CN107294121A - 一种储能系统典型工况曲线的获取方法及系统 - Google Patents

一种储能系统典型工况曲线的获取方法及系统 Download PDF

Info

Publication number
CN107294121A
CN107294121A CN201610222049.0A CN201610222049A CN107294121A CN 107294121 A CN107294121 A CN 107294121A CN 201610222049 A CN201610222049 A CN 201610222049A CN 107294121 A CN107294121 A CN 107294121A
Authority
CN
China
Prior art keywords
mrow
energy
storage system
power
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610222049.0A
Other languages
English (en)
Other versions
CN107294121B (zh
Inventor
李相俊
任杰
杨锡运
惠东
贾学翠
刘家亮
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610222049.0A priority Critical patent/CN107294121B/zh
Publication of CN107294121A publication Critical patent/CN107294121A/zh
Application granted granted Critical
Publication of CN107294121B publication Critical patent/CN107294121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种储能系统典型工况曲线的获取方法及系统,方法读取数据;确定或读取储能系统的充放电功率数据,组成充放电功率矩阵;得到特征功率值向量;确定储能系统的典型功率值;挖掘并整合所有时刻的典型功率值,得到储能系统典型工况曲线。系统包括相互通信的通讯模块、数据存储与管理模块、平滑控制器模块及典型工况曲线挖掘模块。本发明提出的方法及系统实现对储能系统运行特征曲线的提取与概括,实现对于储能系统充放功率情况的整体认知,辅助解决诸如容量配置等问题,利用所提取的典型工况曲线可以压缩数据量,节省计算量,进而实现了对新能源与储能混合发电系统的典型工况的准确获取,提高了新能源与储能混合发电系统的运行可靠性及稳定性。

