CN107290793A - 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法 - Google Patents

一种基于加权多策略蛙跳算法的超高密度电法并行反演方法 Download PDF

Info

Publication number
CN107290793A
CN107290793A CN201710411030.5A CN201710411030A CN107290793A CN 107290793 A CN107290793 A CN 107290793A CN 201710411030 A CN201710411030 A CN 201710411030A CN 107290793 A CN107290793 A CN 107290793A
Authority
CN
China
Prior art keywords
frog
group
algorithm
mould
local search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710411030.5A
Other languages
English (en)
Other versions
CN107290793B (zh
Inventor
江沸菠
董莉
谢民主
李炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201710411030.5A priority Critical patent/CN107290793B/zh
Publication of CN107290793A publication Critical patent/CN107290793A/zh
Application granted granted Critical
Publication of CN107290793B publication Critical patent/CN107290793B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于加权多策略蛙跳算法的超高密度电法并行反演方法。该方法通过在蛙跳算法的局部搜索中加入权重系数来增强算法跳出局部极值的能力,通过将最小二乘搜索策略引入到蛙跳算法的局部搜索中来实现多策略的局部搜索,利用最小二乘法的定向搜索特性来提高算法的局部收敛速度,采用CUDA技术并行计算各青蛙的适应度和各模因组的局部搜索过程,提高算法的总体计算效率。本方法能够根据超高密度电法的特征来进行优化反演,能够显著提高了超高密度电法反演的质量和效率,具有很强的实用性。

