CN107281942B - 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法 - Google Patents

一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法 Download PDF

Info

Publication number
CN107281942B
CN107281942B CN201710504893.7A CN201710504893A CN107281942B CN 107281942 B CN107281942 B CN 107281942B CN 201710504893 A CN201710504893 A CN 201710504893A CN 107281942 B CN107281942 B CN 107281942B
Authority
CN
China
Prior art keywords
pervaporation
membrane
tetrahydrofuran
blending
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710504893.7A
Other languages
English (en)
Other versions
CN107281942A (zh
Inventor
钟璟
周元冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710504893.7A priority Critical patent/CN107281942B/zh
Publication of CN107281942A publication Critical patent/CN107281942A/zh
Application granted granted Critical
Publication of CN107281942B publication Critical patent/CN107281942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/10Esters of organic acids
    • C08J2401/12Cellulose acetate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种用于分离甲醇和四氢呋喃混合物的渗透汽化共混膜及其制备方法,以P84聚酰亚胺和醋酸纤维素为基本原料,通过共混的方法制备结构均匀、致密的渗透汽化膜。本发明的有益效果是:该共混膜优先透过甲醇,可分离甲醇与四氢呋喃混合物,提纯四氢呋喃;采用渗透汽化法分离甲醇‑四氢呋喃混合物具有分离效率高,设备简单,过程能耗低,无污染等优点;共混膜分离性能优异,化学稳定性强,制膜材料常见易得且价格低廉,有利于工业化生产。