Description

一种储能系统典型工况曲线的获取方法及系统
技术领域
本发明涉及大规模储能技术,能源互联网以及数据挖掘领域,具体涉及一种储能系统典型工况曲线的获取方法及系统。
背景技术
可再生能源发电的波动性、间歇性和不可预知性会给现有电力系统的运行带来一定冲击。储能系统具有快速响应和动态调节能力,可以有效提高新能源电力系统的友好性。储能系统配置在发电侧时,可用于平抑可再生能源发电的短时功率波动,跟踪调度计划出力等应用场景,从而改善可再生能源发电接入电网的电能品质,满足新能源的灵活接入;储能系统配置在配用电侧时,可以优化负荷特性,进行削峰填谷,提高系统自身调节能力,实现对需求则管理并获得经济效益。
目前对于储能系统充放功率的研究主要集中于优化控制与容量配置两大方面,而对于典型工况曲线的挖掘、提炼与分析方面的研究工作较少。另外,少有的关于典型工况曲线挖掘的研究主要集中在电动汽车\混合电动汽车工况分析上。例如通过求出动力电池功率的分布函数和概率分布,然后随机产生动力电池充放电功率的典型工况曲线挖掘方法。但该方法随机产生电池的充放电功率,仅考虑典型工况曲线与实际工况曲线在概率分布上的一致性,未考虑典型工况曲线与实际工况曲线在具体时刻取值的一致性,导致典型工况曲线与实际工况曲线在时间序列上差别较大。
电力储能系统参与提高新能源发电并网友好性方面的相关应用时,储能系统整体需要满足新能源发电从秒级至分钟级的不同时间尺度响应与控制要求,同时也要考虑参与新能源发电出力平滑、跟踪发电出力计划、参与系统调频、参与暂态电压支撑等多目标并网应用需求。因此,上述车用动力电池工况曲线挖掘方法等,不适用于电力储能系统的工况分析、挖掘与提炼,亟待研究并提出相关工况曲线,用于储能系统综合特性分析评估与试验、储能系统容量优化配置与经济性评价等相关工作中。
发明内容
有鉴于此,本发明提供的一种储能系统典型工况曲线的获取方法及系统,该方法及系统实现对储能系统运行特征曲线的提取与概括,实现了对新能源与储能混合发电系统的典型工况的准确获取与分析,提高了新能源与储能混合发电系统的运行工况分析与评估能力。
本发明的目的是通过以下技术方案实现的:
一种储能系统典型工况曲线的获取方法,所述方法用于获取能够体现新能源与储能混合发电系统中典型工况的储能系统典型工况曲线,且所述新能源与储能混合发电系统包括电网、接入所述电网的新能源发电系统、储能系统;所述方法包括如下步骤:
步骤1.读取所述新能源发电系统及储能系统的运行数据,其中,所述运行数据中包括新能源实际功率或储能系统充放电功率数据;
步骤2.确定或读取所述储能系统的一个采集时长的充放电功率数据,并组成充放电功率矩阵M;
步骤3.根据所述储能系统的功率值的区间分布特性,得到k时刻的特征充放电功率值向量;
步骤4.确定所述储能系统在k时刻的典型功率值Pk
步骤5.分析并整合所有时刻的典型功率值,得到储能系统典型工况曲线。
优选的,所述步骤2包括:
2-1.当所述运行数据为新能源实际功率时,则采用基于斜率控制的平滑控制策略方法,确定所述储能系统的一个采集时长的充放电功率数据;
2-2.当所述运行数据为储能系统充放电功率数据时,则直接读取所述充放电功率数据;
2-3.将所述充放电功率数据组成充放电功率矩阵Mm×n
式(1)中,m为所述一个采集时长的天数;n为采集时刻的总数;矩阵Mm×n中的元素pgk为第g天k时刻的所述储能系统的功率值,且k=1,2,…,n;g=1,2,…m。
优选的,所述步骤2-1包括:
a.根据所述新能源实际功率P(t),计算平滑前功率时间变化率rp(t)的:
式(2)中,Ph(t)为平滑后功率;Δt为时间间隔;Ph(t-Δt)为t-Δt时刻平滑后功率;t为时刻;
b.比较rp(t)与时间变化率临界值k时刻的大小,判断所述储能系统的充放电操作,并确定充放电功率。
优选的,所述步骤b包括:
b-1.当rp(t)>k时,所述储能系统充电,且所述储能系统在t时刻的充电功率为:
b-2.当rp(t)<-k时,所述储能系统放电,且所述储能系统在t时刻的放电功率为:
b-3.当-k<rp(t)<k时,所述储能系统不出力,并减少充放电次数。
优选的,所述步骤3包括:
3-1.提取m天内k时刻的各所述储能系统充放电功率向量p1k,p2k,…,pmk,组成向量Pk1=[p1k,p2k,…,pmk]T
3-2.从向量Pk1中确定pgk分布最集中的区间,并将该区间作为最大概率分布区间Lopt1