Description

一种基于加权多策略蛙跳算法的超高密度电法并行反演方法
技术领域
本发明涉及地球物理电法反演领域,特别涉及一种基于加权多策略蛙跳算法的超高密度电法并行反演方法。
背景技术
超高密度电法是在高密度电法基础上发展起来的一种勘探方法,它利用多通道阵列电极系测量系统,在地表或井-地布设阵列电极系,采集任意电极间关于地下电阻率信息的大量实测数据,并利用先进的正反演方法重建精确的电阻率图像。超高密度电法是一种成本低、采集效率高、信息丰富和解释精度高的新型勘探方法,能够满足对地质体进行高精度定位的工程需求。
然而,超高密度电法反演是一个复杂的非线性函数寻优过程,具有高维和非凸的特性。目前针对超高密度电法资料处理和解释的方法多采用2.5 维线性或拟线性反演方法,存在着依赖初始模型、易陷入局部极值、偏导数矩阵求解困难等问题。非线性反演方法能够较好地解决以上问题,因此利用遗传算法、粒子群算法和进化算法等非线性优化算法进行非线性反演已经成为了对地质资料进行高精度解释的重要途径。但是,超高密度电法的采集数据量大,反演参数多,模型搜索空间大,采用非线性反演方法的收敛速度慢,计算效率低。蛙跳算法是一种新型的群体进化算法,兼具文化基因算法和粒子群算法的优点,全局搜索和局部搜索同时进行,收敛快且易于并行实现,是解决非线性反演方法计算效率问题的一种新的途径。
因此,结合超高密度电法的特点,对蛙跳算法进行改进,增强算法跳出局部极值的能力,提高反演算法的计算效率,快速地求解超高密度电法的反问题,获得高质量的解释结果,具有重要的理论意义和广泛的应用前景。
发明内容
本发明提供一种基于加权多策略蛙跳算法的超高密度电法并行反演方法,该方法通过在局部搜索中加入权重系数来增强算法跳出局部极值的能力,通过将最小二乘搜索策略引入到蛙跳算法的局部搜索中来实现多策略的局部搜索,提高算法的局部收敛速度,最后采用CUDA技术并行计算各青蛙的适应度和各模因组的局部搜索过程,提高算法的总体计算效率。
为实现上述目标,本发明所采用的技术方案如下:
一种基于加权多策略蛙跳算法的超高密度电法并行反演方法,包括以下步骤:
(1)根据反演的规模初始化蛙跳算法中青蛙的种群规模p,模因组个数m和组内迭代次数iter l ,随机初始化蛙群,其中,每只青蛙采用实数编码,值由勘探区域的模型参数组成;
(2)根据下式计算蛙群中各个青蛙的适应度:
式中Φ d 为数据拟合误差,Φ M 为正则化项,d pre 为预测数据矢量,d obs 为观测数据矢量,λ为正则化系数,C为粗糙度矩阵,M为各青蛙代表的模型参数矢量;
(3)将蛙群内青蛙按照个体适应度降序排列,并保存全局适应度最优的青蛙X g
(4)将整个蛙群分成m个模因组,每个模因组含n只青蛙,满足关系p=m×n,具体的分组方式如下式:
其中G i 为第i个模因组,每个模因组内具有最优和最差适应度的青蛙分别保存为X b X w
(5)蛙群分组后分别对各模因组内最差青蛙X w 进行局部搜索,其局部搜索的策略为:
式中F为权重系数,rand为[0,1]间的独立随机数,t为当前迭代次数,A为雅克比矩阵;当进行局部搜索时,首先采用策略1向模因组内最优解X b (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则采用策略2向全局最优解X g (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则计算雅克比矩阵A,并采用策略3向最小二乘解的方向更新青蛙,步骤(5)反复迭代直至达到组内迭代次数iter l
(6)当各模因组完成局部搜索后,将所有模因组内的青蛙进行全局混洗,即重新混合排序,并更新全局最优青蛙X g
(7)判断是否满足算法的终止条件,如果为否,则跳转至步骤(4),如果为是,则跳转至步骤(8);
(8)将算法此时的全局最优青蛙X g 作为反演结果输出。
本发明的方法采用基于CUDA技术的GPU并行计算实现,其中蛙跳算法的整体反演过程为主函数,在CPU中采用串行计算的方式实现;各个青蛙的适应度计算过程(步骤2)和各个模因组的局部搜索过程(步骤5)计算量大且具备并行性,因此在GPU中采用并行计算的方式实现。
通过上述过程,本发明的方法显著提高了超高密度电法反演的质量和效率,具体表现在:
(1)超高密度电法的采集数据量大,解空间复杂,传统反演方法极易陷入局部极值。采用权重系数改进蛙跳算法的局部搜索过程,能够扩大X w 在进化时的搜索范围,促使反演算法跳出局部极值,搜索到高质量的全局解,得到更准确的反演结果;
(2)超高密度电法反演的计算规模大,收敛缓慢和计算效率低。通过引入最小二乘搜索策略来优化算法的收敛过程。最小二乘搜索是一种高效率的定向搜索,取代蛙跳算法中的随机搜索后,能够提高局部搜索的收敛速度,促使算法快速收敛;
(3)利用蛙跳算法的并行特征,采用CUDA技术进行GPU并行加速,能够高效地进行细粒度并行计算,使得算法的计算效率整体显著提高。
附图说明
图1 是本发明基于加权多策略蛙跳算法的超高密度电法并行反演方法的流程图。
图2是本发明适应度计算的流程图。
图3是本发明多策略局部搜索的流程图。
具体实施方式
下面结合附图对本发明的实施方式进行详细阐述,附图作为本发明的一部分,表示了本发明的一种具体实现。
如图1所示,本发明提供了一种基于加权多策略蛙跳算法的超高密度电法并行反演方法,具体包括以下步骤:
