CN107287311B - 肺炎致病菌快速识别基因芯片 - Google Patents

肺炎致病菌快速识别基因芯片 Download PDF

Info

Publication number
CN107287311B
CN107287311B CN201710547772.0A CN201710547772A CN107287311B CN 107287311 B CN107287311 B CN 107287311B CN 201710547772 A CN201710547772 A CN 201710547772A CN 107287311 B CN107287311 B CN 107287311B
Authority
CN
China
Prior art keywords
probe
sequence
identifying
pneumonia
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710547772.0A
Other languages
English (en)
Other versions
CN107287311A (zh
Inventor
陈良安
马秀清
王升启
刘琪琦
李春笋
梁志欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy Of Military Medicine Pla Academy Of Military Sciences
Chinese PLA General Hospital
Original Assignee
Chinese PLA General Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese PLA General Hospital filed Critical Chinese PLA General Hospital
Priority to CN201710547772.0A priority Critical patent/CN107287311B/zh
Publication of CN107287311A publication Critical patent/CN107287311A/zh
Application granted granted Critical
Publication of CN107287311B publication Critical patent/CN107287311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种肺炎致病菌快速识别的基因芯片。该基因芯片可以检测肺炎链球菌、金黄色葡萄球菌、流感嗜血杆菌、肺炎支原体、铜绿假单胞菌、鲍曼不动杆菌、粪肠球菌、屎肠球菌、肺炎克雷伯杆菌、大肠埃希菌、阴沟肠杆菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德菌、嗜肺军团菌、肺炎衣原体15种致病菌,其中包括了临床常见的和难培养的肺炎致病菌。在其制备过程中,采用了每种肺炎致病菌所对应的16S rDNA和特异基因序列进行探针的设计、筛选和验证,分别从“属”和“种”的级别同时对待检测样品中细菌的种类进行鉴定。本发明芯片弥补了目前临床肺炎致病菌检测不及时不全面的缺陷,为肺炎患者早诊断、早治疗提供了一种新的检测手段。

