CN107285373A - 一种Pd/SnO2纳米球及其制备方法和应用 - Google Patents

一种Pd/SnO2纳米球及其制备方法和应用 Download PDF

Info

Publication number
CN107285373A
CN107285373A CN201710567148.7A CN201710567148A CN107285373A CN 107285373 A CN107285373 A CN 107285373A CN 201710567148 A CN201710567148 A CN 201710567148A CN 107285373 A CN107285373 A CN 107285373A
Authority
CN
China
Prior art keywords
nanosphere
sno
preparation
solution
palladium acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710567148.7A
Other languages
English (en)
Other versions
CN107285373B (zh
Inventor
乔秀清
李东升
赵君
侯东芳
吴亚盘
董文文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhichanhui Technology Co ltd
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201710567148.7A priority Critical patent/CN107285373B/zh
Publication of CN107285373A publication Critical patent/CN107285373A/zh
Application granted granted Critical
Publication of CN107285373B publication Critical patent/CN107285373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种Pd/SnO2纳米球及其制备方法和应用,所述纳米球尺寸均匀,分散性好。纳米球利用一步恒温水浴蒸发法制备,以无水SnCl2加入到HCl溶液中得到透明溶液,然后加入不同比例的氯钯酸溶液,通过调整水浴温度调控Sn与Pd的形核、生长速度,制备出Pd/SnO2纳米球沉淀,然后将产物离心分离、洗涤、干燥,即可得到尺寸均一的Pd/SnO2纳米球。本发明制备工艺具有以下优点:(1)反应过程中不使用任何模板剂、分散剂,实验过程简单、成本低;(2)不使用贵金属还原剂,无需后处理、对环境无污染;(3)反应条件温和,不使用高温高压条件,易大规模合成;(4)产物形态均匀,分散性好。得到的Pd/SnO2纳米球在催化、气敏、锂电池等领域具有良好的应用前景。

