CN107272692A - Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection - Google Patents

Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection Download PDF

Info

Publication number
CN107272692A
CN107272692A CN201710584720.0A CN201710584720A CN107272692A CN 107272692 A CN107272692 A CN 107272692A CN 201710584720 A CN201710584720 A CN 201710584720A CN 107272692 A CN107272692 A CN 107272692A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710584720.0A
Other languages
Chinese (zh)
Inventor
夏元清
张金会
李春明
付梦印
李胜飞
翟弟华
柴森春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710584720.0A priority Critical patent/CN107272692A/en
Publication of CN107272692A publication Critical patent/CN107272692A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention proposes a kind of unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection, can improve tracking effect of the four-wheel steering pilotless automobile in high-speed passing.Comprise the following steps:Step one:Set up Three Degree Of Freedom four-wheel steering automobile single track Controlling model;Step 2:The Controlling model set up according to step one, it is theoretical according to differential flat, drive lacking is controlled model and is transformed to the input and output coupling model without zero dy namics subsystem with disturbance;Step 3:Path planning layer is set up on tracing control layer.Step 4:The input and output coupling model set up according to step 2, designs the automatic disturbance rejection controller based on broad sense Proportional integral observer, and realization is tracked to the track that step 3 is cooked up.

Description

Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection
Technical field
The invention belongs to four-wheel steering automobile path planning and tracing control field, it is related to a kind of based on differential flat and oneself The unmanned vehicle path planning and tracking and controlling method of anti-interference.
Background technology
Four-wheel steering system (all-wheel control system) is the important component of vehicle handling stability, its feature be Front and back wheel is anti-phase during low speed rotates, and reduces radius of turn;With rotating during high speed, changing Lane is easier.To trailer reversing On the premise of stability and vehicle intellectualized requirement continuous improvement, four-wheel steering automobile is carried out to reference locus (path planning) The requirement of accurate trajectory planning and tracing control is more and more urgent.
Differential flat theory is an effective approach for solving the problems, such as drive lacking.For other method, differential is put down Smooth theory can both handle minimum phase system (static feedback linearisation), and non-minimum phase system can be handled again, and (dynamic is anti- Linearization), nonlinear system is equivalent to the system for being input to flat output of no zero dy namics subsystem.But differential is flat Smooth condition is very harsh for a nonlinear system.Therefore some rational Approximation Methods are generally used, it is considered to which its is near Like the differential flat attribute of system, then residual error is estimated and compensated as disturbance and indeterminate.
Do not ensure that automatic driving vehicle handles any track exactly for giving the tracing control under desired trajectory The problem of tracking, from the angle of trajectory planning, it is considered to trajectory planning layer, Ye Jiju are set up on Trajectory Tracking Control layer Portion's planning layer.Labor is carried out to lane-change process, for the Transfer Parameters between reduced programming layer and key-course, it is proposed that A kind of method based on 5 order polynomial curve matchings, the tracing point of overtaking other vehicles cooked up is fitted.Employ Multivariable Linear Automatic disturbance rejection controller and broad sense Proportional integral observer carry out decoupling disturbance rejection control, realize overtaking other vehicles of cooking up and refer to rail The tracing control of mark, and compared with PID control method.Model initial error it is larger and occur in disturb (small angle Degree omitted items), disturb (longitudinal windage with lateral fitful wind) outside in the case of carried out MATLAB emulation, simulation result explanation is designed Method realize good tracking effect, linear active disturbance rejection controller (using high-order extended state observer) and broad sense ratio The tracking effect of integrator is essentially identical, in the case where disturbance quantity is especially complex, and three ranks of broad sense Proportional integral observer are more Item formula Approximation effect may be not so good as high-order extended state observer.Exist in sensor measuring state variable signal and measure noise When, employ Nonlinear Tracking Differentiator and Robust generalized Proportional integral observer is filtered, realize preferable filter effect, imitate True result shows that Robust generalized Proportional integral observer has stronger filter action.When therefore, for different control objects, Both can be selected between anti-interference effect and filter effect.Before designed planning layer can be obtained according to sensor The information and vehicle self information of square vehicle cook up the local desired trajectory information for getting around front vehicles, then expect rail by local Mark information input tracing control layer, in overtaking process, it is possible to achieve preceding object car is avoided, while to global reference path Tracking.Simulation result shows that designed double-deck control system can be realized in environment of overtaking other vehicles to the reliable, steady of reference locus Fixed tracking.
The content of the invention
The present invention be directed to the defect of prior art, a kind of unmanned vehicle path rule based on differential flat and active disturbance rejection are proposed Draw and tracking and controlling method, four-wheel steering automobile can be improved to the tracking effect for the track cooked up.
The present invention is achieved through the following technical solutions:
A kind of unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection, comprise the following steps:
Step one:Set up Three Degree Of Freedom four-wheel steering automobile single track Controlling model;