Description

一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备 方法
技术领域
本发明属于渗透汽化膜制备及其应用领域,涉及一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法。
背景技术
四氢呋喃是一种重要的有机合成原料和优良的溶剂,具有广泛的用途。在工业生产中,四氢呋喃对许多有机物和无机物都具有良好的溶解性,特别适用于溶解聚氯乙烯,聚偏氯乙烯和丁苯胺;同时也作为天然树脂、合成树脂、聚氨酯和聚醚橡胶等的溶剂及塑料管用粘合剂的溶剂。但是四氢呋喃作为溶剂使用时经常会带入杂质,如果不加以纯化而直接废弃,既造成经济损失,又污染环境,不符合节能发展要求。随着四氢呋喃工业使用量的快速增长,废弃四氢呋喃溶剂的回收成为亟待解决的问题。
在化工生产中,四氢呋喃常以四氢呋喃-甲醇混合物的形式出现。四氢呋喃和甲醇会形成共沸物,常压下其共沸点为58.96℃,其中四氢呋喃的质量分数为70%、甲醇的质量分数为30%,常用的分离方法包括萃取精馏、变压精馏和共沸精馏等。
专利(CN202336224)涉及一种双塔变压精馏分离甲醇-四氢呋喃的装置和方法,混合物先经过常压塔进行初步分离,再经过高压塔分离得到纯度较高的四氢呋喃,该方法过程复杂,分离效率较低,其中的高压塔设备不仅投资成本大,而且运行过程能耗较高。
比利时的Genduso等采用共沸精馏分离甲醇和四氢呋喃混合物,通过引入正己烷破坏甲醇和四氢呋喃在精馏塔内的汽液平衡,获得四氢呋喃和环己烷-甲醇混合物,该方法需要引入共沸剂,且共沸剂种类较少,价格较高,因此造成总投资费用巨大[Genduso,G.etal AIChE Journal.2014,60(7):2584-2595]。
韩国的Shin等以乙二醇为萃取剂,采用精馏方法分离甲醇/四氢呋喃混合物,该方法引入第三种组分,过程复杂,且存在大量萃取剂的循环加热,不仅提高了投资成本,而且加大过程能耗[Shin,Y,S.et al Journal of Chemical Engineering of Japan.2017,50(4):225-230];专利(CN202336224)涉及一种萃取精馏分离四氢呋喃-乙醇共沸物的装置和方法,乙二醇为萃取剂,其四氢呋喃产品纯度仅为90%。
与传统分离方法相比,渗透汽化技术具有分离效率高、设备简单、操作简便、过程无污染、能耗低等优点,且能非常高效的分离共沸混合物、近沸点混合物,同分异构体和热敏混合物,使其成为一种有潜力替代精馏过程的分离方法。
本发明通过渗透汽化膜材料的选择,开发一种用于甲醇/四氢呋喃渗透汽化分离的共混膜。以P84聚酰亚胺和醋酸纤维素为原料,通过共混方法制备的渗透汽化膜,对甲醇有较强的选择性和较高的分离因子。该分离膜的分离层均匀、致密且无缺陷,通过渗透汽化分离甲醇与四氢呋喃混合物时,能实现四氢呋喃高效提纯,且纯度达到99wt%及以上,同时有效降低四氢呋喃回收成本。
发明内容
本发明要解决的技术问题是:基于上述问题,本发明提供一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法。
本发明解决其技术问题所采用的一个技术方案是:一种用于分离甲醇-四氢呋喃的渗透汽化共混膜,由质量比为9:1~7:3的P84聚酰亚胺和醋酸纤维素组成。
进一步地,共混膜厚度为20~50μm,拉伸强度为51.4~72.1MPa。
一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,包括以下步骤:
(1)铸膜液制备:将P84聚酰亚胺和醋酸纤维素按质量比9:1~7:3依次加入溶剂中,搅拌6~12小时,直至聚合物完全溶解,经静置、真空脱泡后得到铸膜液;
(2)在室温以及空气相对湿度低于50%的条件下,将步骤(1)中的铸膜液倾到在玻璃板上,用刮膜刀刮制成均匀的液态薄层;
(3)将步骤(2)中的液态膜放入真空烘箱,60~100℃干燥12~24小时,退火处理3~5小时,得到渗透汽化共混膜。
进一步地,P84聚酰亚胺为具有以下结构式的产品:
在实际应用中可自制或购买已商业化的产品,本发明所用的P84聚酰亚胺为奥地利Lenzing公司的A-4860产品,平均分子量为80000~150000。
进一步地,步骤(1)中的溶剂为二甲基亚砜、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的一种,优选N-甲基吡咯烷酮。
进一步地,步骤(1)中铸膜液内P84聚酰亚胺和醋酸纤维素的总质量百分比为5~40%,优选25%;溶剂占铸膜液的质量百分比为60~95%,优选75%。
进一步地,步骤(1)中P84聚酰亚胺和醋酸纤维素的溶解温度为5~35℃,优选25℃。
进一步地,步骤(2)中玻璃板上刮涂的液态薄层的厚度为100~250μm,优选200μm。
进一步地,步骤(3)中退火温度为100~150℃,优选120℃。
共混膜用于渗透汽化分离甲醇-四氢呋喃混合物,该共混膜优先透过组分为甲醇。
本发明的有益效果是:(1)本发明所提供的用于甲醇-四氢呋喃渗透汽化分离的共混膜制备过程简单,原料易得且成本低廉,易于实现工业放大;
(2)本发明所制备的共混膜对于甲醇-四氢呋喃有很好的分离效果,选择性能好,分离因子高,长时间运行下比较稳定,膜未发生明显溶胀现象;本发明制备的共混膜有很好的机械强度和抗污染能力,有良好的工业应用前景。
附图说明
下面结合附图对本发明进一步说明。
图1为实施例1制备的共混膜断面的SEM图;
图2为实施例1制备的共混膜表面的SEM图;
图3为甲醇-四氢呋喃渗透汽化分离装置示意图;
图4为不同温度下,实施例1制备的共混膜对甲醇含量为30wt%的甲醇-四氢呋喃混合物的渗透汽化分离性能图。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
称取8.5g P84聚酰亚胺和1.5g醋酸纤维素加入到30g N-甲基吡咯烷酮中,在25℃下快速搅拌12h至聚合物完全溶解,得P84聚酰亚胺/醋酸纤维素铸膜液;将铸膜液静置、抽气、脱泡后倾倒在玻璃板上,放入60℃真空烘箱中至少24h,再在120℃下退火处理3h,得到P84聚酰亚胺/醋酸纤维素共混膜(85wt%/15wt%)。
实施例2