Description

一种Pd/SnO2纳米球及其制备方法和应用
技术领域
本发明涉及一种Pd/SnO2纳米球及其制备方法和应用。
背景技术
二氧化锡,宽禁带n型半导体,Eg=3.65eV,广泛应用于气敏传感器、光催化,锂电池等领域,是材料领域的研究热点。目前制备氧化锡纳米粒子的方法主要有水热法,沉淀法,前驱体分解法,静电纺丝法等等。由于纳米粒子制备过程中较大的比表面积和较高的表面能导致纳米粒子易于团聚,纳米粒子的分散性差。因此寻找合适的方法制备具有分散性好的纳米粒子非常重要。
SnO2纳米粒子在光催化、气敏传感,锂电池等领域的应用是目前SnO2的研究重点。为了进一步提高SnO2纳米粒子的光催化及气敏特性,各种各样的策略被开发出来。目前提高SnO2纳米粒子气敏及光催化性能的主要措施有:与其他氧化物复合、金属/非金属元素掺杂、贵金属负载、SnO2结构和形貌调控等。其中,贵金属纳米粒子改性是一种提高气敏及催化活性比较有效的方法。通过贵金属纳米粒子与SnO2形成异质结构,可以形成肖特基势垒捕获光生电子,降低光生电子空穴的复合,提高光催化性能。同时,贵金属纳米粒子修饰的SnO2半导体气敏材料,贵金属纳米颗粒与SnO2之间的电子相互作用可以明显提高SnO2对气体的灵敏度与响应速度,改善材料气敏性能。目前制备Pd/SnO2复合材料的方法多为两步法,制备步骤复杂。
恒温水浴合成方法反应条件温和、操作简单,成本低,容易大量生产等优点而受到广泛研究。本发明采用一步恒温水浴法制备Pd修饰的SnO2纳米球,提高SnO2的催化及气敏性能。
发明内容
本发明的目的在于提供一种分散性好的Pd/SnO2纳米球及其制备方法和应用。该方法制备过程无需模板剂、分散剂、还原剂,无需后处理,对环境无污染,反应条件简单,温和,成本低,易于工业化。
本发明的Pd/SnO2纳米球由SnO2和Pd纳米粒子组成,纳米球直径为 20~200nm,尺寸均匀,分散性好,表面粗糙。
本发明还涉及一种Pd/SnO2纳米球的制备方法,采用的是恒温水浴法,包含以下步骤:
1)将无水SnCl2加入一定量的HCl水溶液中持续搅拌,得到透明的澄清溶液;
2)加入一定量的氯钯酸溶液,加热搅拌一定时间后产生棕色沉淀;
3)将步骤 2)制得的棕色沉淀离心分离、洗涤、真空干燥,得到Pd/SnO2纳米球。所述无水SnCl2溶液的浓度为0.1 ~ 0.5M;所述溶液的搅拌时间为30min~10h
所述HCl水溶液的质量百分数为20% ~35%,所用HCl水溶液的体积为0.01ml~0.5ml。
所述氯钯酸溶液的浓度为1mg/ml ~ 30mg/ml;所述氯钯酸溶液的加入速度为0.05ml/s~5ml/s,所述氯钯酸溶液的体积为0.01ml~5ml。
所述加热温度为40℃~ 95℃,所述反应时间为 2h ~100h。
所述产物经离心分离、洗涤后采用真空干燥的方式,产物干燥温度为30℃~100℃,干燥时间为2~20h。
所述Pd/SnO2纳米球的结构、形貌可以通过控制反应条件来调节。
本发明采用氯化亚锡作为氧化锡的源材料,以氯钯酸作为Pd的源材料,使得体系中同时具有SnO2与Pd的前驱体,可以获得的Pd修饰的SnO2复合纳米球。Pd/SnO2纳米球的结晶性好,粒径可以在 20~200nm范围内调控。
本发明的另一目的是将制备的Pd/SnO2纳米球用于气敏传感、光催化及锂电池领域。
本发明的有益效果为:
该方法以无机盐氯化亚锡、氯钯酸为原料,通过恒温水浴蒸发法控制Sn与Pd的形核、生长速率,制备Pd/SnO2纳米球。制备工艺简单,反应条件温和,只需一步法即可实现,无需去除模板、无需热处理、产率高、对环境无污染,易大规模合成。用该方法制备Pd/SnO2纳米球可以通过调整氯化亚锡浓度、氯钯酸的浓度、体积,水浴热温度、反应时间等调控纳米球的结构。用该方法制备出的Pd/SnO2纳米球粒径均匀,分散性好,表面粗糙,比表面积大,能有效增加表面反应活性位点,提高SnO2的光催化活性和气敏性能,具有良好的应用前景。
附图说明
图 1 是实施例 1Pd/SnO2纳米球的 X 射线衍射图谱。
图 2 是实施例 1Pd/SnO2纳米球的扫描电镜照片。
图 3 是实施例 1Pd/SnO2纳米球的透射电镜照片。
图 4 是实施例2Pd/SnO2纳米球的透射电镜照片,(1)、(2)均为Pd/SnO2纳米球的透射电镜照片。
图 5 是实施例2Pd/SnO2纳米球在200ppm三乙胺气体中灵敏度与工作温度的关系。
图 6 是实施例 3Pd/SnO2纳米球对三乙胺气体的灵敏度。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例 1