Description

肺炎致病菌快速识别基因芯片
技术领域
本发明涉及基因技术,尤其涉及肺炎致病菌快速识别基因芯片。
背景技术
近年来,由于空气污染的加剧及公共卫生事件的发生,呼吸道疾病引起越来越多的关注。肺炎是指包括终末气道,肺泡和肺间质等在内的肺实质性炎症,是全球感染性疾病死亡的首要原因[1]。据世界卫生组织(WHO)统计,每年约有350万人死于下呼吸道感染,居所有死亡原因的第三位[2]。在美国,肺炎和流行性感冒位于所有死因的第九位,2010年和2011年均有5万多人死于肺炎[3-5],而且该统计没有将肺炎导致的败血症以及死于肺炎并发症的癌症、帕金森等病例纳入肺炎组,所以实际因肺炎死亡的人数比这个数还要高[2]。在我国,每年至少有250万人罹患肺炎,农村多于城市,其中5岁以下儿童肺炎死亡率为184/10万—1223万/10万[6],老年肺炎病死率没有确切的数据,但据黄华瑞报道[7]老年肺炎明显高于其他年龄段。可见,肺炎严重威胁着人类的生命健康。
肺炎的致病原有很多,包括细菌、病毒、真菌、寄生虫等,其中最重要最常见的是细菌。众所周知,肺炎按照发病环境可分为社区获得性肺炎(CAP)和医院获得性肺炎(HAP)。大部分CAP患者只需要门诊就诊,但仍有大约20%的患者仍需住院治疗[8]。CAP致病菌以革兰氏阳性菌为主,其中又以肺炎链球菌为第一位,占35-80%,其次为流感嗜血杆菌,嗜肺军团菌,肺炎支原体,肺炎衣原体,金黄色葡萄球菌等[9]。HAP致病菌比较广泛,以革兰氏阴性菌为主,其中常见的是铜绿假单胞菌,大肠埃希菌,肺炎克雷伯菌,鲍曼不动杆菌,其它还有嗜麦芽窄食单胞菌,洋葱伯克霍尔德菌,粪肠球菌,屎肠球菌,阴沟肠杆菌等,此外革兰氏阳性菌金葡菌也见于HAP,尤其是耐甲氧西林金葡菌(MRSA)[10]。因此,肺炎致病菌种类繁多,准确、快速、特异和灵敏的检测手段是肺炎早诊断、早治疗的有力保障。
明确肺炎致病菌的种类是肺炎早诊断、及时采取有效治疗措施、减少肺炎病死率的重要环节。传统的细菌培养分离鉴定方法是目前常规的细菌分离鉴定的检测方法。传统细菌培养分离鉴定方法是基于细菌生长形态学以及细菌所特有的酶对营养基质分解能力的不同,利用其代谢产物产酸、产气等生化特性进行鉴定的一种方法,是细菌分类鉴定的金标准,但该方法需要培养分离,耗时长,一般需要24-48小时,鉴定生化试验繁杂,对于培养条件苛刻的细菌不但所需时间更长而且检出率低[17]。细菌自动化鉴定系统如Vitek-AMS、MicroScan、Biolog等,虽然简化了手工操作,但仪器中数据库还不完善,模式菌种数量有限,一些细菌只能鉴定到属,对于结果有疑问的仍然需要手工鉴定。细菌血清学抗体的检测是一种快速检测方法,但不同的抗体产生的时间是不同的,如肺炎支原体IgM抗体在起病后大约2周产生,不能满足临床快速诊断的需求,而且灵敏度和特异度均不理想。美国传染病学会(IDSA)指南曾建议要在8小时内给予肺部感染患者抗生素治疗,而这一时间在2003年缩短到4小时[19,20],可见,细菌的培养分离鉴定远远不能满足临床快速诊断的需求,肺炎早期的治疗只能依靠经验性治疗,这样又进一步加剧了耐药菌株的产生,因此,临床急需一种准确、快速检测肺炎致病菌的方法。
基因芯片技术是20世纪80年代末在人类基因组测序计划完成的背景下发展起来的一种微型化、高通量的新生物学技术,广泛的应用于疾病的诊断和治疗[21]、新基因的发现[22]、单核苷酸多态性分析[23]、环境微生物监测[24]、药物筛选[25]、病原微生物检测[26]等领域。在微生物学方面基因芯片技术有2个最普通的应用,一是全基因组的转录水平表达谱分析,二是监测不同条件下细胞基因表达的差异或不同环境中微生物DNA的突变情况和生物学特性的改变[27,28]。基因芯片是通过碱基互补的原理,在引物或探针上标记可检测的物质,将探针固定于支持物上,与待检样品进行杂交,通过杂交的信号进行结果判读。常用的标记染料有Cy3和Cy5荧光染料及其生物素分子,其中生物素-链霉亲和素显色方法,可以通过辣根过氧化物酶进行显色和酪胺信号放大技术进行结果判读,该方法价格相对便宜,更容易被临床接受。
发明内容
鉴于上述问题,本发明旨在提出一种肺炎致病菌快速识别基因芯片,其能快速鉴定肺炎致病菌。
本发明的肺炎致病菌快速识别基因芯片,其中,所述肺炎致病菌包括肺炎链球菌、金黄色葡萄球菌、流感嗜血杆菌、肺炎支原体、铜绿假单胞菌、鲍曼不动杆菌、粪肠球菌、屎肠球菌、肺炎克雷伯杆菌、大肠埃希菌、阴沟肠杆菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德菌、嗜肺军团菌、肺炎衣原体中的至少一种;
所述基因芯片上包括至少一个探针,用于与待检样品进行杂交;所述至少一个探针中的每个探针对应于所述肺炎致病菌中的至少一种;
所述至少一个探针包括至少一个第一探针;一个所述第一探针对应于所述肺炎致病菌中的一种病菌;所述第一探针用于鉴定与其对应的所述的肺炎致病菌的特异基因,由此确定被测细菌的种;
其中,
用于鉴定所述肺炎链球菌的第一探针的序列为:CAAAGTAGTACCAAGTGCCATTGATTTTCTTTTTTTTTTTT;
用于鉴定所述金黄色葡萄球菌的第一探针的序列为:CAAAGAACTGATAAATATGGACGTGGCTTTTTTTTTTTT;
用于鉴定所述流感嗜血杆菌的第一探针的序列为:GAACGTGGTACACCAGAATACAACATCGCTTTTTTTTTTTT;
用于鉴定所述肺炎支原体的第一探针的序列为:TGAGGTGAATGGGTTGTTGAATCCGTTTTTTTTTTTT;
用于鉴定所述铜绿假单胞菌的第一探针的序列为:TTGTGCCTGCTCGACCCGCTGGACGGGGTCTACAACTACCTCGCCCAGTTTTTTTTTTTT;
用于鉴定所述鲍曼不动杆菌的第一探针的序列为:TCGATCCACGTGCTAAAGTGATTTTTTTTTTTTT;
用于鉴定所述粪肠球菌的第一探针的序列为:TTACATGGGCCAAATGGTGAAGATGGAACATTTTTTTTTTTT;
用于鉴定所述屎肠球菌的第一探针的序列为:TCCTTTTTCCGTCATCAGTATAAAGTATAGTTTTTTTTTTTT;
用于鉴定所述肺炎克雷伯杆菌的第一探针的序列为:AAAGCCGGCGTGTACGATAATTTTTTTTTTTT;
用于鉴定所述大肠埃希菌的第一探针的序列为:CGCCAAATCCGCAACGTAATGACAGTGTACCAACCCTTTTTTTTTTTTT;
用于鉴定所述阴沟肠杆菌的第一探针的序列为:GCAGGCGATCTGTACGTTCAGGTTTTTTTTTTTTT;
用于鉴定所述嗜麦芽窄食单胞菌的第一探针的序列为:TACCACCCGTACCTGGACTTTTTTTTTTTTT;
用于鉴定所述洋葱伯克霍尔德菌的第一探针的序列为:TGGTGCGCTCGGGCTCGATCGACATTTTTTTTTTTTT;
用于鉴定所述嗜肺军团菌的第一探针的序列为:ATAGCATTGGTGCCGATTTGGGGAAGAATTTTTTTTTTTT;
用于鉴定所述肺炎衣原体中的第一探针的序列为:ACTGCCGTAGATAGACCTAACCCGGCCTATTTTTTTTTTTT。
优选地,所述至少一个探针包括至少一个第二探针;所述第二探针用于鉴定与其对应的所述的肺炎致病菌的16S rDNA基因,由其确定被测细菌的属;
其中,
用于鉴定所述肺炎链球菌的第二探针的序列为:TGTGAGAGTGGAAAGTTCACACTGTTTTTTTTTTTT;
用于鉴定所述金黄色葡萄球菌的第二探针的序列为:ACATATGTGTAAGTAACTGTGCACATCTTGACGGTATTTTTTTTTTTT;
用于鉴定所述流感嗜血杆菌的第二探针的序列为:GAGGAAGGTTGATGTGTTATTTTTTTTTTTT;
用于鉴定所述肺炎支原体的第二探针的序列为:GACCTGCAAGGGTTCGTTTTTTTTTTTTT;
用于鉴定所述铜绿假单胞菌的第二探针的序列为:TTGCTGTTTTGACGTTACTTTTTTTTTTTT;
用于鉴定所述鲍曼不动杆菌的第二探针的序列为:CCTAGAGATAGTGGACGTTACTTTTTTTTTTTT;
用于鉴定所述粪肠球菌的第二探针的序列为:AGTGCTTGCACTCAATTGGAAAGAGGAGTGGTTTTTTTTTTTT;
用于鉴定所述屎肠球菌的第二探针的序列为:CAAGGATGAGAGTAACTGTTCATCCCTTTTTTTTTTTT;
用于鉴定所述嗜麦芽窄食单胞菌的第二探针的序列为:CCAGCTGGTTAATACCCGGTTGGGATTTTTTTTTTTT;
用于鉴定所述洋葱伯克霍尔德菌的第二探针的序列为:TTGGCTCTAATACAGTCGGTTTTTTTTTTTT;
用于鉴定所述嗜肺军团菌的第二探针的序列为:AGGGTTGATAGGTTAAGAGCTGATTAATTTTTTTTTTTT;
用于鉴定所述肺炎衣原体中的第二探针的序列为:CCGAATGTAGTGTAATTAGGCTTTTTTTTTTTT。
优选地,用于鉴定所述肺炎克雷伯杆菌、大肠埃希菌、阴沟肠杆菌的第二探针的序列为:GGTTAATAACCTCATCGATTGACGTTACCCTGCTTTTTTTTTTTT。
优选地,所述至少一个探针包括用于鉴定肺炎链球菌的探针。
优选地,所述至少一个探针还包括用于鉴定流感嗜血杆菌的探针、用于鉴定嗜肺军团菌的探针、用于鉴定肺炎支原体的探针、用于鉴定肺炎衣原体的探针、或用于鉴定金黄色葡萄球菌的探针。
优选地,所述至少一个探针包括用于鉴定铜绿假单胞菌的探针、用于鉴定大肠埃希菌的探针、用于肺炎克雷伯杆菌的探针、或用于鉴定鲍曼不动杆菌的探针。
优选地,所述至少一个探针还包括用于鉴定嗜麦芽窄食单胞菌的探针、用于鉴定洋葱伯克霍尔德菌的探针、用于鉴定粪肠球菌的探针、用于鉴定屎肠球菌的探针、或用于鉴定阴沟肠杆菌的探针。
优选地,进一步包括阳性探针和阴性探针;其中所述阳性探针为:ACTCCTACGGGAGGCAGCAGTTTTTTTTTTTT,用于监测杂交过程中假阴性的出现;所述阴性探针为TCAGAGCCTGTGTTTCTACCAATTTTTTTTTTTT、CATCAATAGGGTCCGATATTTTTTTTTTTT、CGAACGCAAATCAATCTTTTTCCAGGTTTTTTTTTTTTT中的至少一个,用于监测杂交过程中假阳性的出现。
本发明还提出一种肺炎致病菌快速识别基因芯片的制备方法,其包括:
先将芯片贴膜牢固的贴在片基上,不能有气泡,一张片基被分成多个微阵列反应区域;
利用ddH2O将合成的探针稀释成终浓度为100μM的溶液,振荡,混匀,在小型离心机上将挂壁的液体甩到底部,然后按1:1的比例,将5μl探针溶液和5μl芯片点样液加入到多孔板中,混匀,避免气泡的产生;
同时多孔板中还应加入标识列,即3’标记氨基的20个重复T序列,标识列的终浓度在1μM;标识列与点样液的比例同样是1:1;
点样前,需将点样针超声10min左右,确保点样针的清洁;
点样时,点与点的距离≥7mm,然后根据微阵列的大小、探针的多少确定每条探针重复的次数;点样室的温度为室温,湿度为30%;
点样结束后,将点样针超声10min左右,保持点样针的清洁,防止点样孔阻塞和交叉污染;然后将芯片置于芯片盒内,连同芯片盒一起放进干燥器干燥24h。
优选地,每条探针重复的次数的2-3次。
本申请的肺炎致病菌快速识别芯片是一种灵敏度高、特异性和重复性好的检测方法,十分适合临床肺炎致病菌种类的鉴定。
附图说明
图1为PCR产物切胶纯化回收操作流程图;
图2为质粒提取操作流程图;
图3为基因芯片杂交步骤;
图4为临床标本DNA提取流程图;
图5为16S rDNA引物筛选琼脂糖凝胶电泳结果;
图6为致病菌特异基因引物筛选琼脂糖凝胶电泳结果;
图7为致病菌质粒构建的测序结果;
图8为大肠埃希菌/肺炎克雷伯菌/阴沟肠杆菌16S rDNA目的片段对比图;
图9为肺炎致病菌鉴定芯片灵敏度实验;
图10为肺炎致病菌鉴定芯片特异性实验;
图11为混合标准菌株验证芯片的特异性;
图12为部分临床菌株芯片结果;
图13为部分临床标本芯片结果;
图14为肺炎致病菌鉴定芯片重复性实验;
具体实施方式
下面,结合附图对本发明的肺炎致病菌快速识别基因芯片进行详细说明。
材料与方法
一、实验材料
1.标准菌株
本实验所使用的标准菌株:肺炎链球菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德菌、金黄色葡萄球菌、流感嗜血杆菌、鲍曼不动杆菌、铜绿假单胞菌、肺炎克雷伯菌、大肠埃希菌、肺炎支原体、粪肠球菌、屎肠球菌、阴沟肠杆菌等分别由中国人民解放军军事医学科学院放射与辐射医学研究所、中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)和中国食品药品检定研究院提供或购买。菌种名称及标准菌株的编号见表1-1。嗜肺军团菌和肺炎衣原体所需的目的基因片段由北京博迈德基因技术有限公司合成。
表1-1标准菌株名称、缩写和编号
Figure GDA0002340424110000071
Figure GDA0002340424110000081
2、主要仪器
表1-2实验中使用仪器
Figure GDA0002340424110000082
Figure GDA0002340424110000091
3、实验试剂
LB培养基:液体培养基——10g蛋白胨(TRYPTONE),10g NaCl,5g酵母提取物(YEAST EXTRACT)加蒸馏水至1L,高压后备用。固体培养基——10g蛋白胨(TRYPTONE),10gNaCl,5g酵母提取物(YEAST EXTRACT),15g琼脂(AGAR)加蒸馏水至1L,高压后备用。