称取9.0g P84聚酰亚胺和1.0g醋酸纤维素加入到30g N,N-二甲基甲酰胺中,在25℃下快速搅拌12h至聚合物完全溶解,得P84聚酰亚胺/醋酸纤维素铸膜液;将铸膜液静置、抽气、脱泡后倾倒在玻璃板上,放入60℃真空烘箱中至少24h,再在120℃下退火处理3h,得到P84聚酰亚胺/醋酸纤维素共混膜(90wt%/10wt%)。
实施例3
称取8.0g P84聚酰亚胺和2.0g醋酸纤维素加入到30g二甲基亚砜中,在25℃下快速搅拌12h至聚合物完全溶解,得P84聚酰亚胺/醋酸纤维素铸膜液;将铸膜液静置、抽气、脱泡后倾倒在玻璃板上,放入60℃真空烘箱中至少24h,再在120℃下退火处理3h,得到P84聚酰亚胺/醋酸纤维素共混膜(80wt%/20wt%)。
实施例4
称取7.5g P84聚酰亚胺和2.5g醋酸纤维素加入到30g N,N-二甲基乙酰胺中,在25℃下快速搅拌12h至聚合物完全溶解,得P84聚酰亚胺/醋酸纤维素铸膜液;将铸膜液静置、抽气、脱泡后倾倒在玻璃板上,放入60℃真空烘箱中至少24h,再在120℃下退火处理3h,得到P84聚酰亚胺/醋酸纤维素共混膜(75wt%/25wt%)。
测试例
1.对实施例1制备的共混膜进行SEM测试,观察其表面形貌,共混膜断面的SEM照片如图1所示,共混膜表面的SEM照片如图2所示。
由图1和图2可知:实施例1制备的共混膜表面均匀、致密且无缺陷;膜层断面清晰,厚度约为37μm。
2.甲醇-四氢呋喃渗透汽化分离装置示意图如图3所示,共由7个组件组成,其中:1为原料罐,2为控温箱,3为原料泵,4为膜组件,5为收集瓶,6为冷阱,7为真空泵。
3.在不同温度下,测试实施例1制备的共混膜对甲醇(30wt%)/四氢呋喃混合物的渗透汽化分离性能:
把原料液加入原料罐中,通过软管连接装置。原料泵将原料液送入安装共混膜的膜组件中,通过控制原料泵转速将料液维持恒定流量,料液从膜组件流出后返回到原料罐中。实验开始前先让整个装置运行1h,确保装置达到稳定状态。然后用真空泵将透过膜的渗透组分抽出,通过冷阱将渗透汽流冷凝为液体,间隔一段时间后收集冷凝液体并称重,用气相色谱分析样品组分,然后计算出共混膜的渗透通量和分离因子。
(1)渗透通量
渗透通量是指单位时间、单位面积内透过膜的物质的质量。它的定义式如下:
Figure BDA0001334425830000061
J―渗透通量,g·m-2·h-1
Q―渗透液的质量,g;
A―有效膜面积,m2
t―操作时间,h。
(2)分离因子
对于二元混合体系来说,分离因子表示膜对不同组分选择性的高低,如下式:
Figure BDA0001334425830000071
Yi、Yj―分别为渗透液中i和j两种组分的质量分数;
Xi、Xj―分别为原料液中i和j两种组分的质量分数;
由图4可知:温度对共混膜分离甲醇-四氢呋喃有重要影响,实施例1制备的共混膜在15℃有最佳分离效果,渗透通量为108g·m-2·h-1,分离因子65。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种用于分离甲醇-四氢呋喃的渗透汽化共混膜,其特征是:由质量比为9:1~7:3的P84聚酰亚胺和醋酸纤维素组成。
2.根据权利要求1所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜,其特征是:所述的共混膜厚度为20~50μm,拉伸强度为51.4~72.1MPa。
3.权利要求1所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:包括以下步骤:
(1)铸膜液制备:将P84聚酰亚胺和醋酸纤维素按质量比9:1~7:3依次加入溶剂中,搅拌6~12小时,直至聚合物完全溶解,经静置、真空脱泡后得到铸膜液;
(2)在室温以及空气相对湿度低于50%的条件下,将步骤(1)中的铸膜液倾到在玻璃板上,用刮膜刀刮制成均匀的液态薄层;
(3)将步骤(2)中的液态膜放入真空烘箱,60~100℃干燥12~24小时,退火处理3~5小时,得到渗透汽化共混膜。
4.根据权利要求3所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:所述的步骤(1)中的溶剂为二甲基亚砜、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的一种。
5.根据权利要求3所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:所述的步骤(1)中铸膜液内P84聚酰亚胺和醋酸纤维素的总质量百分比为5~40%,溶剂占铸膜液的质量百分比为60~95%。
6.根据权利要求3所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:所述的步骤(1)中P84聚酰亚胺和醋酸纤维素的溶解温度为5~35℃。
7.根据权利要求3所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:所述的步骤(2)中玻璃板上刮涂的液态薄层的厚度为100~250μm。
8.根据权利要求3所述的一种用于分离甲醇-四氢呋喃的渗透汽化共混膜的制备方法,其特征是:所述的步骤(3)中退火温度为100~150℃。
CN201710504893.7A 2017-06-28 2017-06-28 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法 Active CN107281942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710504893.7A CN107281942B (zh) 2017-06-28 2017-06-28 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710504893.7A CN107281942B (zh) 2017-06-28 2017-06-28 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107281942A CN107281942A (zh) 2017-10-24
CN107281942B true CN107281942B (zh) 2020-02-14