1)将0.6 g SnCl2溶解于含有0.4ml质量百分数为37%的30 ml 去离子水中,配置成氯化亚锡水溶液,搅拌得到透明溶液。
2)将0.3ml的浓度为10mg/ml的氯钯酸溶液逐滴加入到上述透明溶液中,在80°C下恒温搅拌10h,得到棕色的悬浊液。
3)将悬浊液冷却,离心分离、分别用蒸馏水和无水乙醇各洗涤三次,所得产物经过50°C干燥中空干燥,得到Pd/SnO2纳米球。
上述制备的Pd/SnO2纳米球的 X 射线衍射图谱如图 1 所示,其衍射峰主要为四方金红石相氧化锡,没有出现Pd的明显的衍射峰,主要是由于Pd的含量太低。上述制备的Pd/SnO2纳米球的扫描电镜照片(见图 2),从中可以看出Pd/SnO2纳米球平均尺寸为~100nm。上述制备的Pd/SnO2纳米球的透射电镜照片(见图 3),从中可以看出Pd/SnO2纳米球分散性较好。
将上述制备的Pd/SnO2纳米球用于检测甲醇,三乙胺和乙醇气体。制备成的气敏元件对200ppm的三种不同气体的最佳工作温度为240℃,比纯的SnO2降低20℃。最佳工作温度下对三种检测气体的灵敏度为分别为50.6,62.4和54.3。
取上述制备的Pd/SnO2纳米球20mg用于光催化降解50mL浓度为10mg/L的次甲基蓝溶液,每隔一定时间取出溶液,离心,用紫外可见分光光度计分析上层溶液中MB的浓度。60min 以后MB降解率达92%。
实施例 2
1)将 1 g SnCl2溶解于含有0.4ml质量百分数为30%的30 ml 去离子水中,配置成氯化亚锡水溶液,搅拌得到透明溶液。
2)将0.6ml的浓度为10mg/ml的氯钯酸溶液逐滴加入到上述透明溶液中,在80°C下恒温搅拌10h,得到棕色的悬浊液。
3)将悬浊液冷却,离心分离、分别用蒸馏水和无水乙醇各洗涤三次,所得产物经过50°C干燥中空干燥,得到Pd/SnO2纳米球。
上述制备的Pd/SnO2纳米球的 TEM图片如图 4 所示,从中可以看出纳米球由SnO2纳米粒子和Pd纳米粒子组成。
将上述制备的Pd/SnO2纳米球用于检测甲醇,三乙胺和乙醇气体。制备成的气敏元件对100ppm的三种不同气体的最佳工作温度为240℃,比纯的SnO2降低20℃。最佳工作温度下对三种检测气体的灵敏度为分别为49.6,53.33和48.2,图5是制备的Pd/SnO2纳米球用于检测三乙胺气体的灵敏度与工作温度的关系。
取上述制备的Pd/SnO2纳米球20mg用于光催化降解50mL浓度为10mg/L的次甲基蓝溶液,每隔一定时间取出溶液,离心,用紫外可见分光光度计分析上层溶液中MB的浓度。60min 以后MB降解率达95%。
实施例 3
1)将 1 g SnCl2溶解于含有0.4ml质量百分数为30%的30 ml 去离子水中,配置成氯化亚锡水溶液,搅拌得到透明溶液。
2)将0.6ml的浓度为10mg/ml的氯钯酸溶液逐滴加入到上述透明溶液中,在80°C下恒温搅拌10h,得到棕色的悬浊液。
3)将悬浊液冷却,离心分离、分别用蒸馏水和无水乙醇各洗涤三次,所得产物经过50°C干燥中空干燥,得到Pd/SnO2纳米球。
将上述制备的Pd/SnO2纳米球用于检测甲醇,三乙胺和乙醇气体。制备成的气敏元件对500ppm的三种不同气体的最佳工作温度为240℃,比纯的SnO2降低20℃。最佳工作温度下对三种检测气体的灵敏度为分别为102.1,106.8和104.5。图6为Pd/SnO2纳米球对三乙胺气体的灵敏度随气体浓度的变化关系。
取上述制备的Pd/SnO2纳米球20mg用于光催化降解50mL浓度为20mg/L的次甲基蓝溶液,每隔一定时间取出溶液,离心,用紫外可见分光光度计分析上层溶液中MB的浓度。60min 以后MB降解率达90%。
实施例 4
1)将 1 g SnCl2溶解于含有0.6 ml质量百分数为20%的30 ml 去离子水中,配置成氯化亚锡水溶液,搅拌得到透明溶液。
2)将0.5ml的浓度为20mg/ml的氯钯酸溶液逐滴加入到上述透明溶液中,在60°C下恒温搅拌15h,得到棕色的悬浊液。
3)将悬浊液冷却,离心分离、分别用蒸馏水和无水乙醇各洗涤三次,所得产物经过80°C干燥中空干燥,得到Pd/SnO2纳米球。
将上述制备的Pd/SnO2纳米球用于检测甲醇,三乙胺和乙醇气体。制备成的气敏元件对400ppm的三种不同气体的最佳工作温度为240℃,比纯的SnO2降低20℃。最佳工作温度下对三种检测气体的灵敏度为分别为81.3,92.9和92.1。
取上述制备的Pd/SnO2纳米球10mg用于光催化降解50mL浓度为20mg/L的次甲基蓝溶液,每隔一定时间取出溶液,离心,用紫外可见分光光度计分析上层溶液中MB的浓度。60min 以后MB降解率达86%。

