500-800MPa,加热成形后则提高至1300-1600 MPa,为普通钢材的3-4倍。因此由热成型钢板制成的车身极大的提高了车身的抗碰撞能力和整体安全性,在碰撞中对车内人员会起到很好的保护作用。据统计新款Audi A8整车的钢材用量将达到40%,其中17%的车身构件将由热成形超高钢来替代。其主要原因在于该类超高强钢的强度重量比明显优于“最先进”且昂贵的铝合金材料,另一方面从所使用材料的全寿命周期成本评价,钢铁材料当之无愧为一种绿色环保材料,而实际上铝合金虽然具有显著的轻量化效果,但是据考证生产铝释放出的温室气体超过钢的四到五倍。因此,盲目的选择替代材料替代先进高强钢,势必会造成巨大的、不可逆的环境问题。
现在应用最普遍的热成形钢,由于热冲压成形工艺条件的原因,生产的超高强钢构件,普遍的抗拉强度在1500MPa左右,且延伸率在6-8%,较低的塑性在很大程度上限制了目前热成形钢的进一步推广应用。为了进一步提高车辆的安全性以及轻量化的要求,亟需热成形钢结构件的强度级别进一步提升,且同时韧塑性等指标也能够达到标准要求,以满足未来乘用车发展的技术需求。
现在传统的热冲压生产线均采用辊底炉加热,加热时间长且加热速度慢,造成加热过程工艺参数调控范围窄而不利于微观组织的优化,且生产成本居高不下;另外,为避免加热过程中的氧化问题,坯料均采用国外进口的Al-Si涂层板,价格昂贵。若能够以更低的成本生产强度及塑性更佳的超高强钢结构件,则汽车轻量化效果将获得进一步提升,且产品的惠及面更广,市场推广价值更大。
发明内容
针对现有技术的不足,本发明提供一种低成本、柔性化热成形超高强钢结构件的调控方法。该方法利用低成本原材料,采取短流程、低成本热冲压工艺实现热冲压成形构件微观组织超细化、多样化的柔性调控,且能够实现构件性能的显著提升,有助于汽车车身轻量化及安全性的进一步提升。
本发明是通过如下技术方案实现的:
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法包括步骤如下:
(1)将厚度小于等于5mm的热成形钢板在室温或经低温冷却后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:1~1:2,总压下率30~90%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,然后经过快速高温加热至750-950℃,保温1-3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率大于等于30℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。
根据本发明优选的,步骤(1)中,低温冷却温度为小于等于-80℃,优选的,低温冷却温度为-90~-100℃;所述热成形钢板的厚度为3.5-4.5,成分为热成形钢用硼钢化学成分,微观组织为铁素体或珠光体或弥散碳化物或贝氏体。
根据本发明优选的,步骤(1)中,异步轧制的异速比1:1.5~1:1.8,总压下率50~70%。
根据本发明优选的,步骤(1)中,异步轧制通过异步轧机上、下工作辊直径不同实现异步,采用交替异步轧制或非交替异步轧制进行。为保证异步轧制后板材的平直度,采取采用交替异步轧制方式进行。若无此要求,则可采用非交替异步轧制进行。
根据本发明优选的,步骤(2)中,快速高温加热采用部分感应加热与高温炉结合或全感应加热的方式进行。
进一步优选的,部分感应加热与高温炉结合的加热的方式具体为:先采用感应加热,加热至650-750℃,升温速率大于等于100℃/s,紧接着采用高温炉加热至850-950℃,升温速率为大于等于10℃/s;优选的,采用感应加热的升温速率为200-350℃/s,采用高温炉的升温速率为15-50℃/s。
进一步优选的,全感应加热的方式具体为:采用感应加热直接快速加热至750-950℃;升温速率为大于等于30℃/s,优选的,升温速率为50-150℃/s。
根据本发明优选的,步骤(3)中,冷却速率为大于等于50℃/s,进一步优选的,冷却速率为80-100℃/s。
根据本发明优选的,步骤(3)中,冷却温度至100-200℃。
本发明的冷却速率可以通过调整压机模具冷却通道与型面的距离以及冷却介质进行控制,其中,冷却介质可选择液氮、水以及超低温压缩空气;冷却通道与型面的距离为8-10mm。
本发明通过步骤(3)调控后,可以根据需要进一步进行调控,如开模后通过机械手或机器人快速拾取热成形结构件置于传送带上空冷、风冷或者水雾冷却等,或者根据性能调控的需要,实施进一步的热处理。
本发明所用原料及设备均为现有技术。
本发明的优点如下:
1、热成形钢板通过本发明的调控方法调控后,最终热冲压成形结构件厚度在2mm以下,
抗拉强度高达2400MPa,延伸率>12%,微观组织为超细晶马氏体组织与残余奥氏体、超细晶铁素体、贝氏体组织其中一种或两种的组合。
2、本发明通过对热冲压成形前坯料板材进行简单的预轧制形变处理,获得合适的形变组织、织构及内能状态,为后续低成本热冲压成形的柔性化组织调控奠定基础条件,配合后续的加热路径调控以及加热后热成形、冷却路径的调控,可以实现热冲压成形结构件的多尺度和多相化调控,从而实现单一成分坯料的多种性能调节,具有柔性化调控的优势,调控高温微观组织,实现其超细化及(或)多样化制备。
3、本发明的加热方式能够有效避免钢板的氧化,因此适合于用低成本非涂层板(已国产化)生产,而取代价格昂贵的Al-Si涂层板。
附图说明
图1为实施例1制备的结构件1微观组织图,为超细晶马氏体组织+残余奥氏体;
图2为实施例1制备的结构件1的拉伸应力-应变曲线图;
图3为实施例2制备的结构件2微观组织图,为马氏体+铁素体;
图4为实施例2制备的结构件2的拉伸应力-应变曲线图;
图5为实施例3制备的结构件3微观组织图,为马氏体+贝氏体组织;
图6为实施例3制备的结构件3的拉伸应力-应变曲线图;