3-3.提取向量Pk1中落在所述最大概率分布区间Lopt1内的功率值p’1k,p’2k,…,p’tk,组成向量并计算分布概率Fk1
式(5)中,tp为向量Ik1中功率值的点数;
3-4.采用遗传算法,以选取特征功率Ek1到向量Ik1中其他元素的欧氏距离最短为原则,根据Ek1的取值区间[p’min,p’max],得到用于获取所述选取特征功率Ek1的寻优目标函数minT:
其中,p’max为向量Ik1的最大值;p’min为向量Ik1的最小值;p'jk为向量Ik1中的各功率值,j为向量Ik1中的某功率值,且j=1、2,…,tp
得到所述选取特征功率Ek1
3-5.从向量Pk1中减去向量Ik1中的功率值,得到新的向量Pk2,得到最大概率分布区间Lopt2和向量Ik2,并计算分布概率Fk2
3-6.判断Fk2与阈值ε大小;
若Fk2小于阈值ε,则k=k+1,即进入寻找下一时刻的典型功率值;
若Fk2大于阈值ε,则返回步骤3-2确定特征功率值Ek2及所有特征功率值Ek,直到Fki小于阈值ε,得到k时刻的特征充放电功率值向量[Ek1,Ek2,…,Ekh]。
优选的,所述步骤3-2包括:
c.确定分布区间L:
L=[x,x+d] (7)
式(7)中,x为所述分布区间的下限,d为所述区间长度;
d.采用遗传算法,根据x的取值区间[pmin,pmax],得到用于求得优化所述分布区间的下限x取值后的最优值xopt1的优化目标函数maxJ:
其中,pmax为向量Pk1最大值,pmin为向量Pk1最小值;
得到优化所述分布区间的下限x取值后的最优值xopt1
e.根据所述最优值xopt1,确定所述最大概率分布区间Lopt1
Lopt1=[xopt1,xopt1+d] (9)。
优选的,所述步骤4包括:
确定所述储能系统在k时刻的典型功率值Pk
式(10)中,i为特征充放电功率值的某点数,h为特征充放电功率值的点数的总数;Eki为第i个特征功率值;Fki为第i个分布概率。
优选的,所述步骤5包括:
分析并依次计算各个时刻的所述储能系统的典型充放功率值P1,P2,…,Pn;得到所述储能系统典型工况曲线Ptypical
Ptypical=[P1,P2,…,Pn] (11)。
一种储能系统典型工况曲线的获取系统,所述系统包括相互通信的通讯模块、数据存储与管理模块、平滑控制器模块及典型工况曲线挖掘模块;
所述通讯模块用数据通讯网络与监控平台及所述数据存储与管理模块通信;
所述数据存储与管理模块向所述平滑控制器模块发送信号及数据;
所述平滑控制器模块向所述数据存储与管理模块及所述典型工况曲线挖掘模块发送数据信号;
所述典型工况曲线挖掘模块生成储能系统典型工况曲线,并向所述数据存储与管理模块发送数据信号。
优选的,所述通讯模块接收新能源与储能混合发电系统的运行数据,向所述监控平台发送新能源出力值和储能单元的功率命令值,且所述监控平台实时监测及控制所述通讯模块;
所述数据存储与管理模块存储和管理新能源发电数据及储能系统运行时的实时数据和历史数据,接受并保存所述储能系统的典型功率值信号;将新能源平滑值和储能电池功率命令值按设定的协议赋给相关接口变量,供所述储能系统的接口平台使用;将新能源发电功率值信号或储能系统充放电功率值信号、储能电池启停信号、储能电池SOC值信号和平滑波动率发送到所述平滑控制器模块;
所述平滑控制器模块首先判断接收信号类型,若为新能源发电功率值信号,则基于斜率控制,根据新能源发电功率值信号、储能电池SOC值信号和平滑波动率,得到新能源出力平滑值和储能系统功率值信号;若为储能系统充放电功率值信号,则直接读取储能系统充放电功率;将新能源出力平滑值和储能系统功率值信号发送到所述数据管理与存储模块,并将储能系统功率值信号发送到所述典型工况曲线挖掘模块;
所述典型工况曲线挖掘模块将所述储能系统功率值信号组成充放电功率矩阵M;基于储能系统功率值的区间分布特性,采用遗传算法,或缺所有分布概率大于阈值ε的概率分布区间;并利用遗传算法得到相应分布区间的特征功率值,得到k时刻的特征充放电功率值向量;对特征充放电功率值向量中元素加权平均,得到k时刻典型功率值;依次计算各个时刻的储能系统典型充放功率值,得到储能系统典型工况曲线,并将所述典型功率值信号发送至所述数据存储与管理模块。
从上述的技术方案可以看出,本发明提供了一种储能系统典型工况曲线的获取方法及系统,方法读取数据;确定或读取储能系统的充放电功率数据,组成充放电功率矩阵;得到特征功率值向量;确定储能系统的典型功率值;挖掘并整合所有时刻的典型功率值,得到储能系统典型工况曲线。系统包括相互通信的通讯模块、数据存储与管理模块、平滑控制器模块及典型工况曲线挖掘模块。本发明提出的方法及系统实现对储能系统运行特征曲线的提取与概括,实现对于储能系统充放功率情况的整体认知,辅助解决诸如容量配置等问题,利用所提取的典型工况曲线可以压缩数据量,节省计算量,进而实现了对新能源与储能混合发电系统的典型工况的准确获取,提高了新能源与储能混合发电系统的运行可靠性及稳定性。
与最接近的现有技术比,本发明提供的技术方案具有以下优异效果:
1、本发明所提供的技术方案中,挖掘确定特定应用场景下的储能系统典型工况曲线是对储能系统运行特征的提取与概括,可以实现对于储能系统充放功率情况的整体认知,进而辅助解决诸如容量配置等问题,利用所提取的典型工况曲线可以压缩数据量,节省计算量。
2、本发明所提供的技术方案,系统及方法具有通用性和可复制性,可推广应用于储能系统参与跟踪发电计划,参与系统调频,削峰填谷等不同应用模式下确定的储能系统充放电功率分析及其典型运行工况曲线的提取与复验等。
3、本发明所提供的技术方案,实现了对新能源与储能混合发电系统的典型工况的准确获取,提高了新能源与储能混合发电系统的运行可靠性及稳定性。
4、本发明提供的技术方案,应用广泛,具有显著的社会效益和经济效益。
附图说明
图1是本发明的一种储能系统典型工况曲线的获取方法的流程图;
图2是本发明的方法中步骤2的流程示意图;
图3是本发明的方法中步骤3的流程示意图;
图4是本发明的一种储能系统典型工况曲线的获取系统的示意图。
其中,10-通讯模块;20-数据存储与管理模块;30-平滑控制器模块;40-典型工况曲线挖掘模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种储能系统典型工况曲线的获取方法,方法用于获取能够体现新能源与储能混合发电系统中典型工况的储能系统典型工况曲线,且新能源与储能混合发电系统包括电网、接入电网的新能源发电系统、储能系统;
包括如下步骤:
步骤1.读取新能源发电系统及储能系统的运行数据,其中,运行数据中包括新能源实际功率或储能系统充放电功率;
步骤2.确定或读取储能系统的一个采集时长的充放电功率数据,并组成充放电功率矩阵M;
步骤3.根据储能系统的功率值的区间分布特性,得到k时刻的特征充放电功率值向量;
步骤4.确定储能系统在k时刻的典型功率值Pk
步骤5.分析并整合所有时刻的典型功率值,得到储能系统典型工况曲线。
如图2所示,步骤2包括:
2-1.当所述运行数据为新能源实际功率时,则采用基于斜率控制的平滑控制策略方法,确定所述储能系统的一个采集时长的充放电功率数据;
2-2.当所述运行数据为储能系统充放电功率数据时,则直接读取所述充放电功率数据;
2-3.将充放电功率数据组成充放电功率矩阵Mm×n
式(1)中,m为一个采集时长的天数;n为采集时刻的总数;矩阵Mm×n中的元素pgk为第g天k时刻的储能系统的功率值,且k=1,2,…,n;g=1,2,…m。
其中,步骤2-1包括:
a.根据新能源实际功率P(t),计算平滑前功率时间变化率rp(t)的:
式(2)中,Ph(t)为平滑后功率;Δt为时间间隔;Ph(t-Δt)为t-Δt时刻平滑后功率;t为时刻;
b.比较rp(t)与时间变化率临界值k时刻的大小,判断储能系统的充放电操作,并确定充放电功率。
其中,步骤b包括:
b-1.当rp(t)>k时,储能系统充电,且储能系统在t时刻的充电功率为:
b-2.当rp(t)<-k时,储能系统放电,且储能系统在t时刻的放电功率为:
b-3.当-k<rp(t)<k时,储能系统不出力,并减少充放电次数。
如图3所示,步骤3包括:
3-1.提取m天内k时刻的各储能系统充放电功率向量p1k,p2k,…,pmk,组成向量Pk1=[p1k,p2k,…,pmk]T
3-2.从向量Pk1中确定pgk分布最集中的区间,并将该区间作为最大概率分布区间Lopt1
3-3.提取向量Pk1中落在最大概率分布区间Lopt1内的功率值p’1k,p’2k,…,p’tk,组成向量并计算分布概率Fk1
式(5)中,tp为向量Ik1中功率值的点数;