Claims (8)

1.一种Pd/SnO2纳米球,该纳米球由SnO2和Pd纳米粒子组成,纳米球直径为 20~200nm,尺寸均匀,分散性好,表面粗糙。
2.制备权利要求 1 所述的纳米球的方法,其特征在于包括以下步骤:
(1)将无水SnCl2加入HCl水溶液中搅拌30min-10h,得到透明的澄清溶液;
(2)往步骤(1)中加入氯钯酸溶液,40-95℃下加热搅拌2-100h后产生棕色沉淀;
(3)将步骤(2)制得的棕色沉淀离心分离、洗涤、真空干燥,得到Pd/SnO2纳米球。
3.根据权利要求 2 所述的Pd/SnO2纳米球的制备方法,其特征在于,所述SnCl2溶液的摩尔浓度为0.01~0.5 M。
4.根据权利要求2所述的Pd/SnO2纳米球的制备方法,其特征在于,所用的HCl水溶液的质量百分数为20% ~35%。
5.根据权利要求 2 所述的Pd/SnO2纳米球的制备方法,其特征在于,所述的氯钯酸溶液的浓度为1mg/ml~30mg/ml;所述氯钯酸溶液的加入速度为0.05ml/s~5ml/s。
6.根据权利要求 2 所述 Pd/SnO2纳米球的制备方法,其特征在于,步骤(4)中所述产物经离心分离、洗涤后采用真空干燥的方式,产物干燥温度为30℃~100℃,干燥时间为2~20h。
7.权利要求1 所述的Pd/SnO2纳米球在检测甲醇、三乙胺或乙醇气体上的应用。
8.权利要求1 所述的Pd/SnO2纳米球作为光催化剂在催化降解有毒有机污染物上的应用。
CN201710567148.7A 2017-07-12 2017-07-12 一种Pd/SnO2纳米球及其制备方法和应用 Active CN107285373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710567148.7A CN107285373B (zh) 2017-07-12 2017-07-12 一种Pd/SnO2纳米球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710567148.7A CN107285373B (zh) 2017-07-12 2017-07-12 一种Pd/SnO2纳米球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107285373A true CN107285373A (zh) 2017-10-24
CN107285373B CN107285373B (zh) 2018-10-12