样品处理液:25mmol/L NaOH,0.1nmol/L EDTA,10mmol/L Tris-HCl,1%NP-40,2%Chelex-100,1%Triton X-100;
电泳液:50×TAE储存液——冰乙酸28.5ml,Tris 121g,0.5ml/LNa2EDTA50ml混合,定容至500ml储存。1×TAE储存液——50×TAE储存液10ml,加蒸馏水定容至500ml,备用。
2%琼脂糖凝胶:称取1g琼脂糖粉,溶解在50ml的1×TAE溶液中,微波炉加热至完全熔化,取出摇匀,冷却片刻,加入5μl的EB溶液,摇匀,缓慢的倒入电泳槽中,待琼脂糖胶凝固。
点样液:0.1%SDS,6×SSC,5%甘油,2%(质量/体积)Ficoll400;
杂交液:0.6%SDS,8×SSC,10×Denhardt溶液,10%甲酰胺;
预洗液:0.2%SDS(25ml 50×SDS溶液+2475ml蒸馏水);
洗液A:1×SSC,0.2%SDS(125ml 20×SSC溶液+50ml 50×SDS溶液+2325ml蒸馏水);
洗液B:0.2%SDS(25ml 50×SDS溶液+2475ml蒸馏水);
洗液C:0.1%SSC(12.5ml 20×SSC溶液+2487.5ml蒸馏水);
PBST溶液:2500ml PBS溶液+5ml Tween-20,调节PH至7.0-7.2;
4%NaOH溶液:1mol/LNaOH,40gNaOH溶于1L蒸馏水中;
标记液:Streptavidin-horseradish peroxidase;
发光液A:MILLIPORE公司;
发光液B:MILLIPORE公司;
2×Gold Star Best Master Mix:北京康为世纪生物有限公司
Multiplex PCR 5×Master Mix:美国New England Biolabs(NEB)公司;
质粒小提试剂盒:北京天根生化科技有限公司;
琼脂糖凝胶回收试剂盒:北京天根生化科技有限公司;
DH5α感受态细胞:北京天根生化科技有限公司;
pMDTM18-T Vector克隆试剂盒:TaKaRa公司;
DL2000 DNA marker:TaKaRa公司;
芯片片基:上海百傲科技有限公司。
二、实验方法
1、引物和探针的设计与合成
1.1引物探针的设计
本实验每种致病菌的鉴定涉及到两个基因,一个是16S rDNA,另一个是每种菌对应的特异基因。16S rDNA是管家基因,采用的是通用引物,先从NCBI数据库中下载实验所需致病菌的该基因序列,为了避免个别碱基的差异,每种致病菌至少需要三种不同GenBank序列号的全基因序列。利用DNAMAN序列比对软件,对所有致病菌16S rDNA进行比对,在保守区域设计引物序列,在特异区域,即基因序列差异较大的区域设计每种菌的探针序列,此外本实验在其保守区域设计了一条探针,用于检测细菌存在情况。特异基因引物的设计需要针对每种致病菌的特异基因进行设计,同样首先需要从NCBI数据库中下载相关的基因的全序列,然后通过DNAMAN软件和Oligo7软件分别设计引物和探针,具体设计原则如下:
引物设计原则:(1)GC含量在40%到60%之间;(2)长度为18-30bp;(3)3’末端不能出现3个或3个以上的连续碱基(如TTT或GGG);(4)引物自身应避免发夹结构或二聚体;(5)产物应避免二级结构;(6)引物之间或自身不能有4个连续的碱基互补。PCR产物的长度最好在300bp以内,按照该原则设计好的引物还需在NCBI网站上通过BLAST分析,初步验证引物的特异性。
探针设计原则:(1)探针自身应避免产生二级结构;(2)探针长度一般在17-50nt;(3)探针序列在上下游引物之间的保守区域内,不包括上下游引物序列;(4)探针序列避免连续4个以上相同碱基的出现;(5)探针序列要具有特异性,不可与其他致病菌PCR产物之间有较长的连续的配对序列。每个基因可设计2-3条探针进行筛选,同样,这些按照原则设计好的探针需要进行BLAST分析,此外,还需利用DNAMAN软件比对探针与探针、探针与其他致病菌PCR产物之间是否存在配对现象,初步检测探针的特异性。
1.2引物探针的合成
引物的筛选时,普通PCR引物的合成由中国人民解放军军事医学科学院放射与辐射医学研究所合成。筛选成功的引物由上海生工工程技术服务有限公司合成,合成时,在引物下游5’端标记生物素(Biotin)。探针的合成主要是:(1)在探针3’末端连接12个重复的T序列,目的是增加探针的空间柔性;(2)同时用氨基(-NH2)标记3’末端。
2、细菌DNA提取方法
采用直接煮沸法,即将菌液取适量放入EP管中,盖紧盖子,沸水中煮10min,取出后迅速放置冰上,30min,然后12000转离心10min,取上清备用。
3、普通PCR及其产物纯化
3.1普通PCR体系和条件,见表1-3与表1-4
表1-3普通PCR反应体系
Figure GDA0002340424110000121
表1-4普通PCR反应条件
Figure GDA0002340424110000122
3.2将PCR产物加入到琼脂糖凝胶孔中,进行电泳,然后将含有单一的目的条带的琼脂糖凝胶切下,不要太大也不要太小,正好包含目的条带为宜,放入干净的EP离心管中,其回收采用普通琼脂糖凝胶DNA回收试剂盒,根据说明书进行操作,主要步骤如图1。
4、质粒参考品的制备和提取
有标准菌株的致病菌通过普通PCR的方法对靶基因进行扩增,没有标准菌株的致病菌由北京博迈德公司直接合成靶基因序列。然后将目的基因序列通过pMDTM18-T Vector克隆试剂盒进行T载体克隆,具体实验步骤如下:
4.1将T载体和Solution I放在冰上融化,按照表1-5的加入连接体系,T载体和PCR切胶回收纯化产物DNA的摩尔比一般为:1:2-10,轻轻混匀,将PCR管置于16℃的恒温金属浴中过夜进行连接。
表1-5 pMD18-T载体试剂盒克隆体系
Figure GDA0002340424110000131
4.2将DH5α感受态细胞放在冰上溶解,溶解后,迅速将10μl连接产物加入其中,轻轻旋转离心管使混匀,冰上静置30min。
4.3将离心管放进42℃水浴锅中,静置60-90s,然后将离心管移至冰浴中(此步骤要快),目的是使细胞迅速冷去,时间为2-3min,该过程不能晃动离心管。
4.4将不含抗生素的LB液体培养基900μl加入到离心管中,混匀后放入37℃摇床,150rpm培养45min。
4.5将离心管内的液体混匀,吸取100μl已转化的感受态细胞到含氨苄青霉素(Amp,100μg/ml)的LB固体培养基上,用无菌的弯头玻棒轻轻的将细胞均匀涂开,盖上盖子,室温放置约1h,倒置平板,置于37℃培养箱内12-16h。
4.6挑取培养基上单个的菌落,接种到5ml含有Amp(100μg/ml)的LB液体培养基中,置于37℃的摇床,200rpm振荡培养12-16h。
4.7利用细菌靶基因的特异引物和pMD18-T载体的通用引物M13F(-47)/M13R(-48)进行菌液PCR,经琼脂凝胶电泳,选取条带位置正确的菌液进行测序和保存。测序由北京博迈德生物技术有限公司进行;保存时,取待保存的菌液500μl与等体积的30%甘油混匀,置于-70℃冰箱保存。
4.8测序结果经序列比对,对含有目的片段的菌液进行质粒提取,操作按照质粒提取试剂盒的说明书进行,具体步骤如图2。
在260nm波长处,测定提取质粒DNA的浓度,根据公式:质粒拷贝数(Copies/μl)=阿伏伽德罗常数×质粒浓度(ng/μl)×10-9/(660×质粒长度bp)g/mol,计算出质粒的拷贝数,然后进行10倍的梯度稀释,获得拷贝数分别为101,102,103,104,105,106copies/μl的质粒参考品,分装后-20℃冰箱保存,备用(避免反复冻融,以免影响质粒浓度)。
5、芯片的制备
5.1先将芯片贴膜牢固的贴在片基上,不能有气泡,一张片基被分成10个微阵列反应区域;
5.2利用ddH2O将合成的探针稀释成终浓度为100μM的溶液,振荡,混匀,在小型离心机上将挂壁的液体甩到底部,然后按1:1的比例,将5μl探针溶液和5μl芯片点样液加入到384孔板中,混匀,避免气泡的产生;
5.3同时384孔板中还应加入标识列,即3’标记氨基的20个重复T序列,标识列的终浓度在1μM,不需要太明显,主要用于探针的定位和监测芯片杂交假阴性的出现。标识列与点样液的比例同样是1:1;
5.4点样前,需将点样针超声10min左右,确保点样针的清洁;
5.5点样时,点与点的距离≥7mm,然后根据微阵列的大小,探针的多少确定每条探针重复的次数,一般2-3次。另外还需要注意点样室的温度和湿度,温度室温即可,湿度在30%左右比较合适,湿度太大,点样探针不容易聚集,湿度太小,点样点小而不圆。
5.6点样结束后,同样需要将点样针超声10min左右,保持点样针的清洁,防止点样孔阻塞和交叉污染。然后将芯片置于芯片盒内,连同芯片盒一起放进干燥器,24h后方可使用。
6、多重不对称PCR反应体系和条件的优化
本实验采用美国NEB公司生产的Multiplex PCR 5×Master Mix作为扩增反应试剂,上下游引物比例采用军事医学科学院推荐[29]的1:5的比例。本实验共有16对引物,分3管多重PCR完成,第一管有4对引物,第二和三管各有6对引物,根据实验的需求主要对引物的浓度和引物之间的搭配进行了优化,具体反应条件如下,见表1-6。
表1-6多重不对称PCR反应条件
Figure GDA0002340424110000141
Figure GDA0002340424110000151
7、芯片杂交的步骤,见图3。
8、临床标本的收集
收集2013年7月4号到2014年9月10号在解放军总医院呼吸科监护室住院患者的痰标本和支气管灌洗液标本。
9、痰标本液化
痰标本中加入等体积的4%NaOH,室温30min,每隔5min震荡1次,如果液化不完全可延长液化时间。
10、标本和支气管灌洗液标本DNA提取方法
10.1液化后痰标本或支气管灌洗液标本取适量于EP管中,密封好管口,沸水煮10min;
10.2 50μl液化后痰标本或支气管灌洗液标本+50μl样品处理液于EP管中,密封好管口,沸水煮10min;
10.3取液化后痰标本或支气管灌洗液标本50μl,12000转离心1min,弃上清,加入50μl样品处理液于EP管中,密封好管口,沸水煮10min;后续操作见图4。
11、芯片灵敏度验证
11.1芯片探针阵列设计
根据每条探针灵敏度和特异性实验的结果选择特异性好,灵敏度高的探针作为最终的探针,并且选择3条分别来自人类、病毒和真菌基因序列的探针(其序列与所有探针序列不互补),作为阴性探针,以监测杂交过程中假阳性的出现。此外,还包括一条阳性探针,用于监测杂交过程中假阴性的出现。具体见表1-12。
11.2芯片灵敏度的验证
芯片灵敏度的验证是以每条探针的灵敏度参考品,即浓度分别为101,102,103,104,105,106copies/μl的质粒作为模板,进行多重不对称PCR反应,杂交,然后根据芯片的结果确定探针的灵敏度。
12、芯片特异性验证
12.1临床菌株对芯片特异性的验证
以本实验室经鉴定的临床菌株的DNA作为模板,经过多重不对称PCR反应,芯片杂交,比较芯片结果与临床菌株的鉴定结果。
12.2临床标本对芯片特异性的验证
以收集临床痰标本和支气管灌洗液标本的DNA作为模板,经过多重不对称PCR,芯片杂交,比较芯片结果与我院微生物科临床标本培养的结果,不符合的结果再经过PCR测序进行鉴定。
结果
1、临床标本收集
本实验自2013年7月4号到2014年9月10号,共收集149例标本,其中包括16例支气管灌洗液标本,133例痰标本。本实验所涉及的临床菌株有28例肠球菌,21例肺炎克雷伯杆菌,21例铜绿假单胞菌,24例鲍曼不动杆菌,8例大肠埃希菌,来自军事医院科学院放射与辐射医学研究所和中国人民解放军总医院呼吸科实验室。
2、靶致病菌及其特异基因的选择
根据相关文献和肺炎致病菌流行病调查的结果,最终确定了15种靶致病菌及其特异基因,见表1-7。
表1-7 15种致病菌及其特异基因
Figure GDA0002340424110000171
3、引物的筛选
3.1 16S rDNA基因的引物
15种致病16S rDNA产物长度为575bp,通用引物序列:
正向:AGAGTTTGATCMTGGCTCAG M=A/C
反向:CGTATTACCG CGGCTGCTG
16S rDNA引物筛选琼脂糖凝胶电泳结果如图5所示。
图5中,1鲍曼不动杆菌;2大肠埃希菌;3肺炎链球菌;4金葡菌;5流感嗜血杆菌;6铜绿假单胞菌;7衣原体;8支原体;9军团菌;10肺炎克雷伯杆菌;11粪肠球菌;12屎肠球菌;13嗜麦芽窄食单胞菌;14洋葱伯克霍尔德菌;15阴沟肠杆菌;16阴性对照。
3.2 15种致病菌特异基因的引物
通过前期文献查阅及引物设计,每种特异基因预备了3对引物用于筛选,最终每种特异基因确定了一对条带最亮,电泳结果没有杂带的引物用于后续实验。15种致病菌特异基因引物筛选琼脂糖凝胶电泳结果见图6,具体的引物序列和产物片段大小见表1-8。
其中图6中,1P6;2MOMP;3toxA;4nuc;5mip;6gltA;7ddl-S;8P1;9phoA;10recA;11lytA;12chitA;13mdh;14dnaJ;15ddl-F;16阴性对照。
表1-8致病菌特异基因引物序列
Figure GDA0002340424110000181
Figure GDA0002340424110000191
注:F:正向引物;R:反向引物
4、质粒构建结果
本实验15种致病菌均有16S rDNA及其特异基因的目的片段需要构建,因此,共完成了30种质粒的构建,测序结果正确,见图7。