(1)根据反演的规模初始化蛙跳算法中青蛙的维数d,种群规模p,模因组个数m和组内迭代次数iter l ,随机初始化蛙群,其中,每只青蛙采用实数编码,值由勘探区域的模型参数组成;
(2)根据下式计算蛙群中各个青蛙的适应度:
式中Φ d 为数据拟合误差,Φ M 为正则化项,d pre 为预测数据矢量,d obs 为观测数据矢量,λ为正则化系数,C为粗糙度矩阵,M为各青蛙代表的模型参数矢量;具体的适应度计算过程如图2所示,首先根据青蛙的模型参数矢量M调用有限体积法正演得到各电极的电位矩阵,然后根据超高密度电法的电极排列方式计算预测数据矢量d pre ,并根据数据预测矢量d pre 和已知的观测数据矢量d obs 计算数据拟合误差,然后根据粗糙度矩阵C和模型参数矢量M计算正则化项,最后根据数据拟合误差Φ d 和正则化项Φ M 结合正则化系数λ计算青蛙的适应度
(3)将蛙群内青蛙按照个体适应度降序排列,并保存全局适应度最优的青蛙X g
(4)将整个蛙群分成m个模因组,每个模因组含n只青蛙,满足关系p=m×n,具体的分组方式如下式:
其中G i 为第i个模因组,每个模因组内具有最优和最差适应度的青蛙分别保存为X b X w
(5)蛙群分组后分别对各模因组内最差青蛙X w 进行局部搜索,其局部搜索的策略为:
式中F为权重系数,用于扩大X w 的搜索空间,增强算法跳出局部极值的能力,rand为[0,1]间的独立随机数,t为当前迭代次数,A为雅克比矩阵;如图3所示,当进行模因组内局部搜索时,首先采用策略1向模因组内最优解X b (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则采用策略2向全局最优解X g (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则计算雅克比矩阵A,并采用策略3向最小二乘解的方向更新青蛙,结束本次模因组内局部搜索;最后判断是否达到组内局部搜索迭代次数iter l ,如果为否,则继续执行步骤(5),如果为是,则跳转至步骤(6);
(6)当各模因组完成局部搜索后,将所有模因组内的青蛙进行全局混洗,即重新混合排序,并更新全局最优青蛙X g
(7)判断是否满足算法的终止条件,如果为否,则跳转至步骤(4),如果为是,则跳转至步骤(8);
(8)将算法此时的全局最优青蛙X g 作为反演结果输出。
本发明的方法采用基于CUDA技术的GPU并行计算实现,其中蛙跳算法的整体反演过程为主函数,在CPU中采用串行计算的方式实现;各个青蛙的适应度计算过程(步骤2)和各个模因组的局部搜索过程(步骤5)计算量大且具备独立并行性,因此在GPU中采用并行计算的方式实现。其中GPU计算部分已在图1中标出。图2描述了适应度计算时的CUDA并行线程划分,其中每个青蛙启用一个独立的线程,一共划分p个并行线程;图3描述了多策略局部搜索时的CUDA并行线程划分,其中每个模因组启用一个独立的线程,一共划分m个并行线程。
本实施例采用一个经典模型来验证加权多策略蛙跳算法的反演有效性。所选用的模型包含2个100Ωm的高阻异常体,大小均为2m×4m,异常体位于勘探区域的中间,顶部埋深分别为1m和5m,背景电阻率为10Ωm。超高密度电法的电极个数为30,电极距为1m。蛙跳算法的反演参数为:p=30,m=6,n =5iter l =10,F=1.3。
本实施例的具体执行过程如下:首先放置好电极,设定电极距,并设定超高密度电法的电极矩阵,采集观测数据。然后将观测数据读取至计算机中。计算机开始在CPU中执行本发明提出的加权多策略蛙跳算法,当进行适应度计算和局部搜索时,CPU调用对应的GPU并行计算模块来实现高效计算。以上适应度计算和局部搜索的并行计算模块均可通过调用或修改GPU厂商提供的CUDA函数库中已封装好的函数实现。算法反复迭代直到满足算法终止条件时,输出反演结果。
本实施例中用于反演的计算环境如下: CPU 为i7-6500U, 内存为8GB,GPU为GTX960M,操作系统为Windows 8.1。在上述环境中,标准蛙跳算法和加权多策略蛙跳算法的反演性能比较如表1所示:
算法名称 反演数据误差 计算时间(分钟) 并行计算时间(分钟)
标准蛙跳算法 3.23 633 105
加权多策略蛙跳算法 1.84 475 49
表1
表1中采用均方误差MSE(Mean Square Error)来衡量反演的数据误差。由表1可知,加权多策略蛙跳算法的反演数据误差小于标准蛙跳算法,这是因为权重系数F的加入,提高了加权多策略蛙跳算法模因组内最差青蛙X w 的搜索范围,增强了算法跳出局部极值的能力。同时加权多策略蛙跳算法的计算时间小于标准蛙跳算法的计算时间,说明最小二乘策略的加入提高了算法的收敛速度。最后,对于两种蛙跳算法,采用并行计算后的计算时间均远小于未采用并行计算的计算时间,尤其是加权多策略蛙跳算法,采用并行计算优化后仅耗时49分钟,说明本发明的CUDA并行计算方法显著提高了反演过程的计算效率,具有很好的加速效果。
以上所述仅为本发明的优选实施方式,应当指出,对于本技术领域的技术人员,在不脱离本发明原理的前提下,可对上述技术内容做出若干修改或修饰,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施方式所做的任何简单修改或修饰,均仍属于本发明的保护范围。

Claims (1)

1.一种基于加权多策略蛙跳算法的超高密度电法并行反演方法,包括以下步骤:
(1)根据反演的规模初始化蛙跳算法中青蛙的种群规模p,模因组个数m和组内迭代次数iter l ,随机初始化蛙群,其中,每只青蛙采用实数编码,值由勘探区域的模型参数组成;
(2)根据下式计算蛙群中各个青蛙的适应度:
式中Φ d 为数据拟合误差,Φ M 为正则化项,d pre 为预测数据矢量,d obs 为观测数据矢量,λ为正则化系数,C为粗糙度矩阵,M为各青蛙代表的模型参数矢量;
(3)将蛙群内青蛙按照个体适应度降序排列,并保存全局适应度最优的青蛙X g
(4)将整个蛙群分成m个模因组,每个模因组含n只青蛙,满足关系p=m×n,具体的分组方式如下式:
其中G i 为第i个模因组,每个模因组内具有最优和最差适应度的青蛙分别保存为X b X w
(5)蛙群分组后分别对各模因组内最差青蛙X w 进行局部搜索,其局部搜索的策略为:
式中F为权重系数,rand为[0,1]间的独立随机数,t为当前迭代次数,A为雅克比矩阵;当进行局部搜索时,首先采用策略1向模因组内最优解X b (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则采用策略2向全局最优解X g (t)的方向更新青蛙,如果得到的X w (t+1) 优于X w (t),则取代模因组内X w (t),否则计算雅克比矩阵A,并采用策略3向最小二乘解的方向更新青蛙,步骤(5)反复迭代直至达到组内迭代次数iter l
(6)当各模因组完成局部搜索后,将所有模因组内的青蛙进行全局混洗,即重新混合排序,并更新全局最优青蛙X g
(7)判断是否满足算法的终止条件,如果为否,则跳转至步骤(4),如果为是,则跳转至步骤(8);
(8)将算法此时的全局最优青蛙X g 作为反演结果输出;
本发明的方法采用基于CUDA技术的GPU并行计算实现,其中蛙跳算法的整体反演过程为主函数,在CPU中采用串行计算的方式实现;各个青蛙的适应度计算过程(步骤2)和各个模因组的局部搜索过程(步骤5)计算量大且具备并行性,因此在GPU中采用并行计算的方式实现。
CN201710411030.5A 2017-06-05 2017-06-05 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法 Expired - Fee Related CN107290793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710411030.5A CN107290793B (zh) 2017-06-05 2017-06-05 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710411030.5A CN107290793B (zh) 2017-06-05 2017-06-05 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法

Publications (2)

Publication Number Publication Date
CN107290793A true CN107290793A (zh) 2017-10-24
CN107290793B CN107290793B (zh) 2019-02-19

Family

ID=60095363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710411030.5A Expired - Fee Related CN107290793B (zh) 2017-06-05 2017-06-05 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法

Country Status (1)