3-4.采用遗传算法,以选取特征功率Ek1到向量Ik1中其他元素的欧氏距离最短为原则,根据Ek1的取值区间[p’min,p’max],得到用于获取选取特征功率Ek1的寻优目标函数minT:
其中,p’max为向量Ik1的最大值;p’min为向量Ik1的最小值;p'jk为向量Ik1中的各功率值,j为向量Ik1中的某功率值,且j=1、2,…,tp
得到选取特征功率Ek1
3-5.从向量Pk1中减去向量Ik1中的功率值,得到新的向量Pk2,得到最大概率分布区间Lopt2和向量Ik2,并计算分布概率Fk2
3-6.判断Fk2与阈值ε大小;
若Fk2小于阈值ε,则k=k+1,即进入寻找下一时刻的典型功率值;
若Fk2大于阈值ε,则返回步骤3-2确定特征功率值Ek2及所有特征功率值Ek,直到Fki小于阈值ε,得到k时刻的特征充放电功率值向量[Ek1,Ek2,…,Ekh]。
其中,步骤3-2包括:
c.确定分布区间L:
L=[x,x+d] (7)
式(7)中,x为分布区间的下限,d为区间长度;
d.采用遗传算法,根据x的取值区间[pmin,pmax],得到用于求得优化分布区间的下限x取值后的最优值xopt1的优化目标函数maxJ:
其中,pmax为向量Pk1最大值,pmin为向量Pk1最小值;
得到优化分布区间的下限x取值后的最优值xopt1
e.根据最优值xopt1,确定最大概率分布区间Lopt1
Lopt1=[xopt1,xopt1+d] (9)。
其中,步骤4包括:
确定储能系统在k时刻的典型功率值Pk
式(10)中,i为特征充放电功率值的某点数,h为特征充放电功率值的点数的总数;Eki为第i个特征功率值;Fki为第i个分布概率。
其中,步骤5包括:
分析并依次计算各个时刻的储能系统的典型充放功率值P1,P2,…,Pn;得到储能系统典型工况曲线Ptypical
Ptypical=[P1,P2,…,Pn] (11)。
如图4所示,本发明提供一种储能系统典型工况曲线的获取系统,系统包括相互通信的通讯模块10、数据存储与管理模块20、平滑控制器模块30及典型工况曲线挖掘模块40;
通讯模块10用数据通讯网络与未在图中显示的监控平台及数据存储与管理模块通信20;
数据存储与管理模块20向平滑控制器模块30发送信号及数据;
平滑控制器模块30向数据存储与管理模块20及典型工况曲线挖掘模块40发送数据信号;
典型工况曲线挖掘模块40生成储能系统典型工况曲线,并向数据存储与管理模块20发送数据信号;
通过设置在工控机的通讯模块10、数据存储与管理模块20、平滑控制器模块30及典型工况曲线挖掘模块40实现的。
通讯模块10负责接收新能源及储能系统相关运行数据,以及向监控平台发送新能源出力值和储能单元的功率命令值。监控平台设置在通讯模块左侧,与通讯模块连接,实时控制和监测控制通讯模块。
数据存储与管理模块20用于存储和管理新能源发电相关数据及储能系统运行时的实时数据和历史数据,接受并保存储能系统典型功率值信号;而且负责将新能源平滑值和储能电池功率命令值按事先设定的协议赋给相关接口变量,供电池储能系统接口平台使用;将新能源发电功率值信号或储能系统充放电功率值信号、储能电池启停信号、储能电池SOC值信号和平滑波动率发送到平滑控制器模块。
平滑控制器模块30,该平滑控制器模块首先判断接收信号类型,若为新能源发电功率值信号,则基于斜率控制,根据新能源发电功率值信号、储能电池SOC值信号和平滑波动率,得到新能源出力平滑值和储能系统功率值信号;若为储能系统充放电功率值信号,则直接读取储能系统充放电功率;将新能源出力平滑值和储能系统功率值信号发送到所述数据管理与存储模块,并将储能系统功率值信号发送到所述典型工况曲线挖掘模块;
典型工况曲线挖掘模块40用于挖掘储能系统典型工况曲线,并将典型功率值信号传递给数据存储与管理模块。
该模块从平滑控制器模块获得储能系统功率值信号,组成充放电功率矩阵M。基于储能系统功率值的区间分布特性,采用遗传算法,寻找所有分布概率大于阈值ε的概率分布区间;并利用遗传算法得到相应分布区间的特征功率值,得到k时刻的特征充放电功率值向量。对特征充放电功率值向量中元素加权平均,得到k时刻典型功率值。依次计算各个时刻的储能系统典型充放功率值,得到储能系统典型工况曲线。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,而这些未脱离本发明精神和范围的任何修改或者等同替换,其均在申请待批的本发明的权利要求保护范围之内。