5、多重PCR条件的优化
本实验有1对通用引物和15对特异基因引物,共16对引物,通过对引物间的组合和引物浓度的优化,确定了三组多重PCR,第一组4对引物,第二组和第三组均有6对引物,具体多重PCR体系见表1-9、表1-10和表1-11。
表1-9第一组多重不对称PCR体系
Figure GDA0002340424110000201
表1-10第二组多重不对称PCR反应体系
Figure GDA0002340424110000211
表1-11第三组多重不对称PCR反应体系
Figure GDA0002340424110000221
6、探针的筛选
每次筛选针对致病菌特异基因的目的片段设计了至少3条探针,不合格的再重新设计和筛选。这些探针中,由于大肠埃希菌、肺炎克雷伯菌和阴沟肠杆菌都属于肠杆菌科,其16S rDNA的序列的相似度为94.6%,很难同时两两区分开,见图8,因此这三种细菌在16SrDNA的片段上公用了1条探针,具体区分需要依靠特异基因。经过反复的筛选和优化最终确定了以下肺炎致病菌16srDNA和特异基因探针、阴性探针和16s rDNA阳性探针共32条探针序列,见表1-12。
表1-12肺炎致病菌鉴定芯片探针序列
Figure GDA0002340424110000231
Figure GDA0002340424110000241
Figure GDA0002340424110000251
7、芯片的探针阵列
待所有探针确定后,我们按照下列阵列图制备芯片,根据芯片的大小和探针的数量,每条探针重复了2个点,见表1-13。
表1-13致病菌鉴定芯片探针阵列图
Figure GDA0002340424110000252
注:“标”代表“标志列”
8、芯片灵敏度验证
灵敏度参考品为前期制备的质粒,即按梯度101、102、103、104、105、106copies/μl稀释的质粒,以其为模板,采用优化后的多重不对称PCR反应体系,检测致病菌鉴定芯片的灵敏度,所有探针灵敏度可达103copies/μl,部分探针可达102copies/μl,见图9。
9、芯片特异度验证
9.1单一标准菌株对芯片的验证
以13种标准菌株和2种片段的质粒菌作为模板,按照优化好条件进行多重不对称PCR,然后将产物变性,与芯片杂交,结果显示芯片能准确的检测出标准菌,见图10。
9.2混合标准菌株验证芯片的特异性
将2种或3种标准菌株的混合菌液作为模板,验证芯片的特异性,结果芯片能正确检测出菌种,结果见图11。
10、芯片临床标本验证
10.1临床菌株的验证
利用经培养鉴定的临床菌株,包括28例肠球菌,21例肺炎克雷伯杆菌,21例铜绿假单胞菌,24例鲍曼不动杆菌,8例大肠埃希菌对芯片验证,结果显示芯片均能正确的检测出临床菌株,部分结果见图12。
10.2临床痰标本或支气管灌洗液标本的验证
利用16例支气管灌洗液标本和133例痰标本对芯片进行验证,仅51号标本培养结果为金葡菌,芯片结果为阴性,经PCR验证,琼脂糖凝胶电泳无条带,结果见表1-14。部分检测结果图见图13。
表1-14 149例临床标本芯片结果和培养结果对比
Figure GDA0002340424110000261
Figure GDA0002340424110000271
11、芯片重复性实验
芯片的重复性实验包括片内重复性和片间重复性。片内重复性时,以质粒菌104copies/μl为模板,重复3次多重不对称PCR,分别与芯片杂交,同时设立无菌蒸馏水为阴性对照;片间重复性时,同一PCR产物在不同批次芯片上的杂交效果是否一致,结果显示,无论片内还是片间重复,芯片结果均为阳性,说明芯片重复性好。以鲍曼不动杆菌为例,见图14。
工业可利用性
肺炎是门诊和病房一种常见的疾病,从新生儿到老年人群均可发病,其中细菌性肺炎临床表现一般为寒战、高热、咳嗽、咳痰、胸痛等,X线检查为大片模糊阴影、沿肺纹理分布的斑片状阴影或不规则的条索状阴影。肺炎致病菌种类很多,治疗需要针对具体的致病菌进行,但临床表现和X线检查缺乏特异性,很难区分致病菌的种类,而传统的培养分离鉴定方法虽是金标准,却需要时间长,容易错过最佳治疗期。本实验基于基因芯片高通量、快速的特点,利用16S rDNA和特异基因,研制了常见肺炎致病菌的快速检测基因芯片。本实验中涉及的15种致病菌来自肺炎致病菌流行病学调查结果,包括了CAP和HAP常见的菌种,非常适合临床开展和应用。
16S是RNA上的一个小亚基,由于16S rRNA不稳定,不利于检测,所以我们采用其编码基因16S rDNA作为靶基因。该基因既有高度的保守区域,又有细菌特有的变异区域,片段大小适中,约1500bp,非常适合通用引物和特异探针的设计,因此常用于微生物的检测和鉴定[30-32]。16S rDNA的特异序列,有些即使在种与种之间差别也很明显,如屎肠球菌和粪肠球菌,但有些却不是很明显,只有几个碱基的差别,如肠杆菌属中的肺炎克雷伯菌、阴沟肠杆菌和大肠埃希菌,很难利用探针同时将其区分,换而言之,16S rDNA只能检测到属,因此,本实验在设计探针时将屎肠球菌和粪肠球菌分别设计了探针,而对于难区分的肠杆菌则使用了1条通用探针,同时增加了每种致病菌的特异基因,这样16S rDNA用于属的检测,而特异基因可以检测具体的种类。
肺炎链球菌特异基因lytA基因编码肺炎链球菌自溶素,是一种内源性酶,也是一种毒力因子,全长约957bp,在不同血清型的肺炎链球菌中均稳定表达,鉴定肺炎链球菌特异性高[33]。nuc基因编码金葡菌胞外的耐热酶,是金葡菌所特有的基因,具有高保真的特点,是分子生物学常用鉴定金葡菌的方法[34]。P6基因和bexA基因均为流感嗜血杆菌的特异基因,其中P6编码流感嗜血杆菌外膜蛋白,bexA基因编码荚膜相关的蛋白,在所有流感嗜血杆菌中均有表达,常被用于鉴定流感嗜血杆菌[35]。2个基因均进行了引物设计,经过初步引物筛选,bexA基因引物效果不如P6基因,因此本实验选择了P6基因。gltA基因编码鲍曼不动杆菌的柠檬酸合成酶,是鲍曼不动杆菌7个管家基因之一,ompA基因编码外膜蛋白,两种基因均可用于鲍曼不动杆菌的鉴定[36],本实验在引物筛选时针对这两种基因均设计了引物,但在初步筛选时ompA的引物效果不如gltA的引物,因此选用了gltA基因的引物,没再对ompA进行重新设计。phoA基因是大肠埃希菌碱性磷酸酶的结构基因,可以用于大肠埃希菌的鉴定,而且结果稳定可靠[36]。mdh基因编码肺炎克雷伯杆菌中苹果酸酶,是肺炎克雷伯杆菌的管家基因之一,Thong等[36]成功利用该基因检测出肺炎克雷伯杆菌,本实验也选用了mdh基因。toxA基因编码铜绿假单胞菌外毒素A,位于染色体上,oprl基因编码外膜蛋白,其序列具有特异性,2种基因均可用于铜绿假单胞菌的鉴定[37],在引物初步筛选时选择了toxA基因。dnaJ基因编码一种分子伴侣,在阴沟肠杆菌中序列特异,可以用于其鉴定[38]。P1基因编码粘附蛋白,用于肺炎支原体的鉴定[39]。MOMP基因编码外膜蛋白,用于肺炎衣原体的鉴定[40]。ddl基因编码一种连接酶,在屎肠球菌和粪肠球菌中序列差异大,可以用作两种肠杆菌的鉴定[41]。chitA基因编码几丁质水解酶,用于嗜麦芽窄食单胞菌的鉴定[42]。recA基因编码一种重组酶,可用于洋葱伯克霍尔德的鉴定[43]。mip基因是一种巨噬细胞感染增强子,可用于军团菌的鉴定[44]。16S rDNA与特异基因共同用于肺炎致病菌的鉴定,并能成功检测到种是本实验基因芯片重要的特点。
不对称PCR反应是指引物浓度的不对称,普通PCR反应中正反向引物的浓度是相等的,而不对称PCR两引物相差悬殊,这样在DNA聚合酶、脱氧单核苷酸、模板DNA等不变的情况下,较少的那条引物消耗后,便会由另外一条引物扩增出大量的单链DNA,所以不对称PCR又被称为单链扩增PCR。基因芯片杂交正是单链与探针的杂交,使用不对称PCR可以产生大量的单链,从而提高芯片的杂交效率[45],在肠道致病菌检测[29]和耐药病毒筛选[46]等方面均有应用。本实验参考文献报道采用正反向引物比例为1:5,芯片的检测灵敏度达103copies/μl。
本实验利用标准菌株、临床菌株及临床标本对芯片进行了的验证。在临床标本提取过程中采用了3种方法,其中以第3种方法最佳。该提取方法需要4%NaOH溶液对标本液化,而NaOH对PCR反应中DNA聚合酶有影响,所以液化后经过离心去掉上清,再通过吸附柱纯化,将NaOH的影响降到了最低。实验中不但使用了单一菌株进行验证,而且还使用了混合标本对芯片进行了验证,无论何种标本类型芯片均能准确检测出致病菌。在临床标本验证时,有1例标本培养结果为金葡菌,但芯片结果为阴性,后经过PCR证实为阴性,因此考虑可能是标本在送检或培养过程中污染所致。整个实验过程从标本DNA提取到读取芯片结果,约4-6小时,而且一张芯片可同时检测10份标本,大大缩短了检测时间。综上所述,本实验研制的肺炎致病菌快速识别芯片是一种灵敏度高、特异性和重复性好的检测方法,十分适合临床肺炎致病菌种类的鉴定。
本申请中英文缩略语表:
Figure GDA0002340424110000291
Figure GDA0002340424110000301
Figure GDA0002340424110000311
参考文献
[1]Niederman MS,Mandell LA,Anzueto A,et al.Guidelines for themanagement of adults with community-acquired pneumonia.Diagnosis,assessmentof severity,antimicrobial therapy,and prevention.Am J Respir Crit Care Med,2001,163(7):1730-1754.
[2]Wunderink RG,Waterer GW.Clinical practice.Community-acquiredpneumonia.N Engl J Med,2014,370(6):543-551.
[3]Murphy SL,Xu J,Kochanek KD.Deaths:final data for 2010.Natl VitalStat Rep,2013,61(4):1-117.
[4]Kochanek KD,Murphy SL,Xu J et al.Mortality in the United States2013.NCHS Data Brief,2014(178):1-8.
[5]Hoyert DL,Xu J.Deaths:preliminary data for 2011.Natl Vital StatRep,2012,61(6):1-51.
[6]官旭华,Benjamin J Silk,Wenkai Li等,中国大陆肺炎发病率与死亡率:1985-2008年中英文文献的系统分析。公共卫生与预防医学,2011,22(1):14-19.
[7]黄华瑞.老年肺炎的防治.内科急危重症杂志,2001,7(1):42-44.
[8]Weiss K,Tillotson GS.The controversy of combination vs monotherapyin the treatment of hospitalized community-acquired pneumonia.Chest,2005,128(2):940-946.
[9]Garau J,Calbo E.Community-acquired pneumonia.Lancet.2008,371(9611):455-458.
[10]American Thoracic Society;Infectious Diseases Society ofAmerica.Guidelines for the management of adults with hospital-acquired,ventilator-associated,and healthcare-associated pneumonia.Am J Respir CritCare Med,2005,171(4):388-416.
[11]Jiang HX,Tang D,Liu YH,et al.Prevalence and characteristics ofbeta-lactamase and plasmid-mediated quinolone resistance genes in Escherichiacoli isolated from farmed fish in China.J Antimicrob Chemother 2012,67:2350e2353.
[12]Nathan C,Cars O.Antibiotic resistance--problems,progress,andprospects.N Engl J Med,2014,371(19):1761-1763.
[13]Stanek RJ,Maher MB,Norton NB,et al.Emergence of a uniquepenicillin-resistant Streptococcus pneumoniae serogroup 35strain.J ClinMicrobiol,2011,49(1):400-404.
[14]Centers for Disease Control and prevention.Four pediatric deathsfrom community-acquired methicillin-resistant Staphylococcus aureus-Minnesotaand North Dakota,1997-1999.Morb Mortal Wkly Rep,1999,48(32):707-710.