Family

ID=60100694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710567148.7A Active CN107285373B (zh) 2017-07-12 2017-07-12 一种Pd/SnO2纳米球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107285373B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918633A (zh) * 2018-07-02 2018-11-30 北京镭硼科技有限责任公司 Pd-SnO2纳米复合材料制备及在氢气传感器的应用
CN109270127A (zh) * 2018-09-27 2019-01-25 北京镭硼科技有限责任公司 一种平面半导体气体传感器芯片及其制备方法
CN115165978A (zh) * 2022-07-11 2022-10-11 吉林大学 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331453A (zh) * 2013-07-01 2013-10-02 南京邮电大学 一种贵金属/二氧化锡纳米复合物的制备方法
CN105665734A (zh) * 2016-01-06 2016-06-15 太原理工大学 一种检测氢的金负载氧化锡纳米材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331453A (zh) * 2013-07-01 2013-10-02 南京邮电大学 一种贵金属/二氧化锡纳米复合物的制备方法
CN105665734A (zh) * 2016-01-06 2016-06-15 太原理工大学 一种检测氢的金负载氧化锡纳米材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈雪松等: "Au修饰SnO2复合纳米材料的制备和气敏性能", 《材料研究学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918633A (zh) * 2018-07-02 2018-11-30 北京镭硼科技有限责任公司 Pd-SnO2纳米复合材料制备及在氢气传感器的应用
CN108918633B (zh) * 2018-07-02 2020-12-22 河北镭传科技有限责任公司 Pd-SnO2纳米复合材料制备及在氢气传感器的应用
CN109270127A (zh) * 2018-09-27 2019-01-25 北京镭硼科技有限责任公司 一种平面半导体气体传感器芯片及其制备方法
CN115165978A (zh) * 2022-07-11 2022-10-11 吉林大学 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法
CN115165978B (zh) * 2022-07-11 2023-11-10 吉林大学 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法

Also Published As

Publication number Publication date
CN107285373B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
Dong et al. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater
Al Balushi et al. Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals
CN105800674B (zh) 一种硫化锡材料的制备方法及应用
Yin et al. Bi2MoO6/TiO2 heterojunction modified with Ag quantum dots: a novel photocatalyst for the efficient degradation of tetracycline hydrochloride
CN107285373B (zh) 一种Pd/SnO2纳米球及其制备方法和应用
Hewer et al. Influence of neodymium ions on photocatalytic activity of TiO2 synthesized by sol–gel and precipitation methods
CN103586084B (zh) 一步法制备卟啉功能化纳米硫化物的工艺
Tang et al. Degradation mechanism and pathway of tetracycline in milk by heterojunction N-TiO2-Bi2WO6 film under visible light
CN105921149A (zh) 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
Song et al. Cu7S4/MnIn2S4 heterojunction for efficient photocatalytic hydrogen generation
Zou et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy
Ma et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
Yasin et al. Influence of TixZr (1− x) O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting
Wang et al. WO3 quantum dots enhanced the photocatalytic performances of graphene oxide/TiO2 films under flowing dye solution
Liu et al. Preparation of BiOCl/Cu2O composite particles and its photocatalytic degradation of moxifloxacin
CN104001494A (zh) 一种类石墨改性纳米锡酸锌的合成方法
CN103359773A (zh) 一种氧化锌纳米棒的制备方法
Liao et al. Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid
Zhang et al. Ultra-high ethanol sensitivity sensor based on porous In2O3 decorated with gold nanoparticles
Jiang et al. Light-enhanced NO2 sensing performance and sensing mechanism of flower-like Cl uniformly doped In2O3
Tang et al. A novel AgCl-based visible-light photocatalyst through in-situ assembly of carbon dots for efficient dye degradation and hydrogen evolution
Chen et al. Facile synthesis of AgBr@ ZIF-8 hybrid photocatalysts for degradation of Rhodamine B
Liu et al. Lamellar WO3/AgI S-scheme heterojunction for superior visible light driven photocatalytic degradation of ciprofloxacin
Ren et al. Preparation of TiO2–reduced graphene oxide–Pd nanocomposites for phenol photocatalytic degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240821

Address after: 810, 8th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Zhichanhui Technology Co.,Ltd.

Country or region after: China

Address before: 443002 No. 8, University Road, Yichang, Hubei

Patentee before: CHINA THREE GORGES University

Country or region before: China

TR01 Transfer of patent right