Family

ID=60098542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710504893.7A Active CN107281942B (zh) 2017-06-28 2017-06-28 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107281942B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681266B (zh) * 2018-07-06 2021-11-30 中国石油化工股份有限公司 分离非质子极性溶剂中小分子溶剂的方法
CN109433021B (zh) * 2018-11-28 2021-06-18 常州大学 兼具耐溶剂性和优异小分子醇分离性能的渗透汽化复合膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187987B1 (en) * 1998-07-30 2001-02-13 Exxon Mobil Corporation Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
CN101077798A (zh) * 2006-05-26 2007-11-28 中国科学院化学研究所 用于含酚废水处理的聚酰亚胺共聚物渗透汽化分离膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187987B1 (en) * 1998-07-30 2001-02-13 Exxon Mobil Corporation Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
CN101077798A (zh) * 2006-05-26 2007-11-28 中国科学院化学研究所 用于含酚废水处理的聚酰亚胺共聚物渗透汽化分离膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol;Xiangyi Qiao et.al;《Journal of Membrane Science》;20050606;第176-189页 *

Also Published As

Publication number Publication date
CN107281942A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
Fouad et al. Use of pervaporation to separate butanol from dilute aqueous solutions: Effects of operating conditions and concentration polarization
Kang et al. Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture
Guo et al. Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis
CA2679444C (en) Liquid-phase and vapor-phase dehydration of organic/water solutions
Ahmadpour et al. Study of CO2 separation with PVC/Pebax composite membrane
Wee et al. Process optimization studies for the dehydration of alcohol–water system by inorganic membrane based pervaporation separation using design of experiments (DOE)
CN103277982B (zh) 一种对涂布印刷行业挥发性有机物循环再利用的工艺与装置
Zheng et al. The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view
Vane Pervaporation and vapor permeation tutorial: membrane processes for the selective separation of liquid and vapor mixtures
Abdallah et al. Pervaporation of methanol from methylacetate mixture using polyamide-6 membrane
CN111004090B (zh) 一种用于三元含水共溶体系分离的精馏-分子筛膜耦合工艺及装置
CN107281942B (zh) 一种用于分离甲醇-四氢呋喃的渗透汽化共混膜及其制备方法
Han et al. Hydrophilically surface-modified and crosslinked polybenzimidazole membranes for pervaporation dehydration on tetrahydrofuran aqueous solutions
Kondo et al. IPA purification for lens cleaning by vapor permeation using zeolite membrane
Li et al. Thermodynamic and mechanistic studies on recovering phenol crystals from dilute aqueous solutions using pervaporation–crystallization coupling (PVCC) system
Yu et al. Very high flux MFI membranes for alcohol recovery via pervaporation at high temperature and pressure
Amarante et al. Pervaporation separation of ethanol and 2-ethylhexanol mixtures using cellulose acetate propionate and poly (1-vinylpyrrolidone-co-vinyl acetate) blend membranes
Liu et al. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation
CN101289389B (zh) 一种乙酸乙酯的生产工艺
CN109745725B (zh) 一种节能型精馏-膜法耦合分离有机共沸体系的方法
Li et al. Efficient recovery of high‐purity aniline from aqueous solutions using pervaporation‐fractional condensation system
CN101816897A (zh) Zsm-5分子筛填充硅橡胶/醋酸纤维素复合膜及其制备方法
Liu et al. Performance of a pervaporation system for the separation of an ethanol-water mixture using fractional condensation
Bangxiao et al. Effect of separating layer in pervaporation composite membrane for MTBE/MeOH separation
CN104341268B (zh) 一种燃料乙醇连续脱水方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant