CN107295635B - 基于格栅累积概率的无线传感器网络节点定位方法 - Google Patents

基于格栅累积概率的无线传感器网络节点定位方法 Download PDF

Info

Publication number
CN107295635B
CN107295635B CN201710532366.7A CN201710532366A CN107295635B CN 107295635 B CN107295635 B CN 107295635B CN 201710532366 A CN201710532366 A CN 201710532366A CN 107295635 B CN107295635 B CN 107295635B
Authority
CN
China
Prior art keywords
grid
target node
node
anchor
path loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710532366.7A
Other languages
English (en)
Other versions
CN107295635A (zh
Inventor
田勇
丁学君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201710532366.7A priority Critical patent/CN107295635B/zh
Publication of CN107295635A publication Critical patent/CN107295635A/zh
Application granted granted Critical
Publication of CN107295635B publication Critical patent/CN107295635B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Abstract

本发明公开一种基于格栅累积概率的无线传感器网络节点定位方法,有目标节点、锚节点及计算机,本发明利用目标节点先验的位置信息,将目标节点待评估位置限制在一个较小的范围内,然后在这个较小的范围内,根据不同方向锚节点的路径损耗和收发节点间的距离计算范围内各格栅的累积概率,从而判断目标节点准确的位置信息。实验证明本发明不仅具有较好的定位精度,而且还具有较好的定位稳定性。