Country Link
CN (1) CN107290793B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509269A (zh) * 2018-02-27 2018-09-07 天津大学 一种基于监督混洗蛙跳算法的软硬件划分方法
CN108508491A (zh) * 2018-05-03 2018-09-07 湖南师范大学 一种消除极化效应干扰的超高密度电法电极规划方法
CN108646307A (zh) * 2018-06-15 2018-10-12 山东大学 一种基于动态调整数据权重值的四维电阻率反演方法
CN109001826A (zh) * 2018-06-15 2018-12-14 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN113204054A (zh) * 2021-04-12 2021-08-03 湖南工商大学 一种基于强化学习的自适应广域电磁法激电信息提取方法
CN113486933A (zh) * 2021-06-22 2021-10-08 中国联合网络通信集团有限公司 模型训练方法、用户身份信息预测方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204086568U (zh) * 2014-10-13 2015-01-07 湖南师范大学 一种超高密度电法数据采集装置
CN106445881A (zh) * 2016-09-21 2017-02-22 景德镇陶瓷大学 一种基于多层次信息反馈的多目标混合蛙跳算法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204086568U (zh) * 2014-10-13 2015-01-07 湖南师范大学 一种超高密度电法数据采集装置
CN106445881A (zh) * 2016-09-21 2017-02-22 景德镇陶瓷大学 一种基于多层次信息反馈的多目标混合蛙跳算法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DALE F. RUCKER ET AL.: "Three-dimensional electrical resistivity model of a nuclear waste disposal site", 《JOURNAL OF APPLIED GEOPHYSICS》 *
IANG FEI-BO ET AL.: "An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging", 《J. CENT. SOUTH UNIV.》 *
王琛涛: "基于蛙跳优化算法的土石坝邓肯-张E-B模型参数反演", 《中国水能及电气化》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509269A (zh) * 2018-02-27 2018-09-07 天津大学 一种基于监督混洗蛙跳算法的软硬件划分方法
CN108508491A (zh) * 2018-05-03 2018-09-07 湖南师范大学 一种消除极化效应干扰的超高密度电法电极规划方法
CN108508491B (zh) * 2018-05-03 2019-11-08 湖南师范大学 一种消除极化效应干扰的超高密度电法电极规划方法
CN108646307A (zh) * 2018-06-15 2018-10-12 山东大学 一种基于动态调整数据权重值的四维电阻率反演方法
CN109001826A (zh) * 2018-06-15 2018-12-14 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN109001826B (zh) * 2018-06-15 2019-04-26 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN113204054A (zh) * 2021-04-12 2021-08-03 湖南工商大学 一种基于强化学习的自适应广域电磁法激电信息提取方法
CN113486933A (zh) * 2021-06-22 2021-10-08 中国联合网络通信集团有限公司 模型训练方法、用户身份信息预测方法及装置
CN113486933B (zh) * 2021-06-22 2023-06-27 中国联合网络通信集团有限公司 模型训练方法、用户身份信息预测方法及装置

Also Published As

Publication number Publication date
CN107290793B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN107290793A (zh) 一种基于加权多策略蛙跳算法的超高密度电法并行反演方法
CN110110413B (zh) 一种基于材料场缩减级数展开的结构拓扑优化方法
Lan et al. A high‐order fast‐sweeping scheme for calculating first‐arrival travel times with an irregular surface
CN113553748B (zh) 一种三维大地电磁正演数值模拟方法
CN102798898A (zh) 大地电磁场非线性共轭梯度三维反演方法
CN110058307B (zh) 一种基于快速拟牛顿法的全波形反演方法
CN109872330A (zh) 一种改进狮群优化的二维Otsu快速图像分割方法
CN112699596A (zh) 一种基于学习的广域电磁法激电信息非线性提取方法
CN105976018A (zh) 用于结构健康监测传感器优化布设的离散鸽群算法
CN105184010A (zh) 基于快速多极间接边界元法的高频地震波散射模拟方法
CN106662665B (zh) 用于更快速的交错网格处理的重新排序的插值和卷积
Grillotti et al. Don't bet on luck alone: Enhancing behavioral reproducibility of quality-diversity solutions in uncertain domains
CN113051796B (zh) 一种应用于增材制造的结构拓扑优化设计方法
Jiang et al. Hybrid algorithm based on particle swarm optimization and artificial fish swarm algorithm
CN115906559B (zh) 一种基于混合网格的大地电磁自适应有限元正演方法
CN108133286B (zh) 一种基于地面沉降替代模型的地下水多目标计算方法
CN113722853B (zh) 一种面向智能计算的群智能进化式工程设计约束优化方法
CN114200541A (zh) 一种基于余弦点积梯度约束的三维重磁联合反演方法
CN104408315B (zh) 一种基于sins/gps组合导航的卡尔曼滤波数值优化方法
CN102982376B (zh) 一种基于遗传计算的二维泊松方程求解优化方法
CN105512754A (zh) 一种基于共轭先验的单模分布估计优化方法
Wu et al. An improved genetic algorithm based on explosion mechanism
Lu et al. A Trust Index-Based Adaptive Kriging Method for the Cooling Fan Optimization
CN103837894A (zh) 获取剩余静校正量的方法
CN117270072B (zh) 基于改进型差分进化算法的重磁位场成像反演方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190219

Termination date: 20200605