[15]Bhatt P,Patel A,Sahni AK,et al.Emergence of multidrug resistantenterococci at a tertiary care centre.Med J Armed Forces India.2015,71(2):139-144.
[16]Catherine M.Oliphant,Kathryn Eroschenko.Antibiotic Resistance,Part 1:Gram-positive Pathogens.The Journal for Nurse Practitioners,2015,11(1):70-78.
[17]Hsieh SY,Tseng CL,Lee YS,et al.Highly efficient classificationand identification of human pathogenic bacteria by MALDI-TOF MS.Mol CellProteomics,2008,7(2):448-456.
[18]谭瑶,赵清,舒为群等.K-B纸片扩散法药敏试验.检验医学与临床,2010,7(20):2290-2291.
[19]Bartlett JG,Breiman RF,Mandell LA,et al.Community-acquiredpneumonia in adults:guidelines for management.Clin Infect Dis 1998,26:811–838.
[20]Mandell LA,Bartlett JG,Dowell SF,et al.Update of practiceguidelines for the management of communityacquired pneumonia inimmunocompetent adults.Clin Infect Dis 2003;37:1405–33.
[21]You Y,Fu C,Zeng X,et al.A novel DNA microarray for rapiddiagnosis of enteropathogentic bacteria in stool specimens of patients withdiarrhea.J Microbiol Methods,2008,75(3):566-571.
[22]DeRisi J,van den Hazel B,Marc P,et al.Genome microarray analysisof transcriptional activation in multidrug resistance yeast mutants.FEBSLett,2000,470(2):156-160.
[23]Crameri A,Marfurt J,Mugittu K,et al.Rapid microarray-based methodfor monitoring of all currently known single-nucleotide polymorphismsassociated with parasite resistance to antimalaria drugs.J Clin Microbiol,2007,45(11):3685-3691.
[24]Avarre JC,de Lajudie P,Béna G.Hybridization of genomic DNA tomicroarrays:a challenge for the analysis of environmental samples.J MicrobiolMethods,2007,69(2):242-248.
[25]Young RA.Biomedical discovery with DNA arrays.Cell,2000,102(1):9-15.
[26]Kolquist KA,Schultz RA,Furrow A,et al.Microarray-basedcomparative genomic hybridization of cancer targets reveals novel,recurrentgenetic aberrations in the myelodysplastic syndromes.Cancer Genet,2011,204(11):603-628
[27]Zhou J.Microarrays for bacterial detection and microbialcommunity analysis.Curr Opin Microbiol,2003,6(3):288-294.
[28]Ye RW,Wang T,Bedzyk L,et al.Applications of DNAmicroarrays inmicrobial systems.J Microbiol Methods,2001,47(3):257-272.
[29]Jin D,Qi H,Chen S,et al.Simultaneous detection of six humandiarrheal pathogens by using DNA microarray combined with tyramidesignalamplification.J Microbiol Methods,2008,75(2):365-368.
[30]Rhoads DD,Cox SB,Rees EJ,et al.Clinical identification ofbacteria in human chronic wound infections:culturing vs.16S ribosomalDNAsequencing.BMC Infect Dis,2012,24;12:321.
[31]Woo PC,Lau SK,Teng JL,et al.Then and now:use of 16S rDNA genesequencing for bacterial identification and discovery of novel bacteria inclinical microbiology laboratories.Clin Microbiol Infect.2008,14(10):908-934
[32]Sontakke S,Cadenas MB,Maggi RG,et al.Use of broad range 16S rDNAPCR in clinical microbiology.J Microbiol Methods,2009,76(3):217-225.
[33]Carvalho Mda G,Tondella ML,McCaustland K,et al.Evaluation andimprovement of real-time PCR assays targeting lytA,ply and psaA genes fordetection of pneumococcal DNA.J Clin Microbiol,2007,45(8):2460-2466.
[34]Brakstad OG,Aasbakk K,Maeland JA.Detection of Staphylococcusaureus by polymerase chain reaction amplification of the nuc gene.J ClinMicrobiol,1992,30(7):1654-1660.
[35]
Figure GDA0002340424110000341
A,Lantz P,
Figure GDA0002340424110000342
P,et al.Evaluation of an extendeddiagnostic PCR assay for detection and verification of the common causes ofbacterial meningitis in CSF and other biological samples.Mol Cell Probes,1999,13(1):49-60.
[36]Thong KL,Lai MY,Teh C SJ,et al.Simultaneous detection ofmethicillin-resistant Staphylococcus aureus,Acinetobacter baumannii,Escherichia coli,Klebsiella pneumoniae and Pseudomonas aeruginosa bymultiplex PCR.Trop Biomed,2011,28(1):21-31.
[37]Curran B,Jonas D,Grundmann H,et al.Development of a multilocussequence typing scheme for the opportunistic pathogen Pseudomonasaeruginosa.J Clin Microbiol,2004,42(12):5644-5649.
[38]Pavlovic M,Konrad R,Iwobi AN,et al.A dual approach employingMALDI-TOF MS and real-time PCR for fast species identification within theEnterobacter cloacae complex.FEMS Microbiol Lett,2012,328(1):46-53.
[39]Ginevra C,Barranger C,Ros A,et al.Development and evaluation ofChlamylege,a new commercial test allowing simultaneous detection andidentification of Legionella,Chlamydophila pneumoniae,and Mycoplasmapneumoniae in clinical respiratoryspecimens by multiplex PCR.J ClinMicrobiol,2005,43(7):3247-3254.
[40]Apfalter P,Barousch W,Nehr M,et al.Comparison of a newquantitative ompA-based real-Time PCR TaqMan assay for detection of Chlamydiapneumoniae DNA in respiratory specimens with four conventional PCR assays.JClin Microbiol,2003,41(2):592-600.
[41]Naserpour Farivar T,Najafipour R,Johari P,et al.Development andevaluation of a Quadruplex Taq Man real-time PCR assay for simultaneousdetection of clinical isolates of Enterococcus faecalis,Enterococcus faeciumand their vanA and vanB genotypes.Iran J Microbiol,2014,6(5):335-340.
[42]da Silva Filho LV,Tateno AF,Velloso Lde F,et al.Identification ofPseudomonas aeruginosa,Burkholderia cepacia complex,and Stenotrophomonasmaltophilia inrespiratory samples from cystic fibrosis patients usingmultiplex PCR.Pediatr Pulmonol,2004,37(6):537-547.
[43]Wright C,Herbert G,Pilkington R,et al.Real-time PCR method forthe quantification of Burkholderia cepacia complex attached to lungepithelial cells and inhibition of that attachment.Lett Appl Microbiol,2010,50(5):500-506.
[44]Al-Marzooq F,Imad MA,How SH,et al.Development of multiplex real-time PCR for the rapid detection of five bacterial causes of communityacquired pnuemonia.Trop Biomed,2011,28(3):545-556.
[45]张海燕,马文丽,李凌等.应用不对称PCR技术提高寡核苷酸基因芯片杂交效率.军医进修学院学报,2005,26(4):266-268.
[46]Zhang Y,Liu Q,Wang D,et al.Simultaneous detection of oseltamivir-and amantadine-resistant influenza by oligonucleotide microarrayvisualization.PLoS One,2013,8(2):e57154.
[47]National Nosocomial Infections Surveillance System.NationalNosocomial Infections Surveillance(NNIS)System Report,data summary fromJanuary 1992through June 2004,issued October 2004.Am J Infect Control,2004,32(8):470-485.
[48]Ramazanzadeh R,Chitsaz M,Bahmani N.Prevalence and antimicrobialsusceptibility of extended-spectrum beta-lactamase-prod ucing bacteria inintensive units of Sanandaj general hospitals(Kurdistan,Iran).Chemotherapy,2009,55(4):287-292.
[49]Boucher HW,Talbot GH,Bradley JS,et al.Bad bugs,no drugs:noESKAPE!An update from in Infectious Disease Society of America.Cin InfectDis,2009,48(1):1-12.
[50]Wang HY,Kim S,Kim J,et al.Multiplex real-time PCR assay for rapiddetection of methicillin-resistant staphylococci directly from positive bloodcultures.J Clin Microbiol.2014,52(6):1911-1920.
[51]Lucier TS,Heitzman K,Liu SK,et al.Transition mutations in the 23SrRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae.AntimicrobAgents Chemother,1995,39(12):2770-2773.
[52]Hawkey PM,Jones AM.The changing epidemiology of resistance.JAntimicrob Chemother 2009;64(Suppl.1):i3-i10.
[53]Humeniuk C,Arlet G,Gautier V,et al.Beta-lactamases of Kluyveraascorbata,probable progenitors of some plasmid-encoded CTX-M types.AntimicrobAgents Chemother,2002;46(9):3045-3049.
[54]Bernard H,Tancrede C,Livrelli V,et al.A novel plasmid-mediatedextended-spectrum betalactamase not derived from TEM-or SHV-type enzymes.JAntimicrob Chemother,1992;29(5):590-592.
[55]Chanawong A,M’Zali FH,Heritage J,et al.Three cefotaximases,CTX-M-9,CTX-M-13,and CTX-M-14,among Enterobacteriaceae in the People’s Republic ofChina.Antimicrob Agents Chemother,2002;46(3):630-637.
[56]Tham J,Odenholt I,Walder M,et al.Extended-spectrum beta-lactamase-producing Escherichia coli in patients with travellers’diarrhoea.Scand J Infect Dis,2010,42(4):275-280.
[57]Stiffler MA,Hekstra DR,Ranganathan R,et al.Evolvability as afunction of purifying selection in TEM-1β-lactamase.Cell.2015,160(5):882-892.
[58]陈灿峰,钟六珍,陈秀红.产超广谱β内酰胺酶大肠埃希菌中TEM基因型特征研究.黑龙江医学,2013,37(12):1197-1198.
[59]Ito H,Arakawa Y,Ohsuka S,et al.Plasmid-mediated dissemination ofthe metallo-beta-lactamase gene blaIMP among clinically isolated strains ofSerratia marcescens.Antimicrob Agents Chemother 1995;39(4):824-829.
[60]Nordmann P.Carbapenemase-producing Enterobacteriaceae:overview ofa major public health challenge.Med Mal Infect,2014;44(2):51-56.
[61]Chu YW,Afzal-Shah M,Houang ET,et al.IMP-4,a novel metallo-blactamase from nosocomial Acinetobacter spp.collected in Hong Kong between1994and 1998.Antimicrob Agents Chemother,2001;45(3):710-714.
[62]Kumarasamy KK,Toleman MA,Walsh TR,et al.Emergence of a newantibiotic resistance mechanism in India,Pakistan,and the UK:a molecular,biological,and epidemiological study.Lancet Infect Dis,2010;10(9):597-602.
[63]Saleem AF,Qamar FN,Shahzad H,et al.Trends in antibioticsusceptibility and incidence of late-onset Klebsiella pneumoniae neonatalsepsis over a six-year period in a neonatal intensive care unit in Karachi,Pakistan.Int J Infect Dis,2013;17(11):e961-e965.
[64]Chen L,Mathema B,Chavda KD,et al.Carbapenemase-producingKlebsiella pneumoniae:molecular and genetic decoding.Trends Microbiol,2014(12);22:686-696.
[65]Qi Y,Wei Z,Ji S,et al.ST11,the dominant clone of KPC-producingKlebsiella pneumoniae in China.J Antimicrob Chemother,2011;66(2):307-312.
[66]胡海莹,王冬国,魏志英等.多药耐药大肠埃希菌OXA基因检测及聚类分析.医学研究杂志,2012,41(9):129-133.
[67]刘健龙,莫丽亚,宋春荣等.儿童下呼吸道感染肺炎克雷伯菌耐药性及dha基因研究.实用预防医学,2014,21(3):363-365.
[68]Strahilevitz J,Jacoby GA,Hooper DC,et al.Plasmid-mediatedquinolone resistance:a multifaced threat.Clin Microbial Rev,2009,22(4):664-689.
[69]Vaziri F,Peerayeh SN,Nejad QB,et al.The prevalence ofaminoglycoside-modifying enzyme genes(aac(6')-I,aac(6')-II,ant(2")-I,aph(3')-VI)in Pseudomonas aeruginosa.Clinics(Sao Paulo),2011;66(9):1519-1522.
[70]Quinn,J.P.,C.A.Dudek,C.A.diVincenzo,et al.Emergence of resistanceto imipenem during therapy for Pseudomonas aeruginosainfections.J.Infect.Dis.1986,154(2):289-294.
[71]Hancock,R.E.W.,A.M.Carey.Outer membrane of Pseudomonasaeruginosa:heat-and 2-mercaptoethanol-modifiable proteins.J.Bacteriol,1979,140(3):902-910.
[72]Trias J,Nikaido H.Outer membrane protein D2 catalyzes facilitateddiffusion of carbapenems and penems through the outer membrane of Pseudomonasaeruginosa.Antimicrob Agents Chemother,1990,34(1):52-57.
[73]沈继录,朱德妹,吴卫红等.碳青霉烯类抗生素耐药铜绿假单胞菌外膜孔蛋白OprD2的研究.中国感染与化疗杂志,2011,11(4):281-286.
[74]宋诗铎,郑东钧,张宇雯等.临床分离耐亚胺培南铜绿假单胞菌染色体oprD基因突变的检测.中华传染病杂志,2003,21(2):144-145.
[75]Naimi TS,LeDell KH,Como-Sabetti K,et al.Comparison of community-and health care-associated methicillin-resistant Staphylococcus aureusinfection.JAMA.2003,290(22):2976-2984.
[76]Ito T,Ma XX,Takeuchi F,et al.Novel type V staphylococcal cassettechromosome mec driven by a novel cassette chromosome recombinase,ccrC.Antimicrob Agents Chemother,2004,48(7):2637-2651.
[77]Chongtrakool P,Ito T,Ma XX,et al.Staphylococcal cassettechromosome mec(SCCmec)typing of methicillin-resistant Staphylococcusaureusstrains isolated in 11Asian countries:a proposal for a new nomenclaturefor SCCmec elements.Antimicrob Agents Chemother,2006,50(3):1001-1012.
[78]Strateva T,Atanasova D,Mitov I,et al.Emergence of VanB phenotype-vanA genotype Enterococcus faecium clinical isolate in Bulgaria.Braz J InfectDis,2014,18(6):693-695.
[79]Simner PJ,Adam H,Baxter M,et al.Epidemiology of Vancomycin-Resistant Enterococci(VRE)in Canadian Hospitals:CANWARD2007-2013.AntimicrobAgents Chemother.2015,pii:AAC.00384-15.[Epub ahead of print].
[80]王立朋,何云燕,严立等,万古霉素耐药肠球菌耐药基因检测及分子流行病学调查.临床检验杂志,2014,32(2):136-143.
[81]Palazzo IC,Araujo ML,Darini AL.First report of vancomycin-resistant staphylococci isolated from healthy carriers in Brazil.J ClinMicrobiol,2005,43(1):179-185.