Step 2:The Controlling model set up according to step one, it is theoretical according to differential flat, drive lacking is controlled model conversion For the input and output coupling model without zero dy namics subsystem with disturbance;
Step 3:From the angle of trajectory planning, labor, reduced programming layer and key-course are carried out to lane-change process Between Transfer Parameters, based on 5 order polynomial curve-fitting methods, the tracing point of overtaking other vehicles cooked up is fitted;
Step 4:The input and output coupling model set up according to step 2, designs linear automatic disturbance rejection controller and broad sense ratio The track of overtaking other vehicles that example integral observer is cooked up to step 3 is tracked, and it is micro- that described controller includes high order linear tracking Divide device, high-order extended state observer and linear Feedback Control rule, finally obtain actual controlled quentity controlled variable.
Beneficial effects of the present invention:
The present invention has carried out model conversion to drive lacking Three Degree Of Freedom four-wheel steering automobile with differential flat theory, non- Linearly, coupling, drive lacking model be transformed into no zero dy namics subsystem it is defeated to it is flat enter output model, and consider The inaccurate part of model and it is inside and outside disturb, indeterminate etc. is all classified as disturbances suffered by system, then in planned course Controller is designed on the basis of planning layer to be controlled.Differential flat system can be by interior lively state feedback equivalence in a line Sexual system (feedback linearization), passes through the reference locus of the good flat output of tracking, it is possible to tracked state variable defeated with system The reference locus gone out.
Brief description of the drawings
Fig. 1 four-wheel steering automobile single track models.
Embodiment
The invention will be described further below.
A kind of the unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection of the present invention, including with Lower step:
The first step:Four-wheel steering automobile Three Degree Of Freedom drive lacking single track Controlling model is set up, is described as follows:
Wherein, vx,vy, r be respectively four-wheel steering automobile longitudinally, laterally and yaw velocity, flfAnd flrIt is by starting Machine, brake torque and longitudinal force caused by friction, are given by:
Wherein, ε is longitudinal resultant force fmThe constant value distribution coefficient of longitudinal force in front and back wheel, its span be from 0 i.e. rear wheel drive truck is to 1 i.e. front-wheel-drive cars, it is contemplated herein that automobile takes ε=1 only by the situation of front-wheel drive;
fsfAnd fsrIt is the horizontal lateral deviation power of tire
Wherein
Wherein, αfAnd αrThe F in front and back wheel side drift angle, model is represented respectivelyx,FyAnd TzRepresent respectively X, Y direction it is outer Portion's power and torque disturbance, make the f in first equation of modelsf=fsr=0;The formula of above-mentioned power is brought into model, and carried out Small angle approximation, obtains following equations
Wherein, Fx′,Fy' and Tz' it is residual error after small angle approximation, take vx,vy, r is state variable, δfAnd fmFor control Variable, by the above-mentioned form for being modeled as state space
Wherein
G1(x,t)u1u2+ ψ (x, u, t) is disturbed or indeterminate inside and outside regarding as, and real system equation is changed into
Second step:The Controlling model of foundation in the first step, is become using differential flat theory to Controlling model Change, turn to Multivariable Coupling and be input to flat output model, the problem of solving drive lacking is specific as follows:
Approximation system
Flat be output as
State variable is expressed as by flat output and its limited order derivative
Wherein
k1k8+k2k7≠0
And have
So
Wherein
As long as matrixIt is reversible, then approximation system is exactly differential flat, i.e.,
The condition is easily met in practice, therefore real system is turned to:
Wherein,The item of had an impact system is included, including:It is inside and outside disturb, indeterminate, little Jiao The approximate residual error of degree, in addition to it is vertically and horizontally approximate in power formula after residual error.
3rd step:Trajectory planning is carried out to overtaking process, it is assumed that overtake other vehicles beginning when, vehicle P is with speed v along x-axis side To at the uniform velocity travelling, in its preceding object car O with speed v1At the uniform velocity equidirectional traveling, wherein 0 < v1< v, vehicle is tried to cut in Obstacle car O, in whole overtaking process, total distance in X-direction is that total distance in D, Y direction (is equal in two tracks The distance between heart line) it is W, total passing time is T, and lane-change terminal abscissa is X;
Overtaking process can be subdivided into three phases:
First stage:Turned to from former track;
Second stage:In fast straight-line travelling;
Phase III:Former track is returned to from fast;
Phase III optimal trajectory is designed as:
Two constraintss:
(1) peak acceleration circle constraint:
(2) x-axis direction constraint of velocity:
Wherein μ is ground friction coefficient, and N is normal pressure, is known parameters.
S=vT-D is made, optimization problem can be obtained:
4th step:The Multivariable Coupling input/output model set up according to second step, is entered using LADRC controllers (GPI) Row control with the gained track of tracking step three, it is contemplated that the inside and outside complexity disturbed, and auto-disturbance rejection technology advantage, and then use Automatic disturbance rejection controller is controlled, and using linear active disturbance rejection controller (LADRC), controller design step is as follows:
1. Nonlinear Tracking Differentiator TD design:
The linearity tracking differentiator that designs herein single order higher than conventional design method, is to obtain the height of reference signal Single order
Derivative, to add feedforward term in control.The main function of Nonlinear Tracking Differentiator is the band measured to sensor Measure
The reference signal of noise is filtered.
2. high order linear extended state observer LESO design
ConsiderComplexity, employ high order linear extended state observer.
3. the design of Feedback Control Laws:
Actual controlled quentity controlled variable