Description

基于格栅累积概率的无线传感器网络节点定位方法
技术领域
本发明涉及一种无线传感器网络技术领域,尤其是一种可提高定位准确度的基于格栅累积概率的无线传感器网络节点定位方法。
背景技术
无线传感器网络(WSNs,Wireless Sensor Networks)是由大量的带有感知和信息处理能力的无线传感器节点部署而成,在应用过程中需要对节点位置信息进行定位,如对特殊人员(儿童、老人和病人)的监护、监狱犯人的监管、黑烟等污染源的监测等等。目前,对节点位置信息进行定位的方法可以分成基于测距和基于非测距两类,基于测距的定位方法定位精度相对较高,基于接收信号强度(RSS,Received Signal Strength)的定位方法是基于测距定位方法中的一种,具体方法是需要部署若干已知空间位置的锚节点,从
Figure 856893DEST_PATH_IMAGE001
=1时刻起(每一定位周期为一时刻),在
Figure 107221DEST_PATH_IMAGE001
时刻,目标节点连续发送若干数据包,锚节点接收相应的RSS值并计算与目标节点之间的路径损耗,然后将路径损耗和锚节点各自的ID发送给计算机,由计算机对未知位置的目标节点进行定位。然而,由于大部分定位技术的应用场景都是室内环境,因此接收到的RSS信息可能是信源信号经过室内地面、天花板、墙壁、各种障碍物等反射、散射衰减以及绕射衰减之后叠加的结果,另外当室内出现家具位置改变、门窗开关、人员移动等情况时,目标节点的信号传输同样受到较大影响,上述现象直接影响了目标节点定位的准确度。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可提高定位准确度的基于格栅累积概率的无线传感器网络节点定位方法。
本发明的技术解决方案是:一种基于格栅累积概率的无线传感器网络节点定位方法,有目标节点、锚节点
Figure 645650DEST_PATH_IMAGE002
及计算机,其特征在于按照如下方法进行:
步骤1:将N个锚节点
Figure 46675DEST_PATH_IMAGE002
呈方形均匀排列在监控区域的边缘,将方形监控区域内均匀分成多个边长为
Figure 266435DEST_PATH_IMAGE003
的正方形格栅,设定某一格栅中心坐标为目标节点的初始位置,设
Figure 436516DEST_PATH_IMAGE004
为目标节点在t时刻位于第
Figure 145846DEST_PATH_IMAGE005
行第
Figure 37098DEST_PATH_IMAGE006
列格栅内的累积概率且初始为零,所述i为1,2,3,……N,所述
Figure 857286DEST_PATH_IMAGE001
=1,2,3……;
步骤2:从
Figure 85136DEST_PATH_IMAGE001
=1时刻起,在
Figure 965367DEST_PATH_IMAGE001
时刻,目标节点连续发送若干数据包,锚节点
Figure 340985DEST_PATH_IMAGE002
接收相应的RSS值并计算与目标节点之间的路径损耗
Figure 964864DEST_PATH_IMAGE007
,然后将路径损耗和锚节点
Figure 157741DEST_PATH_IMAGE002
各自的ID发送给计算机;
步骤3:计算
Figure 20655DEST_PATH_IMAGE008
时刻目标节点所在格栅周围一层或多层中格栅
Figure 182646DEST_PATH_IMAGE009
的中心坐标,所述
Figure 447405DEST_PATH_IMAGE010
为从1到
Figure 403860DEST_PATH_IMAGE011
之间的整数,所述
Figure 754070DEST_PATH_IMAGE012
时刻目标节点所在格栅周围的层数,是大于
Figure 160847DEST_PATH_IMAGE013
的最小整数;
式中:
Figure 732773DEST_PATH_IMAGE014
为目标节点运动的最大速度,
Figure 236567DEST_PATH_IMAGE015
为定位周期时长,
Figure 475918DEST_PATH_IMAGE003
为所述正方形格栅的边长;
步骤4:计算锚节点
Figure 39755DEST_PATH_IMAGE002
与格栅
Figure 98978DEST_PATH_IMAGE009
中心坐标之间的距离
Figure 406462DEST_PATH_IMAGE016
以及路径损耗
Figure 497391DEST_PATH_IMAGE017
步骤5:计算路径损耗
Figure 232129DEST_PATH_IMAGE007
Figure 778647DEST_PATH_IMAGE017
的绝对误差,找到
Figure 624244DEST_PATH_IMAGE010
个绝对误差中最小的两个并分别将其对应格栅的
Figure 572608DEST_PATH_IMAGE018
值加1;
步骤6:找到值最大的格栅,该格栅的中心坐标即为目标节点在时刻
Figure 512062DEST_PATH_IMAGE001
的位置坐标。
本发明利用目标节点先验的位置信息,将目标节点待评估位置限制在一个较小的范围内,然后在这个较小的范围内,根据不同方向锚节点的路径损耗和收发节点间的距离计算范围内各格栅的累积概率,从而判断目标节点准确的位置信息。实验证明本发明不仅具有较好的定位精度,而且还具有较好的定位稳定性。
附图说明
图1是本发明实施例的原理示意图。
图2是本发明实施例的误差结果示意图。
具体实施方式
本发明的基于格栅累积概率的无线传感器网络节点定位方法,有目标节点、锚节点
Figure 161350DEST_PATH_IMAGE002
及计算机,按照如下方法进行:
步骤1:将N个锚节点
Figure 967150DEST_PATH_IMAGE002
呈方形均匀排列在监控区域的边缘,将方形监控区域内均匀分成多个边长为
Figure 43691DEST_PATH_IMAGE003
的正方形格栅,
Figure 564802DEST_PATH_IMAGE003
可以根据实际应用的精度需要进行设置;监控区域被划分成
Figure 955463DEST_PATH_IMAGE019
个格栅,其中
Figure 675157DEST_PATH_IMAGE020
=监控区域的宽度
Figure 860282DEST_PATH_IMAGE021
=监控区域的长度
Figure 856849DEST_PATH_IMAGE021
,设定某一格栅中心坐标为目标节点的初始位置,如被监控的室内区域入口所在格栅,设
Figure 634313DEST_PATH_IMAGE018
为目标节点在t时刻位于第行第
Figure 548359DEST_PATH_IMAGE006
列格栅内的累积概率且初始为零,所述i为1,2,3,……N,所述
Figure 77560DEST_PATH_IMAGE001
=1,2,3……;
Figure 709530DEST_PATH_IMAGE005
=1,2,3……,
Figure 281774DEST_PATH_IMAGE006
=1,2,3……
Figure 441815DEST_PATH_IMAGE022
步骤2:按照现有技术的方法,从
Figure 193870DEST_PATH_IMAGE001
=1时刻起,在
Figure 891699DEST_PATH_IMAGE001
时刻,目标节点连续发送20个数据包,锚节点
Figure 96415DEST_PATH_IMAGE002
接收相应的RSS值并运行卡尔曼滤波算法,滤除RSS值中的噪声,之后计算与目标节点之间的路径损耗
Figure 295315DEST_PATH_IMAGE007
,然后将路径损耗
Figure 839560DEST_PATH_IMAGE007
和锚节点
Figure 832924DEST_PATH_IMAGE002
各自的ID发送给计算机;
步骤3:计算
Figure 524936DEST_PATH_IMAGE008
时刻目标节点所在格栅周围一层或多层中格栅
Figure 134385DEST_PATH_IMAGE009
的中心坐标,所述
Figure 657770DEST_PATH_IMAGE010
为从1到之间的整数,所述
Figure 204606DEST_PATH_IMAGE012
Figure 355096DEST_PATH_IMAGE008
时刻目标节点所在格栅周围的层数,
Figure 936250DEST_PATH_IMAGE012
是大于
Figure 271416DEST_PATH_IMAGE013
的最小整数;
式中:
Figure 938021DEST_PATH_IMAGE014
为目标节点运动的最大速度,
Figure 957448DEST_PATH_IMAGE015
为定位周期时长,
Figure 393109DEST_PATH_IMAGE003
为所述正方形格栅的边长;
如图1所示,层数为2,含目标节点在内共25个格栅。
步骤4:计算锚节点
Figure 102439DEST_PATH_IMAGE002
与格栅中心坐标之间的距离
Figure 810949DEST_PATH_IMAGE016
以及路径损耗;路径损耗
Figure 981347DEST_PATH_IMAGE017
的计算方法同现有技术;
步骤5:计算路径损耗
Figure 356965DEST_PATH_IMAGE007
Figure 712335DEST_PATH_IMAGE017
的绝对误差,找到
Figure 122588DEST_PATH_IMAGE010
个绝对误差中最小的两个并分别将其对应格栅的
Figure 111404DEST_PATH_IMAGE018
值加1;
步骤6:找到
Figure 974318DEST_PATH_IMAGE018
值最大的格栅,该格栅的中心坐标即为目标节点在时刻
Figure 136309DEST_PATH_IMAGE001
的位置坐标。
为了验证本发明实施例定位的有效性,设置如下实验场景:传感器节点采用ZigBee协议进行通信,其通信中心频率为2.4GHz,最大数据传输率为250kbps,输出功率为3.2dBm,监控区域为10×10米的室内空间,在该监控区域周围每隔2.5米部署一个无线传感器节点,共部署16个节点作为定位系统的锚节点。在参数评估阶段,随机部署20个训练节点,对路径损耗模型的参数进行评估。在定位阶段,每隔1秒钟对目标节点进行一次定位,目标节点将按照顺时针方向匀速运动,运动速度为0.5米/秒。
将每个时刻目标节点的评估位置和实际位置之间的距离作为定位误差,用于评估方法的定位精度,图2显示了本发明基于格栅累积概率的无线传感器网络节点定位(CPGL,Cumulative Probability of Grids Localization)方法的定位误差。从图2可以看出,本发明的定位误差均小于0.9米。