Claims (4)

1.一种肺炎致病菌快速识别基因芯片,其中,所述肺炎致病菌包括肺炎链球菌、金黄色葡萄球菌、流感嗜血杆菌、肺炎支原体、铜绿假单胞菌、鲍曼不动杆菌、粪肠球菌、屎肠球菌、肺炎克雷伯杆菌、大肠埃希菌、阴沟肠杆菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德菌、嗜肺军团菌、肺炎衣原体;
所述基因芯片上包括用于与待检样品进行杂交的探针;
所述探针包括第一探针;所述第一探针用于鉴定所述肺炎致病菌的特异基因,由此确定被测细菌的种;
其中,
用于鉴定所述肺炎链球菌的第一探针的序列为:CAAAGTAGTACCAAGTGCCATTGATTTTCTTTTTTTTTTTT;
用于鉴定所述金黄色葡萄球菌的第一探针的序列为:CAAAGAACTGATAAATATGGACGTGGCTTTTTTTTTTTT;
用于鉴定所述流感嗜血杆菌的第一探针的序列为:GAACGTGGTACACCAGAATACAACATCGCTTTTTTTTTTTT;
用于鉴定所述肺炎支原体的第一探针的序列为:TGAGGTGAATGGGTTGTTGAATCCGTTTTTTTTTTTT;
用于鉴定所述铜绿假单胞菌的第一探针的序列为:TTGTGCCTGCTCGACCCGCTGGACGGGGTCTACAACTACCTCGCCCAGTTTTTTTTTTTT;
用于鉴定所述鲍曼不动杆菌的第一探针的序列为:TCGATCCACGTGCTAAAGTGATTTTTTTTTTTTT;
用于鉴定所述粪肠球菌的第一探针的序列为:TTACATGGGCCAAATGGTGAAGATGGAACATTTTTTTTTTTT;
用于鉴定所述屎肠球菌的第一探针的序列为:TCCTTTTTCCGTCATCAGTATAAAGTATAGTTTTTTTTTTTT;
用于鉴定所述肺炎克雷伯杆菌的第一探针的序列为:AAAGCCGGCGTGTACGATAATTTTTTTTTTTT;
用于鉴定所述大肠埃希菌的第一探针的序列为:CGCCAAATCCGCAACGTAATGACAGTGTACCAACCCTTTTTTTTTTTTT;
用于鉴定所述阴沟肠杆菌的第一探针的序列为:GCAGGCGATCTGTACGTTCAGGTTTTTTTTTTTTT;
用于鉴定所述嗜麦芽窄食单胞菌的第一探针的序列为:TACCACCCGTACCTGGACTTTTTTTTTTTTT;
用于鉴定所述洋葱伯克霍尔德菌的第一探针的序列为:TGGTGCGCTCGGGCTCGATCGACATTTTTTTTTTTTT;
用于鉴定所述嗜肺军团菌的第一探针的序列为:ATAGCATTGGTGCCGATTTGGGGAAGAATTTTTTTTTTTT;
用于鉴定所述肺炎衣原体中的第一探针的序列为:ACTGCCGTAGATAGACCTAACCCGGCCTATTTTTTTTTTTT;
所述探针包括第二探针;所述第二探针用于鉴定所述肺炎致病菌的16S rDNA基因,由其确定被测细菌的属;
其中,
用于鉴定所述肺炎链球菌的第二探针的序列为:TGTGAGAGTGGAAAGTTCACACTGTTTTTTTTTTTT;
用于鉴定所述金黄色葡萄球菌的第二探针的序列为:ACATATGTGTAAGTAACTGTGCACATCTTGACGGTATTTTTTTTTTTT;
用于鉴定所述流感嗜血杆菌的第二探针的序列为:GAGGAAGGTTGATGTGTTATTTTTTTTTTTT;
用于鉴定所述肺炎支原体的第二探针的序列为:GACCTGCAAGGGTTCGTTTTTTTTTTTTT;
用于鉴定所述铜绿假单胞菌的第二探针的序列为:TTGCTGTTTTGACGTTACTTTTTTTTTTTT;
用于鉴定所述鲍曼不动杆菌的第二探针的序列为:CCTAGAGATAGTGGACGTTACTTTTTTTTTTTT;
用于鉴定所述粪肠球菌的第二探针的序列为:AGTGCTTGCACTCAATTGGAAAGAGGAGTGGTTTTTTTTTTTT;
用于鉴定所述屎肠球菌的第二探针的序列为:CAAGGATGAGAGTAACTGTTCATCCCTTTTTTTTTTTT;
用于鉴定所述嗜麦芽窄食单胞菌的第二探针的序列为:CCAGCTGGTTAATACCCGGTTGGGATTTTTTTTTTTT;
用于鉴定所述洋葱伯克霍尔德菌的第二探针的序列为:TTGGCTCTAATACAGTCGGTTTTTTTTTTTT;
用于鉴定所述嗜肺军团菌的第二探针的序列为:AGGGTTGATAGGTTAAGAGCTGATTAATTTTTTTTTTTT;
用于鉴定所述肺炎衣原体中的第二探针的序列为:CCGAATGTAGTGTAATTAGGCTTTTTTTTTTTT;
用于鉴定所述肺炎克雷伯杆菌、大肠埃希菌、阴沟肠杆菌的第二探针的序列为:GGTTAATAACCTCATCGATTGACGTTACCCTGCTTTTTTTTTTTT。
2.如权利要求1中任一项所述的肺炎致病菌快速识别基因芯片,其特征在于:进一步包括阳性探针和阴性探针;其中所述阳性探针为:ACTCCTACGGGAGGCAGCAGTTTTTTTTTTTT,用于监测杂交过程中假阴性的出现;所述阴性探针为TCAGAGCCTGTGTTTCTACCAATTTTTTTTTTTT、CATCAATAGGGTCCGATATTTTTTTTTTTT、CGAACGCAAATCAATCTTTTTCCAGGTTTTTTTTTTTTT中的至少一个,用于监测杂交过程中假阳性的出现。
3.一种如权利要求1-2中任一项所述的肺炎致病菌快速识别基因芯片的制备方法,其包括:
先将芯片贴膜牢固的贴在片基上,不能有气泡,一张片基被分成多个微阵列反应区域;
利用ddH2O将合成的探针稀释成终浓度为100μM的溶液,振荡,混匀,在小型离心机上将挂壁的液体甩到底部,然后按1:1的比例,将5μl探针溶液和5μl芯片点样液加入到多孔板中,混匀,避免气泡的产生;
同时多孔板中还应加入标识列,即3’标记氨基的20个重复T序列,标识列的终浓度在1μM;标识列与点样液的比例同样是1:1;
点样前,需将点样针超声10min,确保点样针的清洁;
点样时,点与点的距离≥7mm,然后根据微阵列的大小、探针的多少确定每条探针重复的次数;点样室的温度为室温,湿度为30%;
点样结束后,将点样针超声10min,保持点样针的清洁,防止点样孔阻塞和交叉污染;然后将芯片置于芯片盒内,连同芯片盒一起放进干燥器干燥24h。
4.根据权利要求3所述的肺炎致病菌快速识别基因芯片的制备方法,其中:每条探针重复的次数为2-3次。
CN201710547772.0A 2017-07-06 2017-07-06 肺炎致病菌快速识别基因芯片 Active CN107287311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710547772.0A CN107287311B (zh) 2017-07-06 2017-07-06 肺炎致病菌快速识别基因芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710547772.0A CN107287311B (zh) 2017-07-06 2017-07-06 肺炎致病菌快速识别基因芯片