Claims (9)

1. a kind of unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection, it is characterised in that including Following steps:
Step one:Set up Three Degree Of Freedom four-wheel steering automobile single track Controlling model;
Step 2:The Controlling model set up according to step one, it is theoretical according to differential flat, drive lacking is controlled model and is transformed to band There is the input and output coupling model without zero dy namics subsystem of disturbance;
Step 3:From the angle of trajectory planning, labor is carried out to lane-change process, between reduced programming layer and key-course Transfer Parameters, based on 5 order polynomial curve-fitting methods, the tracing point of overtaking other vehicles cooked up is fitted;
Step 4:The input and output coupling model set up according to step 2, designs linear automatic disturbance rejection controller and broad sense ratio product The track of overtaking other vehicles for dividing observer to cook up step 3 is tracked, and described controller includes high order linear and tracks differential Device, high-order extended state observer and linear Feedback Control rule, finally obtain actual controlled quentity controlled variable.
2. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 1 and tracing control side Method, it is characterised in that set up Controlling model using following methods in step one:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>rv</mi> <mi>y</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>rv</mi> <mi>x</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>J</mi> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>f</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>sin&amp;delta;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>s</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>cos&amp;delta;</mi> <mi>r</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, m is car mass, vx,vy, r be respectively four-wheel steering automobile longitudinally, laterally and yaw velocity, δfr) be (rear) wheel steering angle, l before automobilef(lr) automobile barycenter CG with before (rear) wheel distance, Cf(Cr) be before (rear) Wheel slip it is firm Degree, flfAnd flrIt is the longitudinal force caused by engine, brake torque and friction, is given by:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;epsiv;f</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>l</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, ε is longitudinal resultant force fmThe constant value distribution coefficient of longitudinal force in front and back wheel, span is from 0 i.e. rear wheel driving Electrical automobile is front-wheel-drive cars, f to 1sfAnd fsrIt is the horizontal lateral deviation power of tire, Fx,FyAnd TzExternal force and torque are represented respectively Disturbance, it is contemplated that lateral deviation power fsfAnd fsrDriving/braking act on relative to longitudinal drive/brake force flfAnd flrDriving/braking make The very little for, therefore make the f in first equationsf=fsr=0, front and back wheel corner is controlled using simple ratio, i.e. δr=k δf, k is front and back wheel corner proportional control factor, obtains following equations
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>rv</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>x</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>x</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>rv</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <msub> <mi>&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;delta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mi>r</mi> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k&amp;delta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <mi>r</mi> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>F</mi> <mi>y</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>y</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>J</mi> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <msub> <mi>&amp;delta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>(</mo> <mrow> <msub> <mi>&amp;delta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <mi>r</mi> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mfrac> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k&amp;delta;</mi> <mi>f</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <mi>r</mi> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>z</mi> </msub> <mo>+</mo> <msubsup> <mi>T</mi> <mi>z</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, k is Fx′,Fy' and Tz' it is residual error after small angle approximation, take vx,vy, r is state variable, δfAnd fmBecome for control Amount, by the above-mentioned form for being modeled as state space
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>u</mi> <mo>+</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>&amp;psi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> 1
Wherein
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>C</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <mfrac> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>C</mi> <mi>r</mi> </msub> <mi>m</mi> </mfrac> <mfrac> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <mi>J</mi> </mfrac> <mfrac> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mi>J</mi> </mfrac> <mfrac> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>kC</mi> <mi>r</mi> </msub> </mrow> <mi>m</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>kl</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mi>J</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>l</mi> <mi>f</mi> </msub> <mi>J</mi> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow>
<mrow> <mi>x</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>u</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
G1(x,t)u1u2+ ψ (x, u, t) is disturbed or indeterminate inside and outside regarding as, and real system equation is changed into
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>u</mi> <mo>+</mo> <mi>&amp;xi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 2 and tracing control side Method, it is characterised in that the input without zero dy namics subsystem for being transformed to carry disturbance by the controlled model of drive lacking is defeated Go out coupling model and use following methods:
Line translation is entered to controlled model using differential flat is theoretical, input and output with multiple variable model is converted into:
