CN107309213B - 基于bp神经网络的红枣超声波清洗机控制方法 - Google Patents

基于bp神经网络的红枣超声波清洗机控制方法 Download PDF

Info

Publication number
CN107309213B
CN107309213B CN201710699296.4A CN201710699296A CN107309213B CN 107309213 B CN107309213 B CN 107309213B CN 201710699296 A CN201710699296 A CN 201710699296A CN 107309213 B CN107309213 B CN 107309213B
Authority
CN
China
Prior art keywords
neural network
cleaning machine
ultrasonic
max
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710699296.4A
Other languages
English (en)
Other versions
CN107309213A (zh
Inventor
薛飞
孟祥盟
孙宁
薛争
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Academy of Agricultural Sciences
Original Assignee
Jilin Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Academy of Agricultural Sciences filed Critical Jilin Academy of Agricultural Sciences
Priority to CN201710699296.4A priority Critical patent/CN107309213B/zh
Publication of CN107309213A publication Critical patent/CN107309213A/zh
Application granted granted Critical
Publication of CN107309213B publication Critical patent/CN107309213B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/02Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for washing or blanching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

本发明公开了一种基于BP神经网络的红枣超声波清洗机控制方法,包括:步骤一、按照采样周期,获取超声波清洗机中红枣的质量m、环境温度TS、水中溶解的总固体含量TDS、剩余清洗时间t;步骤二、依次将上述参数进行规格化,确定三层BP神经网络的输入层向量x={x1,x2,x3,x4};步骤三、所述输入层向量映射到中间层,所述中间层向量y={y1,y2,…,ym};m为中间层节点个数;步骤四、得到输出层向量o={o1,o2,o3};o1为超声波清洗机功率调节系数、o2为水温调节系数、o3为紧急停机信号;步骤五、控制超声波清洗机的功率和水温,使
Figure DDA0001379954330000011
其中,别为第i次采样周期输出层向量前两个参数,pmax为超声波清洗机最大功率,Tmax为加热到的最高水温,pi+1为第i+1个采样周期时超声波清洗机功率,Ti+1为第i+1个采样周期时水温。

Description

基于BP神经网络的红枣超声波清洗机控制方法
技术领域
本发明红枣清洗技术领域,特备涉及一种基于BP神经网络的红枣超声波清洗机控制方法。
背景技术
新疆红枣种植面积已超过40万hm2,种植红枣已成为农民特别是南疆农民增收、企业创收的主要途径,成为地方财政税收的主要来源之一。目前,红枣加工主要以制干加工为主,清洗是红枣制干加工中必不可少的工序之一。绝大多数企业采用鼓浪气泡式、高压喷淋式、毛刷式等几种方法相结合的方式对制干红枣原料进行清洗。
采用超声波红枣清洗机对于红枣进行清洗,可为红枣制干加工企业提供一种清洗技术,提高红枣的清洗质量,改善产品加工质量,有利于成品的贮藏。但超声波红枣清洗机设定的参数往往根据操作者的经验进行设定,难以适应不同的清洗环境。
发明内容
本发明的目的是克服红枣超声波清洗机参数靠人为经验设定,清洗效果难以保证的缺陷,提供了一种基于BP神经网络的红枣超声波清洗机控制方法。
本发明提供的技术方案为:
一种基于BP神经网络的红枣超声波清洗机控制方法,包括:
步骤一、按照采样周期,获取超声波清洗机中红枣的质量m、环境温度TS、水中溶解的总固体含量TDS、剩余清洗时间t;
步骤二、依次将上述参数进行规格化,确定三层BP神经网络的输入层向量x={x1,x2,x3,x4};其中x1为质量系数、x2为环境温度系数、x3为水中溶解的总固体含量系数、x4为剩余清洗时间系数;
步骤三、所述输入层向量映射到中间层,所述中间层向量y={y1,y2,…,ym};m为中间层节点个数;
步骤四、得到输出层向量o={o1,o2,o3};o1为超声波清洗机功率调节系数、o2为水温调节系数、o3为紧急停机信号;
步骤五、控制超声波清洗机的功率和水温,使
Figure GDA0002060132820000021
Figure GDA0002060132820000022
其中,
Figure GDA0002060132820000023
别为第i次采样周期输出层向量前两个参数,pmax为超声波清洗机最大功率,Tmax为加热到的最高水温,pi+1为第i+1个采样周期时超声波清洗机功率,Ti+1为第i+1个采样周期时水温。
优选的是,步骤二中,利用如下公式对剩余清洗时间t进行规格化
Figure GDA0002060132820000024
其中,tmax和tmin分别为最长清洗时间与最短清洗时间;最长清洗时间tmax为300秒,最短清洗时间tmin为60秒。
优选的是,清洗时间ta满足:
其中,ma为清洗水的质量,mmax为超声波清洗机能够容纳红枣的最大质量。
优选的是,步骤二中,利用如下公式对超声波清洗机中红枣的质量m进行规格化
其中,mmax和mmin分别为超声波清洗机能够容纳红枣的最大质量和最小质量。
优选的是,步骤二中,利用如下公式对环境温度TS进行规格化
Figure GDA0002060132820000031
其中,TSmax和TSmin分别为环境温度的最大值和最小值。
优选的是,步骤二中,利用如下公式对水中溶解的总固体含量TDS进行规格化
Figure GDA0002060132820000032
其中,TDSmax和TDSmin分别为水中溶解的总固体含量的最大值和最小值。
优选的是,还包括步骤六:
根据第i次周期中的红枣的质量m、环境温度Ts、水中溶解的总固体含量TDS、剩余清洗时间t采样信号,判定超声波清洗机的运行状态,当
Figure GDA0002060132820000034
时进行紧急停车。
优选的是,所述中间层节点个数M满足:
Figure GDA0002060132820000033
其中n为输入层节点个数,q为输出层节点个数。
优选的是,初始状态时使超声波清洗机的清洗功率p1和初始状态时水温T1满足:
p1=0.5pmax
T1=0.5Tmax
本发明的有益效果是:本发明提供的基于基于BP神经网络的红枣超声波清洗机控制方法,构建了人工神经网络,具有自学习和预测功能,使其具有良好的适应性和调控的准确性。能够大大提高洗净率,并降低破损率。
具体实施方式
下面结合对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供了一种基于基于BP神经网络的红枣超声波清洗机控制方法,使用超声波红枣清洗机对红枣进行清洗,并对超声波红枣清洗机的运行参数进行控制。
本发明使用的超声波红枣清洗机对红枣进行清洗,通过产生的超声波震动对红枣进行清洗,同时通过对清洗用水的加热,提升清洗效果。本发明所使用的超声波红枣清洗机能够对超声波功率和水温实时调节。
本发明提供的基于BP神经网络的红枣超声波清洗机控制方法步骤如下:
步骤一S110:建立BP神经网络模型。
本发明采用的BP网络体系结构由三层组成,第一层为输入层,共n个节点,对应了表示n个输入参数,些信号参数由数据预处理模块给出。第二层为隐层,共m个节点,由网络的训练过程以自适应的方式确定。第三层为输出层,共p个节点,由系统实际需要输出的响应确定。
该网络的数学模型为:
输入向量:x=(x1,x2,...,xn)T
中间层向量:y=(y1,y2,...,ym)T
输出向量:O=(o1,o2,...,op)T
本发明中,输入层节点数为n=4,输出层节点数为p=3。隐藏层节点数M由下式估算得出:
满足:
Figure GDA0002060132820000041
输入信号4个参数分别表示为:x1为质量系数、x2为环境温度系数、x3为水中溶解的总固体含量系数、x4为剩余清洗时间系数。
由于传感器获取的数据属于不同的物理量,其量纲各不相同。因此,在数据输入人工神经网络之前,需要将数据规格化为0-1之间的数。
具体而言,对于清洗前称量的红枣质量m,进行规格化后,得到质量系数
Figure GDA0002060132820000042
其中,mmax和mmin分别为超声波清洗机能够容纳红枣的最大质量和最小质量。
同样的,对使用温度传感器测量的环境温度TS进行进行规格化后,得到环境温度系数
Figure GDA0002060132820000051
其中,TSmax和TSmin分别为环境温度的最大值和最小值。
对使用水质测量仪测量的清洗水中溶解的总固体含量TDS进行规格化后,得到水中溶解的总固体含量系数
Figure GDA0002060132820000052
其中,TDSmax和TDSmin分别为水中溶解的总固体含量的最大值和最小值。
对剩余清洗时间t进行规格化后,得到剩余清洗时间系数
Figure GDA0002060132820000053
其中,tmax和tmin分别为最长清洗时间与最短清洗时间。
在本发明中,最长清洗时间tmax为300秒,最短清洗时间为60秒。根据经验,清洗时间小于1分钟难以将红枣清洗干净,但清洗时间过长会使红枣的表皮严重破损,一般清洗时间不超过5分钟。通过控制面板设定清洗时间,清洗开始后进行倒计时,倒计时的秒数即为剩余清洗时间t。
作为一种优选的,清洗时间ta满足:
Figure GDA0002060132820000054
其中,ma为清洗水的质量。
输出的三个参数分别表示为:o1为超声波清洗机清洗功率调节系数、o2为水温调节系数、o3为紧急停机信号。
超声波清洗机清洗功率调节系数o1表示下一个采样周期时清洗功率与最大清洗功率之比,即在第i个采样周期获取输入参数,通过BP神经网络输出第i个采样周期的的清洗功率调节系数后,控制第i+1个采样周期中的清洗功率pi+1,使其满足:
Figure GDA0002060132820000055
其中,pmax为超声波清洗机最大清洗功率。
水温调节系数o2表示下一个采样周期时的水温与最高水温之比,即在第i个采样周期获取输入参数,通过BP神经网络输出第i个采样周期的的清洗功率调节系数
Figure GDA0002060132820000061
后,控制第i+1个采样周期中的水温,使其满足
Figure GDA0002060132820000062
其中,Tmax为加热到的最高水温。
紧急停机信号o3表示为当前设备的运行状态,其输出值为0或1,当输出值为0时,表示当前设备处于非正常状态,此时,需要进行紧急停机;当输出值为1时,表示当前设备处于正常状态,可以继续运行。
步骤二S120、进行BP神经网络的训练。
建立好BP神经网络节点模型后,即可进行BP神经网络的训练。根据产品的历史经验数据获取训练的样本,并给定输入节点i和隐含层节点j之间的连接权值wij,隐层节点j和输出层节点k之间的连接权值wjk,隐层节点j的阈值θj,输出层节点k的阈值θk、wij、wjk、θj、θk均为-1到1之间的随机数。
在训练过程中,不断修正wij和wjk的值,直至系统误差小于等于期望误差时,完成神经网络的训练过程。
步骤三S130、采集输入参数,得到输出参数,并对超声波红枣清洗机进行控制。
步骤三S130具体包括如下分步骤:
S131:按照采样周期,获取第i个采样周期时超声波清洗机中红枣的质量m、环境温度TS、水中溶解的总固体含量TDS、剩余清洗时间t;其中,i=1,2,……。
红枣的质量m一般在清洗前进行称量,我们认为在清洗过程中红枣的质量始终保持不便,即忽略的清洗过程中红枣质量的微小变化,在每个采样周期中红枣的质量保持不变。
S132:依次将上述4个参数进行规格化,得到第i个采样周期时三层BP神经网络的输入层向量x={x1,x2,x3,x4}。
S133:所述输入层向量映射到中间层,得到第i个采样周期时中间层向量y={y1,y2,y3,y4}。
S134:所述中间层向输出层映射,得到第i个采样周期时得到输出层向量o={o1,o2,o3}。
S135、对超声波清洗机的清洗功率和水温进行控制,使下一个周期即第i+1个采样周期时清洗功率和水温满足:
Figure GDA0002060132820000071
初始值为
p1=0.5pmax
T1=0.5Tmax
其中,
Figure GDA0002060132820000073
别为第i次采样周期输出层向量前两个参数,pmax为超声波清洗机最大清洗功率,Tmax为加热到的最高水温,pi+1为第i+1个采样周期时超声波清洗机清洗功率,Ti+1为第i+1个采样周期时水温。
S136:根据第i次周期中的红枣的质量m、环境温度Ts、水中溶解的总固体含量TDS、剩余清洗时间t采样信号,判定超声波清洗机的运行状态,当
Figure GDA0002060132820000074
时进行紧急停车。
通过上述设置,通过获取输入参数,通过采用BP神经网络算法,对超声波清洗机的清洗功率和水温进行控制,使清洗效果达到最佳。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (8)

1.一种基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,包括:
步骤一、按照采样周期,获取超声波清洗机中红枣的质量m、环境温度TS、水中溶解的总固体含量TDS、剩余清洗时间t;
清洗时间ta满足:
Figure FDA0002069286190000011
其中,ma为清洗水的质量,mmax为超声波清洗机能够容纳红枣的最大质量;
步骤二、依次将步骤一中获取的参数进行规格化,确定三层BP神经网络的输入层向量x={x1,x2,x3,x4};其中x1为质量系数、x2为环境温度系数、x3为水中溶解的总固体含量系数、x4为剩余清洗时间系数;
步骤三、所述输入层向量映射到中间层,所述中间层向量y={y1,y2,…,yM};M为中间层节点个数;
步骤四、得到输出层向量o={o1,o2,o3};o1为超声波清洗机功率调节系数、o2为水温调节系数、o3为紧急停机信号;
步骤五、控制超声波清洗机的功率和水温,使
Figure FDA0002069286190000012
Figure FDA0002069286190000013
其中,
Figure FDA0002069286190000014
别为第i次采样周期输出层向量前两个参数,pmax为超声波清洗机最大功率,Tmax为加热到的最高水温,pi+1为第i+1个采样周期时超声波清洗机功率,Ti+1为第i+1个采样周期时水温。
2.根据权利要求1所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,步骤二中,利用如下公式对剩余清洗时间t进行规格化
其中,tmax和tmin分别为最长清洗时间与最短清洗时间;最长清洗时间tmax为300秒,最短清洗时间tmin为60秒。
3.根据权利要求2所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,步骤二中,利用如下公式对超声波清洗机中红枣的质量m进行规格化
Figure FDA0002069286190000021
其中,mmax和mmin分别为超声波清洗机能够容纳红枣的最大质量和最小质量。
4.根据权利要求3所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,步骤二中,利用如下公式对环境温度TS进行规格化
Figure FDA0002069286190000022
其中,TSmax和TSmin分别为环境温度的最大值和最小值。
5.根据权利要求4所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,步骤二中,利用如下公式对水中溶解的总固体含量TDS进行规格化
其中,TDSmax和TDSmin分别为水中溶解的总固体含量的最大值和最小值。
6.根据权利要求1所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,还包括步骤六:
根据第i次周期中的红枣的质量m、环境温度Ts、水中溶解的总固体含量TDS、剩余清洗时间t采样信号,判定超声波清洗机的运行状态,当
Figure FDA0002069286190000025
时进行紧急停车。
7.根据权利要求6所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,所述中间层节点个数M满足:
Figure FDA0002069286190000024
其中n为输入层节点个数,q为输出层节点个数。
8.根据权利要求7所述的基于BP神经网络的红枣超声波清洗机控制方法,其特征在于,初始状态时使超声波清洗机的清洗功率p1和初始状态时水温T1满足:
p1=0.5pmax
T1=0.5Tmax
CN201710699296.4A 2017-08-16 2017-08-16 基于bp神经网络的红枣超声波清洗机控制方法 Expired - Fee Related CN107309213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710699296.4A CN107309213B (zh) 2017-08-16 2017-08-16 基于bp神经网络的红枣超声波清洗机控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710699296.4A CN107309213B (zh) 2017-08-16 2017-08-16 基于bp神经网络的红枣超声波清洗机控制方法

Publications (2)

Publication Number Publication Date
CN107309213A CN107309213A (zh) 2017-11-03
CN107309213B true CN107309213B (zh) 2020-01-17

Family

ID=60177203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710699296.4A Expired - Fee Related CN107309213B (zh) 2017-08-16 2017-08-16 基于bp神经网络的红枣超声波清洗机控制方法

Country Status (1)

Country Link
CN (1) CN107309213B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107908111B (zh) * 2017-11-27 2021-04-16 北华大学 一种基于bp神经网络的污泥脱水系统的计算机控制方法
CN108922104B (zh) * 2018-09-12 2020-05-15 吉林建筑大学 一种工厂消防安全监控系统的控制方法
CN109368095A (zh) * 2018-12-13 2019-02-22 吉林大学 一种防外溢垃圾桶及其控制方法
CN109516032B (zh) * 2018-12-25 2024-05-10 吉林大学 一种组装式智能分类垃圾系统及其控制方法
CN114404033B (zh) * 2022-03-28 2022-05-27 江苏省人民医院(南京医科大学第一附属医院) 能量器械碳化清除控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037224B1 (en) * 2010-08-02 2015-05-19 Chi Yung Fu Apparatus for treating a patient
US9095266B1 (en) * 2010-08-02 2015-08-04 Chi Yung Fu Method for treating a patient
CN104636801B (zh) * 2013-11-08 2018-03-16 国家电网公司 一种基于优化bp神经网络的预测输电线路可听噪声方法
CN105426959B (zh) * 2015-11-06 2018-05-01 重庆科技学院 基于bp神经网络与自适应mbfo算法的铝电解节能减排方法
CN105404153B (zh) * 2015-12-17 2017-12-08 吉林大学 一种基于bp神经网络的绕线机控制方法及绕线机
CN106053988A (zh) * 2016-06-18 2016-10-26 安徽工程大学 基于智能分析的逆变器故障诊断系统及方法

Also Published As

Publication number Publication date
CN107309213A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107309213B (zh) 基于bp神经网络的红枣超声波清洗机控制方法
CN109443419B (zh) 一种基于机器学习的整流器在线监测方法
CN105259827B (zh) 一种固态发酵过程状况的实时监控系统与监控方法
CN108535572B (zh) 基于基波零序特征的计量系统二次回路监测方法及装置
CN107436409B (zh) 一种电动汽车动力电池soc智能预测装置
KR101889510B1 (ko) 심층 신경망을 이용한 정수 처리에서의 응집제 주입률 예측 방법
US20170300041A1 (en) Production system for executing production plan
CN107168292B (zh) 基于elm算法的水下航行器电路故障诊断方法
CN111814878B (zh) 基于ssda-helm-softmax的农业投入品实时分类预测方法
CN110657091B (zh) 一种循环泵轴承故障诊断方法及系统
CN106610584A (zh) 一种基于神经网络与专家系统的再制造工序质量控制方法
CN111815053A (zh) 一种针对工业时序数据的预测方法及系统
CN103808431A (zh) 铝电解槽槽温测量方法
WO2019041752A1 (zh) 一种基于过程参数的结果反馈方法及装置
CN109857988B (zh) 一种寒地装配式现代木结构建筑的安全监测方法
JP7198414B2 (ja) 搗精施設のための運転支援装置、および、搗精施設
CN110786855A (zh) 一种痰液感应装置及其控制方法
CN109925992A (zh) 一种基于多模块分阶段的连续搅拌在线监测方法
CN107168066B (zh) 一种温室环境自适应控制方法
CN114928099A (zh) 面向网络攻击下的虚拟同步发电机自适应控制装置及方法
CN115993778A (zh) 一种高低温试验箱温控系统的模糊控制方法及装置
CN111523662B (zh) 基于adaline神经网络的动态过程控制限确定方法及设备
CN111951264B (zh) 一种基于深度学习的卷烟包装异常检测与定位方法
CN111255557B (zh) 一种汽车发动机冷却检测系统及其控制方法
Ge et al. Research on Temperature and Humidity Prediction Model of Granary Based on RNN-LSTM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117

Termination date: 20200816