图7为实施例4制备的结构件4微观组织图,为马氏体+贝氏体+铁素体组织;
图8为实施例4制备的结构件4的拉伸应力-应变曲线图;
图9为实施例5制备的结构件5微观组织图,为超细晶铁素体+少量马氏体组织;
图10为实施例5制备的结构件5的拉伸应力-应变曲线图;
图11为对比例1试样的微观组织图,为粗晶马氏体组织;
图12为交替异步轧制方式的示意图。
具体实施方式
下面通过具体实施例对本发明做进一步说明,但不限于此。
实施例1
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法具体步骤如下:
(1)将厚度小于等于5mm的热成形钢板在室温下进行异步轧制,得到异步轧制钢板,为保证异步轧制后板材的平直度,采取采用交替异步轧制方式进行,如图11所示,其中,异步轧制的异速比1:1.5,总压下率70%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,坯料先采用感应加热,加热至680℃,升温速率为280℃/s,紧接着采用辊底炉加热至910℃,升温速率为20℃/s,保温3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率控制在100℃/s,冷却至200℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。所制备的结构件1的微观组织如图1所示,为超细晶马氏体组织+残余奥氏体。拉伸曲线如图2,抗拉强度2400MPa,延伸率>12%。
实施例2:
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法具体步骤如下:
(1)将厚度小于等于5mm的热成形钢板经-80℃冷却后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:2,总压下率30%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,坯料采用全感应加热直接快速加热至930℃;升温速率为60℃/s,保温3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率控制在60℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。所制备的结构件2的微观组织如图3所示,为马氏体+铁素体。拉伸曲线如图4,抗拉强度1890MPa,延伸率>8.0%。
实施例3:
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法具体步骤如下:
(1)将厚度小于等于5mm的热成形钢板经液氮深冷后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:2,总压下率50%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,坯料先采用感应加热,加热至700℃,升温速率为300℃/s,紧接着采用辊底炉加热至910℃,升温速率为15℃/s,保温3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率控制在70℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。所制备的结构件3的微观组织如图5所示,为马氏体+贝氏体组织。拉伸曲线如图6,抗拉强度2100MPa,延伸率>20%。
实施例4:
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法具体步骤如下:
(1)将厚度小于等于5mm的热成形钢板经液氮深冷后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:1.5,总压下率50%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,坯料采用全感应加热直接快速加热至910℃;升温速率为100℃/s,保温3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率控制在75℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。所制备的结构件4的微观组织如图7所示,为马氏体+贝氏体+铁素体组织。拉伸曲线如图8,抗拉强度1800MPa,延伸率>8.3%。
实施例5:
一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法具体步骤如下:
(1)将厚度小于等于5mm的热成形钢板经液氮深冷后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:1.2,总压下率70%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,坯料采用全感应加热直接快速加热至925℃;升温速率为40℃/s,保温3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率控制在90℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。所制备的结构件5的微观组织如图9所示,为极少量超细晶铁素体+马氏体+贝氏体组织。拉伸曲线如图10,抗拉强度2100MPa,延伸率接近20%。
对比例1
一种热成形钢构件的调控方法,同实施例1所示,不同之处在于:
该方法不经异步轧制,直接进行步骤(2)、步骤(3)处理。处理得到的结构件的微观组织为粗晶马氏体(图11所示)。抗拉强度1460MPa,延伸率7%。