Approximation system
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>u</mi> </mrow>
Flat be output as
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>kl</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mi>J</mi> </mfrac> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>kC</mi> <mi>r</mi> </msub> </mrow> <mi>m</mi> </mfrac> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
State variable is expressed as by flat output and its limited order derivative
<mrow> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>8</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>8</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>7</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>7</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>8</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>7</mn> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein
<mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>kl</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mi>J</mi> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>kC</mi> <mi>r</mi> </msub> </mrow> <mi>m</mi> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <mi>m</mi> </mfrac> <mo>,</mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mi>m</mi> </mfrac> <mo>,</mo> </mrow>
k7=k3+k4+k5+k6,
<mrow> <msub> <mi>k</mi> <mn>8</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>5</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>6</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>l</mi> <mi>r</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>k</mi> <mn>9</mn> </msub> </mrow>
k1k8+k2k7≠0
And have
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>&amp;Delta;</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>&amp;Lambda;</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow>
So
<mrow> <mi>u</mi> <mo>=</mo> <mi>u</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&amp;Delta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mi>&amp;Lambda;</mi> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
Wherein
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>7</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>9</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;</mi> <mn>22</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <mi>m</mi> </mfrac> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>k</mi> <mn>7</mn> </msub> <mi>m</mi> </mfrac> <mfrac> <msub> <mi>x</mi> <mn>2</mn> </msub> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>k</mi> <mn>9</mn> </msub> <mi>m</mi> </mfrac> <mfrac> <msub> <mi>x</mi> <mn>3</mn> </msub> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Lambda;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Lambda;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mn>7</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>x</mi> <mn>2</mn> </msub> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mfrac> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mn>9</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>x</mi> <mn>3</mn> </msub> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mfrac> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
As long as so matrixIt is reversible, then approximation system is exactly differential flat, i.e.,
<mrow> <mi>det</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;Delta;</mi> <mn>11</mn> </msub> <msub> <mi>&amp;Delta;</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>&amp;Delta;</mi> <mn>12</mn> </msub> <msub> <mi>&amp;Delta;</mi> <mn>21</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>9</mn> </msub> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&amp;NotEqual;</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>8</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>7</mn> </msub> <mo>&amp;NotEqual;</mo> <mn>0</mn> </mrow>
The condition is easily met in practice, therefore real system can be turned to
Wherein,The item of had an impact system is included, including:It is inside and outside disturb, indeterminate, low-angle it is near As residual error.
4. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that further comprise in vertically and horizontally power formula it is approximate after residual error.
5. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that further, described constant value distribution coefficient ε=1, proportional control factor k=1.
6. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that in step 3 to overtaking process carry out trajectory planning, it is assumed that overtake other vehicles beginning when, vehicle P is with speed v At the uniform velocity travel along the x-axis direction, in its preceding object car O with speed v1At the uniform velocity equidirectional traveling, wherein 0 < v1< v, vehicle Obstacle car O is tried to cut in, in whole overtaking process, total distance in X-direction is total i.e. two cars of distance in D, Y direction The distance between road center line is W, and total passing time is T, and lane-change terminal abscissa is X;Wherein overtaking process is divided into three Stage:
First stage:Turned to from former track;
Second stage:In fast straight-line travelling;
Phase III:Former track is returned to from fast;
Phase III optimal trajectory is designed as:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>v</mi> <mi>t</mi> <mo>+</mo> <mo>(</mo> <mi>v</mi> <mi>T</mi> <mo>-</mo> <mi>X</mi> <mo>)</mo> <mo>(</mo> <mo>-</mo> <mn>10</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mo>-</mo> <mn>6</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>5</mn> </msup> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>W</mi> <mo>+</mo> <mi>W</mi> <mo>(</mo> <mo>-</mo> <mn>10</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mo>-</mo> <mn>6</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> <mo>)</mo> </mrow> <mn>5</mn> </msup> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
Two constraintss:
(1) peak acceleration circle constraint:
<mrow> <mo>|</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>&amp;le;</mo> <mfrac> <mrow> <mi>&amp;mu;</mi> <mi>N</mi> </mrow> <mi>m</mi> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow>
(2) x-axis direction constraint of velocity:
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mi>T</mi> </mrow>
S=vT-D is made, optimization problem can be obtained:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </mtd> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>T</mi> <mo>,</mo> <mi>S</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> <mo>+</mo> <msup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mn>10</mn> <mrow> <mn>7</mn> <mi>T</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>W</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>V</mi> <mi>S</mi> <mo>+</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> <mi>T</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> <mi>j</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi> </mi> <mi>t</mi> <mi>o</mi> </mrow> </mtd> <mtd> <mrow> <mn>27</mn> <msup> <mi>A</mi> <mn>2</mn> </msup> <msup> <mi>T</mi> <mn>4</mn> </msup> <mo>-</mo> <mn>256</mn> <msup> <mi>v</mi> <mn>2</mn> </msup> <msup> <mi>T</mi> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>900</mn> <msup> <mi>W</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
7. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that further, described high order linear Nonlinear Tracking Differentiator is designed using following methods:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mn>11</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>hv</mi> <mn>12</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mn>12</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>12</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>r</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>r</mi> <mn>1</mn> </msub> <msub> <mi>v</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mn>21</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>hv</mi> <mn>22</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mn>22</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>22</mn> </msub> <mo>+</mo> <msub> <mi>hv</mi> <mn>23</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mn>23</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>23</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>r</mi> <mn>2</mn> <mn>3</mn> </msubsup> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>-</mo> <mn>3</mn> <msubsup> <mi>r</mi> <mn>2</mn> <mn>2</mn> </msubsup> <msub> <mi>v</mi> <mn>22</mn> </msub> <mo>-</mo> <mn>3</mn> <msub> <mi>r</mi> <mn>2</mn> </msub> <msub> <mi>v</mi> <mn>23</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
The reference signal that band for being measured to sensor measures noise is filtered;Wherein, v11(v21) flat defeated for tracking Go out reference signal y1r(y2r), v12(v22,v23) be used for obtaining reference signal y1r(y2r) first derivative, r1,r2It is tracking differential The velocity factor of device, h is sampling step length.
8. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that further, described high-order extended state observer is designed using following methods:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>11</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>11</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>12</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>12</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>13</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>13</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>13</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>14</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>14</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>b</mi> <mn>14</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>21</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>21</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>21</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>22</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>23</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>22</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>23</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>23</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>24</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>23</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>24</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>24</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>25</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>24</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>25</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>25</mn> </msub> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>b</mi> <mn>25</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, e1,e2It is observation error, z1i(i=1,2,3,4), z2j(j=1,2,3,4,5) it is the defeated of extended state observer Go out, b1i(i=1,2,3,4), b2j(j=1,2,3,4,5) is the gain of extended state observer, U1,U2It is virtual controlling amount.
9. a kind of unmanned vehicle path planning based on differential flat and active disturbance rejection as claimed in claim 3 and tracing control side Method, it is characterised in that further, described linear Feedback Control rule is using following methods design:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>11</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>10</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>11</mn> </msub> <msub> <mi>e</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>21</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>21</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mn>22</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>22</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>20</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>21</mn> </msub> <msub> <mi>e</mi> <mn>21</mn> </msub> <mo>+</mo> <msub> <mi>c</mi> <mn>22</mn> </msub> <msub> <mi>e</mi> <mn>22</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>23</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>20</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>23</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, e11,e21,e22It is state error, U10,U20It is state error feedback rate control, c11,c21,c22It is error feedback control Coefficient processed;
Actual controlled quentity controlled variable
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mi>&amp;Delta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> 5
CN201710584720.0A 2017-07-18 2017-07-18 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection Pending CN107272692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710584720.0A CN107272692A (en) 2017-07-18 2017-07-18 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710584720.0A CN107272692A (en) 2017-07-18 2017-07-18 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection

Publications (1)

Publication Number Publication Date
CN107272692A true CN107272692A (en) 2017-10-20

Family

ID=60078818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710584720.0A Pending CN107272692A (en) 2017-07-18 2017-07-18 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection

Country Status (1)

Country Link
CN (1) CN107272692A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107943060A (en) * 2017-12-29 2018-04-20 上海司南卫星导航技术股份有限公司 A kind of automatic pilot, method and computer-readable medium along tracking straight line guiding vehicle
CN108039839A (en) * 2017-12-08 2018-05-15 重庆邮电大学 The tandem antidisturbance control system and method for permanent-magnet brushless DC electric machine governing system
CN108196545A (en) * 2018-01-03 2018-06-22 浙江同筑科技有限公司 Using the AGV magnetic navigation control methods of Auto Disturbances Rejection Control Technique
CN108345967A (en) * 2018-04-27 2018-07-31 西南交通大学 A kind of linear programming optimization method of unmanned vehicle track grade track
CN108931918A (en) * 2018-06-21 2018-12-04 华北电力大学 A kind of control method of servo motor and device
CN108958246A (en) * 2018-06-29 2018-12-07 长安大学 Trajectory Tracking Control method of the unmanned vehicle in U-Turn scene
CN109358621A (en) * 2018-09-30 2019-02-19 山东省计算中心(国家超级计算济南中心) Autonomous driving vehicle Trajectory Tracking Control method
CN109677403A (en) * 2018-12-27 2019-04-26 吉林大学 A kind of intelligent vehicle avoidance obstacle method based on differential flat
CN109782806A (en) * 2019-02-19 2019-05-21 北京邮电大学 Path following method and device in a kind of unmanned plane room
CN109856975A (en) * 2019-03-04 2019-06-07 南京农业大学 Tractor path following control device design method based on resetting control
CN109969177A (en) * 2017-12-27 2019-07-05 现代自动车株式会社 Identify the system and its control method of the driving intention of nearby vehicle
CN110703754A (en) * 2019-10-17 2020-01-17 南京航空航天大学 Path and speed highly-coupled trajectory planning method for automatic driving vehicle
CN112051736A (en) * 2020-08-25 2020-12-08 重庆邮电大学 Trajectory tracking control system based on single controller
CN112083653A (en) * 2020-09-09 2020-12-15 中国人民解放军火箭军工程大学 Active disturbance rejection control design method of inverted pendulum system based on differential flatness
CN112241125A (en) * 2020-10-29 2021-01-19 北京理工大学 Unmanned aerial vehicle trajectory tracking method based on differential flatness characteristic
CN112477880A (en) * 2020-11-30 2021-03-12 天津大学 Longitudinal control method for unmanned automobile
CN113093541A (en) * 2021-03-31 2021-07-09 中南大学 Differential flatness tracking control method for under-actuated crane
CN114815654A (en) * 2022-03-01 2022-07-29 北京理工大学 Unmanned vehicle control-oriented digital twin system and construction method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076541A (en) * 2008-06-20 2011-05-25 通用汽车环球科技运作公司 Path generation algorithm for automated lane centering and lane changing control system
JP2011134320A (en) * 2009-12-22 2011-07-07 Intel Corp Efficient nested virtualization
CN102609765A (en) * 2012-03-22 2012-07-25 北京工业大学 Intelligent vehicle lane change path planning method based on polynomial and radial basis function (RBF) neural network
CN103121451A (en) * 2013-03-19 2013-05-29 大连理工大学 Tracking and controlling method for lane changing trajectories in crooked road
CN103970137A (en) * 2014-05-08 2014-08-06 北京理工大学 Control method of ALV transverse displacement tracking system based on active disturbance rejection
CN103970138A (en) * 2014-05-08 2014-08-06 北京理工大学 ALV transverse control method based on active disturbance rejection and differential smoothing
CN105467996A (en) * 2015-12-21 2016-04-06 北京理工大学 Four-wheel steering automobile track tracking control method based on differential flat and active disturbance rejection
US9535422B2 (en) * 2012-07-12 2017-01-03 Renault S.A.S. Method for controlling the path of an autonomous vehicle having steered wheels
CN106926844A (en) * 2017-03-27 2017-07-07 西南交通大学 A kind of dynamic auto driving lane-change method for planning track based on real time environment information

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076541A (en) * 2008-06-20 2011-05-25 通用汽车环球科技运作公司 Path generation algorithm for automated lane centering and lane changing control system
JP2011134320A (en) * 2009-12-22 2011-07-07 Intel Corp Efficient nested virtualization
CN102609765A (en) * 2012-03-22 2012-07-25 北京工业大学 Intelligent vehicle lane change path planning method based on polynomial and radial basis function (RBF) neural network
US9535422B2 (en) * 2012-07-12 2017-01-03 Renault S.A.S. Method for controlling the path of an autonomous vehicle having steered wheels
CN103121451A (en) * 2013-03-19 2013-05-29 大连理工大学 Tracking and controlling method for lane changing trajectories in crooked road
CN103970137A (en) * 2014-05-08 2014-08-06 北京理工大学 Control method of ALV transverse displacement tracking system based on active disturbance rejection
CN103970138A (en) * 2014-05-08 2014-08-06 北京理工大学 ALV transverse control method based on active disturbance rejection and differential smoothing
CN105467996A (en) * 2015-12-21 2016-04-06 北京理工大学 Four-wheel steering automobile track tracking control method based on differential flat and active disturbance rejection
CN106926844A (en) * 2017-03-27 2017-07-07 西南交通大学 A kind of dynamic auto driving lane-change method for planning track based on real time environment information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAI ZHANG 等: "An Efficient Decision and Planning Method for High Speed Autonomous Driving in Dynamic Environment", 《2017 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)》 *
SHENGFEI LI 等: "Trajectory Tracking Control of a Four-Wheel一Steering Car Based on Differential Flatness and ADRC", 《2016 14TH INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS (VSS)》 *
YUANQING XIA 等: "Lateral Path Tracking Control of Autonomous Land Vehicle Based on ADRC and Differential Flatness", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039839A (en) * 2017-12-08 2018-05-15 重庆邮电大学 The tandem antidisturbance control system and method for permanent-magnet brushless DC electric machine governing system
CN108039839B (en) * 2017-12-08 2020-05-12 重庆邮电大学 Cascade anti-interference control system and method for permanent magnet brushless direct current motor speed regulation system
CN109969177A (en) * 2017-12-27 2019-07-05 现代自动车株式会社 Identify the system and its control method of the driving intention of nearby vehicle
CN107943060A (en) * 2017-12-29 2018-04-20 上海司南卫星导航技术股份有限公司 A kind of automatic pilot, method and computer-readable medium along tracking straight line guiding vehicle
CN108196545B (en) * 2018-01-03 2021-06-25 浙江同筑科技有限公司 AGV magnetic navigation control method adopting active disturbance rejection control technology
CN108196545A (en) * 2018-01-03 2018-06-22 浙江同筑科技有限公司 Using the AGV magnetic navigation control methods of Auto Disturbances Rejection Control Technique
CN108345967A (en) * 2018-04-27 2018-07-31 西南交通大学 A kind of linear programming optimization method of unmanned vehicle track grade track
CN108345967B (en) * 2018-04-27 2021-09-21 西南交通大学 Linear programming optimization method for unmanned vehicle lane-level track
CN108931918A (en) * 2018-06-21 2018-12-04 华北电力大学 A kind of control method of servo motor and device
CN108958246A (en) * 2018-06-29 2018-12-07 长安大学 Trajectory Tracking Control method of the unmanned vehicle in U-Turn scene
CN109358621A (en) * 2018-09-30 2019-02-19 山东省计算中心(国家超级计算济南中心) Autonomous driving vehicle Trajectory Tracking Control method
CN109677403A (en) * 2018-12-27 2019-04-26 吉林大学 A kind of intelligent vehicle avoidance obstacle method based on differential flat
CN109677403B (en) * 2018-12-27 2020-05-19 吉林大学 Intelligent vehicle obstacle avoidance control method based on differential flatness
CN109782806B (en) * 2019-02-19 2020-10-23 北京邮电大学 Indoor path tracking method and device for unmanned aerial vehicle
CN109782806A (en) * 2019-02-19 2019-05-21 北京邮电大学 Path following method and device in a kind of unmanned plane room
CN109856975A (en) * 2019-03-04 2019-06-07 南京农业大学 Tractor path following control device design method based on resetting control
CN110703754A (en) * 2019-10-17 2020-01-17 南京航空航天大学 Path and speed highly-coupled trajectory planning method for automatic driving vehicle
CN110703754B (en) * 2019-10-17 2021-07-09 南京航空航天大学 Path and speed highly-coupled trajectory planning method for automatic driving vehicle
CN112051736A (en) * 2020-08-25 2020-12-08 重庆邮电大学 Trajectory tracking control system based on single controller
CN112051736B (en) * 2020-08-25 2022-07-08 重庆邮电大学 Trajectory tracking control system based on single controller
CN112083653A (en) * 2020-09-09 2020-12-15 中国人民解放军火箭军工程大学 Active disturbance rejection control design method of inverted pendulum system based on differential flatness
CN112083653B (en) * 2020-09-09 2022-11-11 中国人民解放军火箭军工程大学 Active disturbance rejection control design method of inverted pendulum system based on differential flatness
CN112241125A (en) * 2020-10-29 2021-01-19 北京理工大学 Unmanned aerial vehicle trajectory tracking method based on differential flatness characteristic
CN112477880A (en) * 2020-11-30 2021-03-12 天津大学 Longitudinal control method for unmanned automobile
CN113093541B (en) * 2021-03-31 2022-05-10 中南大学 Differential flatness tracking control method for under-actuated crane
CN113093541A (en) * 2021-03-31 2021-07-09 中南大学 Differential flatness tracking control method for under-actuated crane
CN114815654A (en) * 2022-03-01 2022-07-29 北京理工大学 Unmanned vehicle control-oriented digital twin system and construction method thereof
CN114815654B (en) * 2022-03-01 2023-02-24 北京理工大学 Unmanned vehicle control-oriented digital twin system and construction method thereof

Similar Documents

Publication Publication Date Title
CN107272692A (en) Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection
CN105467996B (en) Four-wheel steering automobile Trajectory Tracking Control method based on differential flat and active disturbance rejection
CN104787039B (en) Car body stable control method of four-wheel independent drive electric car
CN107380161B (en) A kind of active steering control device for aiding in driver to realize desired ride track
CN105253141B (en) A kind of vehicle handling stability control method adjusted based on wheel longitudinal force
CN105667520B (en) A kind of front-wheel side force method of estimation of distributed driving electric car
CN104298109B (en) Coordinated turning control method for tailless air vehicle on basis of fusion of multiple controllers
Massera Filho et al. Longitudinal and lateral control for autonomous ground vehicles
CN105857304A (en) Four-wheel drive vehicle-based moment of force distribution control system
CN103970137A (en) Control method of ALV transverse displacement tracking system based on active disturbance rejection
CN104590253B (en) A kind of yaw velocity control method of four motorized wheels electric automobile
CN111688715B (en) Centroid slip angle observation method of four-wheel drive electric vehicle based on fusion technology
Vantsevich et al. Relaxation length review and time constant analysis for agile tire dynamics control
CN105676674B (en) Unmanned plane front-wheel steer control method based on instruction wave filter
CN111006884A (en) Method for measuring wheel axle slip angle and slip stiffness based on Fourier transform
Fujioka et al. Control of longitudinal and lateral platoon using sliding control
Sun et al. Joint estimation of states and parameters of vehicle model using cubature Kalman filter
Truong et al. Torque vectoring for rear axle using Adaptive Sliding Mode Control
Fritz et al. Automatic cruise control of a mechatronically steered vehicle convoy
CN114435399B (en) Automatic driving automobile stability path tracking method based on predictive model
Ma et al. Estimation of road grade and vehicle velocity for autonomous driving vehicle
CN105667585B (en) Pilotless automobile nose wheel steering control method based on instruction wave filter
Lee et al. Robust control based on DOBC for improving lateral string stability of truck platooning
Chun et al. Differential Control Strategy based on an Equal Slip Rate for an All-wheel Electric-drive Underground Articulated Dumping Truck.
CN113032880B (en) Method for evaluating design rationality of circular curve road section

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171020