Claims (10)

1.一种储能系统典型工况曲线的获取方法,所述方法用于获取能够体现新能源与储能混合发电系统中典型工况的储能系统典型工况曲线,且所述新能源与储能混合发电系统包括电网、接入所述电网的新能源发电系统、储能系统;其特征在于,所述方法包括如下步骤:
步骤1.读取所述新能源发电系统及储能系统的运行数据,其中,所述运行数据中包括新能源实际功率或储能系统充放电功率数据;
步骤2.确定或读取所述储能系统的一个采集时长的充放电功率数据,并组成充放电功率矩阵M;
步骤3.根据所述储能系统的功率值的区间分布特性,得到k时刻的特征充放电功率值向量;
步骤4.确定所述储能系统在k时刻的典型功率值Pk
步骤5.分析并整合所有时刻的典型功率值,得到储能系统典型工况曲线。
2.如权利要求1所述的方法,其特征在于,所述步骤2包括:
2-1.当所述运行数据为新能源实际功率时,则采用基于斜率控制的平滑控制策略方法,确定所述储能系统的一个采集时长的充放电功率数据;
2-2.当所述运行数据为储能系统充放电功率数据时,则直接读取所述充放电功率数据;
2-3.将所述充放电功率数据组成充放电功率矩阵Mm×n
式(1)中,m为所述一个采集时长的天数;n为采集时刻的总数;矩阵Mm×n中的元素pgk为第g天k时刻的所述储能系统的功率值,且k=1,2,…,n;g=1,2,…m。
3.如权利要求2所述的方法,其特征在于,所述步骤2-1包括:
a.根据所述新能源实际功率P(t),计算平滑前功率时间变化率rp(t)的:
<mrow> <msub> <mi>r</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式(2)中,Ph(t)为平滑后功率;Δt为时间间隔;Ph(t-Δt)为t-Δt时刻平滑后功率;t为时刻;
b.比较rp(t)与时间变化率临界值k时刻的大小,判断所述储能系统的充放电操作,并确定充放电功率。
4.如权利要求3所述的方法,其特征在于,所述步骤b包括:
b-1.当rp(t)>k时,所述储能系统充电,且所述储能系统在t时刻的充电功率为:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>-</mo> <msub> <mi>r</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
b-2.当rp(t)<-k时,所述储能系统放电,且所述储能系统在t时刻的放电功率为:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> <mi>dise</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>k</mi> <mo>-</mo> <msub> <mi>r</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
b-3.当-k<rp(t)<k时,所述储能系统不出力,并减少充放电次数。
5.如权利要求4所述的方法,其特征在于,所述步骤3包括:
3-1.提取m天内k时刻的各所述储能系统充放电功率向量p1k,p2k,…,pmk,组成向量Pk1=[p1k,p2k,…,pmk]T
3-2.从向量Pk1中确定pgk分布最集中的区间,并将该区间作为最大概率分布区间Lopt1
3-3.提取向量Pk1中落在所述最大概率分布区间Lopt1内的功率值p’1k,p’2k,…,p’tk,组成向量并计算分布概率Fk1
<mrow> <msub> <mi>F</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msup> <mi>t</mi> <mi>p</mi> </msup> <mi>m</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
式(5)中,tp为向量Ik1中功率值的点数;
3-4.采用遗传算法,以选取特征功率Ek1到向量Ik1中其他元素的欧氏距离最短为原则,根据Ek1的取值区间[p’min,p’max],得到用于获取所述选取特征功率Ek1的寻优目标函数minT:
<mrow> <mi>min</mi> <mi> </mi> <mi>T</mi> <mo>=</mo> <mi>min</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>t</mi> <mi>p</mi> </msup> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <msup> <mi>p</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
其中,p’max为向量Ik1的最大值;p’min为向量Ik1的最小值;p'jk为向量Ik1中的各功率值,j为向量Ik1中的某功率值,且j=1、2,…,tp
得到所述选取特征功率Ek1
3-5.从向量Pk1中减去向量Ik1中的功率值,得到新的向量Pk2,得到最大概率分布区间Lopt2和向量Ik2,并计算分布概率Fk2
3-6.判断Fk2与阈值ε大小;
若Fk2小于阈值ε,则k=k+1,即进入寻找下一时刻的典型功率值;
若Fk2大于阈值ε,则返回步骤3-2确定特征功率值Ek2及所有特征功率值Ek,直到Fki小于阈值ε,得到k时刻的特征充放电功率值向量[Ek1,Ek2,…,Ekh]。
6.如权利要求5所述的方法,其特征在于,所述步骤3-2包括:
c.确定分布区间L:
L=[x,x+d] (7)
式(7)中,x为所述分布区间的下限,d为所述区间长度;