Publications (2)

Publication Number Publication Date
CN107287311A CN107287311A (zh) 2017-10-24
CN107287311B true CN107287311B (zh) 2020-07-28

Family

ID=60099970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710547772.0A Active CN107287311B (zh) 2017-07-06 2017-07-06 肺炎致病菌快速识别基因芯片

Country Status (1)

Country Link
CN (1) CN107287311B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588246A (zh) * 2018-04-28 2018-09-28 宁波市鄞州人民医院 一种检测下呼吸道细菌特异性基因的引物、探针、方法及试剂盒
CN110184368B (zh) * 2019-07-15 2022-05-06 四川农业大学 一种检测towneri不动杆菌的特异性引物及方法和应用
CN110923338A (zh) * 2019-11-15 2020-03-27 北京贝尔生物工程股份有限公司 一种能检测多种细菌基因组dna的微阵列芯片及其制备方法
CN111088378B (zh) * 2020-01-09 2023-12-19 中国科学院大学宁波华美医院 检测重症肺炎常见病原菌的引物探针系统、试剂盒及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045945B (zh) * 2007-01-12 2010-12-22 北京爱普益生物科技有限公司 检测多种常见细菌病原体的基因芯片、制备方法、试剂盒
CN101748193B (zh) * 2008-12-05 2012-01-11 天津生物芯片技术有限责任公司 一种检测下呼吸道致病菌的基因芯片和试剂盒
CN104419703B (zh) * 2013-09-11 2017-10-24 中国科学院上海生命科学研究院 一种高通量快速检测常见致病菌的方法

Also Published As

Publication number Publication date
CN107287311A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107338315B (zh) 用于15种肺炎致病菌快速检测的试剂盒
CN107475422B (zh) 用于肺炎致病菌耐药基因快速检测的试剂盒
Duarte et al. Human, food and animal Campylobacter spp. isolated in Portugal: high genetic diversity and antibiotic resistance rates
CN107287311B (zh) 肺炎致病菌快速识别基因芯片
Naas et al. Evaluation of a DNA microarray, the Check-Points ESBL/KPC array, for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and KPC carbapenemases
Leangapichart et al. Acquisition of a high diversity of bacteria during the Hajj pilgrimage, including Acinetobacter baumannii with bla OXA-72 and Escherichia coli with bla NDM-5 carbapenemase genes
Orynbayev et al. Biological characterization of Pasteurella multocida present in the Saiga population
Xiang et al. Investigation of a salmonellosis outbreak caused by multidrug resistant Salmonella Typhimurium in China
van Bergen et al. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing
Mwaigwisya et al. Emerging commercial molecular tests for the diagnosis of bloodstream infection
Aabenhus et al. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data
Olson et al. Development of real-time PCR assays for detection of the Streptococcus milleri group from cystic fibrosis clinical specimens by targeting the cpn60 and 16S rRNA genes
WO2022179494A1 (zh) 一种伤寒沙门氏菌的检测试剂盒、其制备方法及其应用
Zhou et al. Novel species-specific targets for real-time PCR detection of four common pathogenic Staphylococcus spp.
Frasao et al. Molecular detection, typing, and quantification of Campylobacter spp. in foods of animal origin
Sun et al. Development of real-time PCR systems based on SYBR Green for the specific detection and quantification of Klebsiella pneumoniae in infant formula
CN109680079A (zh) 检测副溶血性弧菌的rpa引物、探针、试剂盒和方法
Lei et al. Vertical transmission of Salmonella Enteritidis with heterogeneous antimicrobial resistance from breeding chickens to commercial chickens in China
Donnarumma et al. Molecular characterization of acinetobacter isolates collected in intensive care units of six hospitals in Florence, Italy, during a 3-year surveillance program: a population structure analysis
Lopes et al. Discriminating typical and atypical cystic fibrosis‐related bacteria by multiplex PNA‐FISH
Zhou et al. Prevalence, antimicrobial resistance and genetic characterization of Vibrio parahaemolyticus isolated from retail aquatic products in Nanjing, China
Pu et al. Investigation of Streptococcus agalactiae using pcs B‐based LAMP in milk, tilapia and vaginal swabs in Haikou, China
Fu et al. Rapid detection of Burkholderia cepacia complex carrying the 16S rRNA gene in clinical specimens by recombinase-aided amplification
Bazrgari et al. Genetic diversity and phylogenetic relationship of clinical isolates of Brucella melitensis based on gene polymorphism of β subunit of RNA polymerase (rpoB) gene in Iran
Wang et al. Multiplex PCR identification of the major Pseudomonas aeruginosa serogroups using specific novel target genes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220223

Address after: 100853 Fuxing Road 28, Beijing, Haidian District

Patentee after: CHINESE PLA GENERAL Hospital

Patentee after: Academy of military medicine, PLA Academy of Military Sciences

Address before: 100853 Fuxing Road 28, Beijing, Haidian District

Patentee before: CHINESE PLA GENERAL Hospital