Claims (10)

1.一种低成本、柔性化热成形超高强钢结构件的调控方法,该方法包括步骤如下:
(1)将厚度小于等于5mm的热成形钢板在室温或经低温冷却后进行异步轧制,得到异步轧制钢板,其中,异步轧制的异速比1:1~1:2,总压下率30~90%;
(2)将异步轧制钢板切割裁切成适于热冲压成形的坯料,然后经过快速高温加热至750-950℃,保温1-3s,实现高温微观组织的超细化及多样化控制,得到微观组织调控后坯料;
(3)将步骤(2)得到的微观组织调控后坯料迅速送至压机模具上,合模保压且同步冷却,冷却速率大于等于30℃/s,冷却至300℃以下,实现冷却过程中进一步微观组织及性能的柔性化调控。
2.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(1)中,低温冷却温度为-90~-100℃;所述热成形钢板的厚度为3.5-4.5,成分为热成形钢用硼钢化学成分,微观组织为铁素体或珠光体或弥散碳化物或贝氏体。
3.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(1)中,异步轧制的异速比1:1.5~1:1.8,总压下率50~70%。
4.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(1)中,异步轧制通过异步轧机上、下工作辊直径不同实现异步,采用交替异步轧制或非交替异步轧制进行。
5.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(2)中,快速高温加热采用部分感应加热与高温炉结合或全感应加热的方式进行。
6.根据权利要求5所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,部分感应加热与高温炉结合的加热的方式具体为:先采用感应加热,加热至650-750℃,升温速率为200-350℃/s,紧接着采用高温炉加热至850-950℃,升温速率为15-50℃/s 。
7.根据权利要求5所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,全感应加热的方式具体为:采用感应加热直接快速加热至750-950℃;升温速率为50-150℃/s。
8.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(3)中,冷却速率为大于等于50℃/s。
9.根据权利要求8所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(3)中,冷却速率为80-100℃/s。
10.根据权利要求1所述的低成本、柔性化热成形超高强钢结构件的调控方法,其特征在于,步骤(3)中,冷却温度至100-200℃。
CN201710627412.1A 2017-07-28 2017-07-28 一种低成本、柔性化热成形超高强钢结构件的调控方法 Expired - Fee Related CN107309273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710627412.1A CN107309273B (zh) 2017-07-28 2017-07-28 一种低成本、柔性化热成形超高强钢结构件的调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710627412.1A CN107309273B (zh) 2017-07-28 2017-07-28 一种低成本、柔性化热成形超高强钢结构件的调控方法

Publications (2)

Publication Number Publication Date
CN107309273A CN107309273A (zh) 2017-11-03
CN107309273B true CN107309273B (zh) 2019-04-12

Family

ID=60175438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710627412.1A Expired - Fee Related CN107309273B (zh) 2017-07-28 2017-07-28 一种低成本、柔性化热成形超高强钢结构件的调控方法

Country Status (1)

Country Link
CN (1) CN107309273B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906889B (zh) * 2018-05-08 2019-08-27 中南大学 一种制备高性能CrCoNi中熵合金箔材的深冷异步轧制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003876A (zh) * 2007-01-12 2007-07-25 河北理工大学 利用异步轧制提高耐磨高锰钢耐磨性的方法
JP4094312B2 (ja) * 2001-03-28 2008-06-04 新日本製鐵株式会社 低温靭性に優れた超高強度鋼の製造方法
JP4456581B2 (ja) * 2006-04-25 2010-04-28 新日本製鐵株式会社 成形部の塗装後耐食性に優れた高強度自動車部材およびその熱間プレス方法
CN102212742A (zh) * 2011-05-16 2011-10-12 马鸣图 一种强度柔性分布的热冲压成形汽车零件及其控制方法
JP5609703B2 (ja) * 2011-02-18 2014-10-22 Jfeスチール株式会社 熱延鋼板の製造方法
CN104726762A (zh) * 2015-02-16 2015-06-24 大连理工大学 一种无硼中锰钢温热成形方法
CN105057349A (zh) * 2015-08-19 2015-11-18 东北大学 一种异速比可在线调节的金属极薄带负辊缝轧制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094312B2 (ja) * 2001-03-28 2008-06-04 新日本製鐵株式会社 低温靭性に優れた超高強度鋼の製造方法
JP4456581B2 (ja) * 2006-04-25 2010-04-28 新日本製鐵株式会社 成形部の塗装後耐食性に優れた高強度自動車部材およびその熱間プレス方法
CN101003876A (zh) * 2007-01-12 2007-07-25 河北理工大学 利用异步轧制提高耐磨高锰钢耐磨性的方法
JP5609703B2 (ja) * 2011-02-18 2014-10-22 Jfeスチール株式会社 熱延鋼板の製造方法
CN102212742A (zh) * 2011-05-16 2011-10-12 马鸣图 一种强度柔性分布的热冲压成形汽车零件及其控制方法
CN104726762A (zh) * 2015-02-16 2015-06-24 大连理工大学 一种无硼中锰钢温热成形方法
CN105057349A (zh) * 2015-08-19 2015-11-18 东北大学 一种异速比可在线调节的金属极薄带负辊缝轧制方法

Also Published As

Publication number Publication date
CN107309273A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN103826771B (zh) 冲压成形品的制造方法和冲压成形设备
CN103451549B (zh) 一种2100MPa纳米贝氏体钢及其制备方法
CN104726762B (zh) 一种无硼中锰钢温热成形方法
CN107127238A (zh) 一种锌系镀覆钢板或钢带的热冲压成型方法
CN101805821A (zh) 钢材冲压成形一体化处理方法
CN103547686A (zh) 生产硬化的结构部件的方法
CN102127675B (zh) 高效率低能耗高质量的钢板温成形零件的生产方法
CN102418033B (zh) 一种免热处理高强冷镦钢及其热轧棒材的生产方法
CN104056994B (zh) 汽车用硼钢零件的集约式热成形生产线及热成形工艺
CN104588473A (zh) 高强塑积汽车零件热冲压碳配分一体化工艺
CN103212950A (zh) 一种改善车用ahss热冲压结构件强韧化和成形性的工艺方法
JP2020529926A (ja) コーティングされた鋼に対するプレス方法及び鋼の使用法
CN106947919A (zh) 一种高韧性热成形钢及其生产方法
CN107520581A (zh) 一种超高强钢车轮轮辐及其加工方法
CN109930079A (zh) 一种980MPa级低成本冷轧淬火配分钢及其制备方法
CN105039848A (zh) 500-600MPa级冷轧退火低合金高强钢的生产方法
CN107829037A (zh) 热冲压成形用钢板、热冲压成形构件及梯度力学性能控制方法
CN107012398A (zh) 一种铌微合金化trip钢及其制备方法
CN109554621A (zh) 一种低密度Fe-Mn-Al-C热轧Q&P钢及其制造方法
CN101910425B (zh) 钢的成形方法
CN107309273B (zh) 一种低成本、柔性化热成形超高强钢结构件的调控方法
CN102321852B (zh) 一种纳米结构无碳化物贝氏体中碳合金钢及制备方法
CN102643969B (zh) 一种纳米结构超高强塑性低合金钢及其制备方法
CN109609843A (zh) 一种低残余应力中厚规格耐磨钢板及其制备方法
CN202322933U (zh) 高韧性超高强钢的生产系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190412

Termination date: 20210728

CF01 Termination of patent right due to non-payment of annual fee