d.采用遗传算法,根据x的取值区间[pmin,pmax],得到用于求得优化所述分布区间的下限x取值后的最优值xopt1的优化目标函数maxJ:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>max</mi> <mi> </mi> <mi>J</mi> <mo>=</mo> <mi>max</mi> <mo>&amp;Sigma;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mi>g</mi> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mi>g</mi> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> <mi>x</mi> <mo>&amp;le;</mo> <msub> <mi>p</mi> <mrow> <mi>g</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>x</mi> <mo>+</mo> <mi>d</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
其中,pmax为向量Pk1最大值,pmin为向量Pk1最小值;
得到优化所述分布区间的下限x取值后的最优值xopt1
e.根据所述最优值xopt1,确定所述最大概率分布区间Lopt1
Lopt1=[xopt1,xopt1+d] (9)。
7.如权利要求6所述的方法,其特征在于,所述步骤4包括:
确定所述储能系统在k时刻的典型功率值Pk
<mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>h</mi> </munderover> <mfrac> <msub> <mi>F</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>h</mi> </munderover> <msub> <mi>F</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <msub> <mi>E</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
式(10)中,i为特征充放电功率值的某点数,h为特征充放电功率值的点数的总数;Eki为第i个特征功率值;Fki为第i个分布概率。
8.如权利要求7所述的方法,其特征在于,所述步骤5包括:
分析并依次计算各个时刻的所述储能系统的典型充放功率值P1,P2,…,Pn;得到所述储能系统典型工况曲线Ptypical
Ptypical=[P1,P2,…,Pn] (11)。
9.一种储能系统典型工况曲线的获取系统,其特征在于,所述系统包括相互通信的通讯模块、数据存储与管理模块、平滑控制器模块及典型工况曲线挖掘模块;
所述通讯模块用数据通讯网络与监控平台及所述数据存储与管理模块通信;
所述数据存储与管理模块向所述平滑控制器模块发送信号及数据;
所述平滑控制器模块向所述数据存储与管理模块及所述典型工况曲线挖掘模块发送数据信号;
所述典型工况曲线挖掘模块生成储能系统典型工况曲线,并向所述数据存储与管理模块发送数据信号。
10.如权利要求9所述的储能系统典型工况曲线的获取系统,其特征在于,所述通讯模块接收新能源与储能混合发电系统的运行数据,向所述监控平台发送新能源出力值和储能单元的功率命令值,且所述监控平台实时监测及控制所述通讯模块;
所述数据存储与管理模块存储和管理新能源发电数据及储能系统运行时的实时数据和历史数据,接受并保存所述储能系统的典型功率值信号;将新能源平滑值和储能电池功率命令值按设定的协议赋给相关接口变量,供所述储能系统的接口平台使用;将新能源发电功率值信号或储能系统充放电功率值信号、储能电池启停信号、储能电池SOC值信号和平滑波动率发送到所述平滑控制器模块;
所述平滑控制器模块首先判断接收信号类型,若为新能源发电功率值信号,则基于斜率控制,根据新能源发电功率值信号、储能电池SOC值信号和平滑波动率,得到新能源出力平滑值和储能系统功率值信号;若为储能系统充放电功率值信号,则直接读取储能系统充放电功率;将新能源出力平滑值和储能系统功率值信号发送到所述数据管理与存储模块,并将储能系统功率值信号发送到所述典型工况曲线挖掘模块;
所述典型工况曲线挖掘模块将所述储能系统功率值信号组成充放电功率矩阵M;基于储能系统功率值的区间分布特性,采用遗传算法,或缺所有分布概率大于阈值ε的概率分布区间;并利用遗传算法得到相应分布区间的特征功率值,得到k时刻的特征充放电功率值向量;对特征充放电功率值向量中元素加权平均,得到k时刻典型功率值;依次计算各个时刻的储能系统典型充放功率值,得到储能系统典型工况曲线,并将所述典型功率值信号发送至所述数据存储与管理模块。
CN201610222049.0A 2016-04-11 2016-04-11 一种储能系统典型工况曲线的获取方法及系统 Active CN107294121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610222049.0A CN107294121B (zh) 2016-04-11 2016-04-11 一种储能系统典型工况曲线的获取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610222049.0A CN107294121B (zh) 2016-04-11 2016-04-11 一种储能系统典型工况曲线的获取方法及系统