Claims (1)

1.一种基于格栅累积概率的无线传感器网络节点定位方法,有目标节点、锚节点si及计算机,其特征在于按照如下方法进行:
步骤1:将N个锚节点si呈方形均匀排列在监控区域的边缘,将方形监控区域内均匀分成多个边长为λ的正方形格栅,设定某一格栅中心坐标为目标节点的初始位置,设ahl为目标节点在t时刻位于第h行第l列格栅内的累积概率且初始为零,所述i为1,2,3,……N,所述t=1时刻,2时刻,3时刻……;
步骤2:从t=1时刻起,在t时刻,目标节点连续发送若干数据包,锚节点si接收相应的RSS值并计算与目标节点之间的路径损耗Pit(dit),然后将路径损耗Pit(dit)和锚节点si各自的ID发送给计算机;
步骤3:计算t-1时刻目标节点所在格栅周围一层或多层中格栅gk的中心坐标,所述k为从1到(1+2*layer)2之间的整数,所述layer是t-1时刻目标节点所在格栅周围的层数,layer是大于
Figure FDA0002222162980000011
的最小整数;
式中:velocity为目标节点运动的最大速度,cycle为定位周期时长,λ为所述正方形格栅的边长;
步骤4:计算锚节点si与格栅gk中心坐标之间的距离dik以及路径损耗Pik(dik);
步骤5:计算路径损耗Pit(dit)和Pik(dik)的绝对误差,找到k个绝对误差中最小的两个并分别将其对应格栅的ahl值加1;
步骤6:找到ahl值最大的格栅,该格栅的中心坐标即为目标节点在时刻t的位置坐标。
CN201710532366.7A 2017-07-03 2017-07-03 基于格栅累积概率的无线传感器网络节点定位方法 Expired - Fee Related CN107295635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710532366.7A CN107295635B (zh) 2017-07-03 2017-07-03 基于格栅累积概率的无线传感器网络节点定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710532366.7A CN107295635B (zh) 2017-07-03 2017-07-03 基于格栅累积概率的无线传感器网络节点定位方法

Publications (2)

Publication Number Publication Date
CN107295635A CN107295635A (zh) 2017-10-24
CN107295635B true CN107295635B (zh) 2020-01-10

Family

ID=60099339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710532366.7A Expired - Fee Related CN107295635B (zh) 2017-07-03 2017-07-03 基于格栅累积概率的无线传感器网络节点定位方法

Country Status (1)

Country Link
CN (1) CN107295635B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108769898B (zh) * 2018-05-16 2020-12-01 辽宁师范大学 基于分层射频成像的无线网络被动定位方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209382A (zh) * 2011-05-18 2011-10-05 杭州电子科技大学 一种基于rssi的无线传感器网络节点定位方法
CN102427603A (zh) * 2012-01-13 2012-04-25 哈尔滨工业大学 基于定位误差估计的wlan室内移动用户定位方法
CN103118333A (zh) * 2013-01-25 2013-05-22 河南科技大学 基于相似度的无线传感器网络移动节点定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028085B2 (en) * 2014-07-31 2018-07-17 Arizona Board Of Regents On Behalf Of Arizona State University Distributed location detection in wireless sensor networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209382A (zh) * 2011-05-18 2011-10-05 杭州电子科技大学 一种基于rssi的无线传感器网络节点定位方法
CN102427603A (zh) * 2012-01-13 2012-04-25 哈尔滨工业大学 基于定位误差估计的wlan室内移动用户定位方法
CN103118333A (zh) * 2013-01-25 2013-05-22 河南科技大学 基于相似度的无线传感器网络移动节点定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Grid-Based Improved Maximum Likelihood Estimation for Dynamic Localization of Mobile Robots;Feng Sheng;《International Journal of Distributed Sensor Networks》;20140302;全文 *

Also Published As

Publication number Publication date
CN107295635A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
US7589672B2 (en) Method for determining positional data
KR20200087753A (ko) 채널 응답 특성들에 기반한 모션 로컬화
Van Haute et al. The evarilos benchmarking handbook: Evaluation of rf-based indoor localization solutions
CN104394588A (zh) 基于Wi-Fi指纹和多维尺度分析的室内定位方法
CN104581943A (zh) 用于分布式无线传感网络的节点定位方法
US20180120412A1 (en) System and Method of Passively Tracking Moving Object Within Structure
Gu et al. Fuzzy logic based localisation in wireless sensor networks for disaster environments
CN107295635B (zh) 基于格栅累积概率的无线传感器网络节点定位方法
CN110278525B (zh) 一种高精度室内无线定位方法
An et al. Doppler effect on target tracking in wireless sensor networks
Geng et al. A comparative study of mobility models in the performance evaluation of MCL
Nguyen et al. LEMOn: wireless localization for IoT employing a location-unaware mobile unit
Cavalcanti et al. On improving temporal and spatial mobility metrics for wireless ad hoc networks
Destiarti et al. Modified iterated extended Kalman filter for mobile cooperative tracking system
CN111201441A (zh) 检测网络中的位置
Anand et al. Improving the performance of RSSI based indoor localization techniques using neural networks
Janapati et al. Indoor localization of cooperative WSN using PSO assisted AKF with optimum references
Fahama et al. An Experimental Comparison of RSSI-Based Indoor Localization Techniques Using ZigBee Technology
CN109884587B (zh) 一种用于雾计算环境的无线传感器网络定位方法
Wang et al. A mobile localization method for wireless sensor network in mixed los/nlos environments
Panangadan et al. Data segmentation for region detection in a sensor network
Lei et al. Robust cooperative indoor localization based on reliability evaluation
Sivakumar et al. Evolutionary approaches for minimising error in localisation of wireless sensor networks
Shao et al. The research of Monte Carlo localization algorithm based on received signal strength
Vijayakumar et al. A particle filter based train localization scheme using wireless sensor networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110

Termination date: 20200703