Publications (2)

Publication Number Publication Date
CN107294121A true CN107294121A (zh) 2017-10-24
CN107294121B CN107294121B (zh) 2021-04-06

Family

ID=60095720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610222049.0A Active CN107294121B (zh) 2016-04-11 2016-04-11 一种储能系统典型工况曲线的获取方法及系统

Country Status (1)

Country Link
CN (1) CN107294121B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736491A (zh) * 2018-05-10 2018-11-02 中国电力科学研究院有限公司 一种电力系统调频领域储能最优容量的评估方法及系统
CN112668848A (zh) * 2020-12-18 2021-04-16 北京交通大学 基于工况分析的现代有轨电车混合储能系统能量管理方法
CN114050570A (zh) * 2021-11-17 2022-02-15 许继集团有限公司 一种源网荷储系统协同调控方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376504A (zh) * 2014-11-06 2015-02-25 国家电网公司 一种基于解析法的配电系统概率可靠性评估方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376504A (zh) * 2014-11-06 2015-02-25 国家电网公司 一种基于解析法的配电系统概率可靠性评估方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIANGJUN LI ; DONG HUI ; XIAOKANG LAI: "Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations", 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》 *
汪海蛟 等: "应用于平抑风电功率波动的储能系统控制与配置综述", 《电力系统自动化》 *
韩晓娟 等: "确定应用场景下的储能系统典型运行曲线挖掘", 《中国电机工程学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736491A (zh) * 2018-05-10 2018-11-02 中国电力科学研究院有限公司 一种电力系统调频领域储能最优容量的评估方法及系统
CN108736491B (zh) * 2018-05-10 2021-08-31 中国电力科学研究院有限公司 一种电力系统调频领域储能最优容量的评估方法及系统
CN112668848A (zh) * 2020-12-18 2021-04-16 北京交通大学 基于工况分析的现代有轨电车混合储能系统能量管理方法
CN112668848B (zh) * 2020-12-18 2024-02-09 北京交通大学 基于工况分析的现代有轨电车混合储能系统能量管理方法
CN114050570A (zh) * 2021-11-17 2022-02-15 许继集团有限公司 一种源网荷储系统协同调控方法及装置
CN114050570B (zh) * 2021-11-17 2024-03-01 许继集团有限公司 一种源网荷储系统协同调控方法及装置

Also Published As

Publication number Publication date
CN107294121B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Liu et al. Optimal sizing of a wind-energy storage system considering battery life
Meng et al. Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system
Sardi et al. Strategic allocation of community energy storage in a residential system with rooftop PV units
CN102986109B (zh) 电力控制方法、程序以及电力控制装置
CN103078340B (zh) 用于优化微网联络线功率的混合储能容量优化方法
CN103337890B (zh) 一种电动出租车充电站有序充电系统及方法
CN106972516A (zh) 一种适用于微网的多类型储能多级控制方法
CN103187750B (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
CN108062619B (zh) 一种轨道车辆车地一体化容量配置方法及装置
CN104917173A (zh) 适应配电网大容量负荷转移的配电网优化方法
CN113022361B (zh) 电力需求响应条件下基于充电桩的有序充电方法
Teng et al. Potential value of energy storage in the UK electricity system
CN109583706A (zh) 配电系统接纳电动汽车能力的多元优化评估方法及系统
CN105141000A (zh) 一种电动汽车充放电控制方法
CN113580994A (zh) 一种电动汽车集成充电智能趋优方法及其系统
CN107294121A (zh) 一种储能系统典型工况曲线的获取方法及系统
CN104795830A (zh) 一种利用多类型储能系统跟踪发电计划出力的控制方法
CN106779340A (zh) 一种储能系统典型工况曲线的提取方法及其评价系统
Wu et al. PEV-based reactive power compensation for wind DG units: A stackelberg game approach
CN104767259B (zh) 电力系统自适应超级电容‑蓄电池混合储能系统
Nafi et al. Effect of electric vehicle fast charging station on residential distribution network in bangladesh
Amir et al. Integration of EVs aggregator with microgrid and impact of V2G power on peak regulation
CN109560577A (zh) 一种交直流混合分布式可再生能源系统的控制方法及系统
CN107776433A (zh) 一种电动汽车群的充放电优化控制方法
CN115000985A (zh) 一种用户侧分布式储能设施聚合管控方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant