CN105667520B - A kind of front-wheel side force method of estimation of distributed driving electric car - Google Patents

A kind of front-wheel side force method of estimation of distributed driving electric car Download PDF

Info

Publication number
CN105667520B
CN105667520B CN201610108400.3A CN201610108400A CN105667520B CN 105667520 B CN105667520 B CN 105667520B CN 201610108400 A CN201610108400 A CN 201610108400A CN 105667520 B CN105667520 B CN 105667520B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610108400.3A
Other languages
Chinese (zh)
Other versions
CN105667520A (en
Inventor
丁世宏
张圣道
马莉
江浩斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610108400.3A priority Critical patent/CN105667520B/en
Publication of CN105667520A publication Critical patent/CN105667520A/en
Application granted granted Critical
Publication of CN105667520B publication Critical patent/CN105667520B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed

Abstract

The invention discloses a kind of front-wheel side force method of estimation of distributed driving electric car, mainly comprise the following steps:1, the car status information collected according to various sensors, sliding formwork longitudinal direction force observer is devised based on dynamics of vehicle equation the longitudinal force of tire is estimated in real time;2, each wheel longitudinal force of estimation and longitudinal acceleration signal, lateral acceleration signal, yaw rate signal etc. are transferred to the lateral force observer of sliding formwork, obtain the side force estimate of off-front wheel;3, by filtration module, to the further optimization processing of side force estimated, solve the singular problem occurred in side force estimate, so as to export two final front-wheel side force estimates;Advantages of the present invention:Using Second Order Sliding Mode observer, the real-time of calculating on the one hand ensure that;On the other hand, there is good robustness to the uncertain disturbance that original system is brought to different road surface and tire characteristics, so as to improve crosswise joint effect, keeps the stability of output.

Description

A kind of front-wheel side force method of estimation of distributed driving electric car
Technical field
Side force of tire method of estimation in being travelled the present invention relates to vehicle, the forward of more particularly to distributed driving electric car Estimate to the side force of wheel.
Background technology
Under the background of environment and energy problem, electric automobile increasingly becomes the pith of future automobile industry.Closely Nian Lai, distributed-driving electric automobile (In-wheel motor Electric, IEV) is by the common concern of researcher.It is logical Cross the wheel hub motor being placed in hub for vehicle wheel or two motors are placed in into differential mechanism position carrys out driving moment, provided to vehicle dynamic Power.IEV has the advantages that corresponding speed is fast, driving-chain is short, transmission is efficient, is an important development side in electric automobile field To.
At present, IEV lateral stability control still suffers from the place for needing to improve, the side force of tire such as under limiting condition Can not accurately it be estimated.It is worth noting that, side force of tire is the important component of horizontal dynamic, vehicle is affected Driving safety and stability.Therefore, the accurate estimation to side force of tire will effectively improve crosswise joint effect.
The estimation of traditional side force of tire depends on tire model.State, inside and outside a variety of non-linear wheels are investigated Loose tool type.Dugoff models are established according to experimental data and represent driving (braking) power, lateral deviation power, slip rate, side drift angle and tire The expression formula of other specification relation;UniTire models are a kind of semiempirical tire models that Guo Konghui academician proposes, have and meet The characteristics of high order theory boundary condition;Magic Formula models establish the longitudinal force of tire, side force using SIN function The relation between aligning torque and side drift angle, slip rate, angle of heel and vertical load.Tire model can carry out phase to tire force Estimate accurate, but side force of tire and slip angle of tire, vertical load, straight skidding rate and wheel speed etc. in tire model Factor is directly related, that is, it is more, it is necessary to carry out substantial amounts of test data fitting to be related to variable, computationally intensive, and tire model Algorithm it is complicated, the needs of so as to be difficult to meet quick response in the application of real vehicle controller.In addition, for based on tire model Side force method of estimation, once tire characteristics (tire pressure and the degree of wear etc.) or surface conditions quickly change, fitting essence Degree will decline rapidly so that side force of tire estimation is inaccurate, causes crosswise joint effect to be affected.So propose a kind of Side force method of estimation independent of tire model is necessary.
The content of the invention
Tire model is depended in order to solve the problems, such as that current side force of tire estimation is excessive, the present invention proposes a kind of point Cloth drives the steering front wheel side force method of estimation of electric car, and it can enter on the basis of tire model is broken away to side force Row estimation.This method considers the real-time characteristic of vehicle tyre and the change of pavement behavior, can estimate the side of tire exactly Xiang Li, so as to improve the crosswise joint effect of vehicle.Estimation procedure is as follows:
1) in vehicle travel process, the wheel motor controller measures the Real Time Drive torque T needed for each motorij, The wheel speed sensors measure real-time wheel speed signal ωij.Driving moment signal and wheel speed signal are sent to and described are based on wheel The sliding formwork longitudinal force estimation module of spin dynamics, sliding formwork longitudinal force estimation module obtain tire and indulged according to real-time collection signal Estimate to the value of power
It is above-mentionedTij、ωijIn, i=f, r, f represent front-wheel, and r represents trailing wheel;J=l, r, l represent revolver, and r represents right Wheel;
2) longitudinal acceleration sensor and lateral acceleration sensor measure real-time longitudinal acceleration signal axWith Lateral acceleration signal ay;The longitudinal speed sensor and lateral acceleration sensor measure real-time longitudinal velocity VxWith it is lateral Speed Vy;In addition, the yaw rate sensor measures real-time yaw rate signal r, and the steering wheel Rotary angle transmitter measures steering wheel angle signal δ;
By steering wheel angle signal, yaw rate signal, longitudinal acceleration signal, lateral acceleration signal, longitudinal direction speed Spend signal, side velocity signal and the longitudinal force estimatedIt is sent to the sliding formwork side force estimation mould based on dynamics of vehicle Block, sliding formwork side force estimation module estimate the side force of off-front wheel by computing
3) the off-front wheel side force of estimation and steering wheel angle signal finally, are sent to the filtration module, for The unusual appearance occurred in side force estimate, filtration module take the method that linearization process is carried out near singular point, from And the lateral force value of accurate off-front wheel is exported, front left wheel side is further calculated to force value, thus obtains two front-wheels Side force estimate.
Parameter during method of estimation of the present invention is to be based on obtaining with lower part measurement:The steering wheel angle signal δ is measured by steering wheel angle sensor, the yaw rate signal r is measured by yaw-rate sensor, the longitudinal direction adds Rate signal axMeasured by longitudinal acceleration sensor, the lateral acceleration signal ayMeasured by lateral acceleration sensor, institute State longitudinal speed signal VxMeasured by longitudinal speed sensor, the side velocity signal VyMeasured by lateral acceleration sensor.
Compared with prior art, the beneficial effect that shows of the present invention is:
1) present invention is only carried out without complicated non-linear tire model using Second Order Sliding Mode observer to side force of tire Estimation, calculate real-time that is easy and ensure that accuracy and calculate.
2) present invention applies the existing signal easily obtained in vehicle-state, it is not necessary to which other expensive sensors just can be real Now side force of tire is accurately estimated, cost is relatively low.
3) the Second Order Sliding Mode observer that the present invention designs with super-twisting algorithm (Super-twist), the observer have The uncertain disturbance such as fast convergence and the air drag to occurring in Vehicular system, the coefficient of friction of tire has very strong Robustness, i.e., there is stronger adaptability to complex environment.
Brief description of the drawings
Fig. 1 is the phylogenetic relationship schematic diagram of the present invention.
Embodiment
The invention provides a kind of front-wheel side force method of estimation of distributed electrical motor-car.To make the purpose of the present invention, skill Art scheme and effect are clearer, clear and definite, and the present invention is described in more detail for the embodiment that develops simultaneously referring to the drawings.It should manage Solution, specific embodiment described herein only to explain the present invention, are not intended to limit the present invention.
Be shown in Fig. 1 the present invention side force of tire estimation phylogenetic relationship schematic diagram, it include wheel motor controller, Wheel speed sensors, sliding formwork longitudinal force estimation module, yaw rate sensor, longitudinal direction of car acceleration transducer, vehicle Lateral acceleration sensor, vehicular longitudinal velocity sensor, vehicle lateral acceleration sensor, steering wheel angle sensor, sliding formwork Side force estimation module, filtration module.
Based on said system, explain the present invention to the vehicle front-wheel (deflecting roller) during traveling below by specific implementation Side force of tire method of estimation:
The vehicle parameter of use is as shown in table 1, and the operating condition of test of selection is 72km/h, snakelike.
The vehicle parameter of table 1
Vehicle mass m(kg) 1464
Around z-axis rotary inertia Iz(kg/m2) 2400
Barycenter is to front axle distance a(mm) 1256
Barycenter is to rear axle distance b(mm) 1368
Front axle away from df(mm) 1450
Hind axle away from dr(mm) 1450
Barycenter is away from ground level hg(mm) 500
Vehicle wheel rotation inertia Iω(kg/m2) 2.1
Vehicle wheel roll radius R(mm) 310
1) the sliding formwork longitudinal force estimation module based on wheel spin dynamics collects in real time according to the wheel speed sensors Tire centerline rate signal ωijEach tire driving torque signal T collected in real time with the wheel side controllerij, with cunning Mould Observation Theory devises sliding mode observer and the longitudinal force of four tires is observed.
Wheel spin dynamics equation is
Equation (1) is rewritable to be
Wherein, x1ij, input variableRegard unknown disturbance as, y is output quantity.
Designing following Second Order Sliding Mode observer based on super-twisting algorithm is
Theoretical, the existence time constant T according to finite time convergence control1, have
Wheel longitudinal force, which is further calculated, is
Wherein,It is x1Estimate,It is F1Estimate andIt is FxijEstimate.
2) vehicle seven freedom model is based on, the method for off-front wheel side force is calculated such as in sliding formwork side force estimation module Under
Longitudinal direction of car kinetics equation is
m(ax-VyR)=(Fxfl+Fxfr)cos-(Fyfl+Fyfr)sinδ+Fxrl+Fxrr. (2)
The lateral kinetics equation of vehicle is
m(ay+VxR)=(Fxfl+Fxfr)sinδ+(Fyfl+Fyfr)cosδ+Fyrl+Fyrr. (3)
Vehicular yaw kinetics equation is
Equation (2), (3) it is rewritable into
Equation (5) is substituted into equation (4), can be obtained
It is worth noting that, steering wheel angle δ, yaw velocity r, longitudinal direction of car acceleration a in equation (5) and (6)x、 Vehicle side acceleration ay, vehicular longitudinal velocity VxAnd side velocity VyIt can be measured respectively by above-mentioned corresponding sensor, this Outside, longitudinal force F thereinxijThe longitudinal force estimated by sliding formwork longitudinal force estimation moduleInstead of.Therefore, right the half of equation (6) There was only F in portionyfrFor unknown quantity, other is all known quantity.
So as to which equation (6) is rewritable to be
In formula,
It is again depending on super-twisting algorithm design Second Order Sliding Mode observer
Similarly, as t >=T2(T2> 0) when, observation can accurate its actual value of tracker, i.e.,
So as to which the estimate for calculating off-front wheel side force is
From formula (7), it is seen that denominator contains sin δ items, when steering angle sigma is zero, necessarily result inBecome unlimited Greatly, this is not permitted.In view of the above-mentioned problems, the filtration module is in zero crossings by taking one section of small section, then Change of the former side force estimate on the section is replaced as straight line with the first and last end points in the section.In other words, finally Longitudinal force estimate be a piecewise function form, it is linear equation in taken section, in section external signal as former state it is defeated Go out.
In formula (8), T is time constant, and in t=T, steering angle sigma zero;Δ is the radius of neighbourhood centered on T points;The respectively side force estimate of off-front wheel, the near front wheel.
Although the present invention is described according to various embodiments, it will be appreciated by persons skilled in the art that this hair It is bright to be implemented with modification in the scope of claims.

Claims (4)

1. a kind of front-wheel side force method of estimation of distributed driving electric car, it is characterised in that comprise the following steps:
1) in vehicle travel process, the torque T needed for each motor that wheel motor controller is measuredijSurveyed with wheel speed sensors The wheel speed signal ω obtainedijSliding formwork longitudinal force estimation module is sent to, sliding formwork longitudinal force estimation module is according to the letter collected in real time Number, calculate the longitudinal force estimate of tire
The estimate of longitudinal force of tireSpecific be calculated as follows:
1-1) establishing wheel spin dynamics equation is:
<mrow> <msub> <mi>I</mi> <mi>&amp;omega;</mi> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>RF</mi> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Equation (1) is rewritten into
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dx</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>F</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, x1ij, input variableRegard unknown disturbance as, y is output quantity;
1-2) design the Second Order Sliding Mode observer based on super-twisting algorithm:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dz</mi> <mn>2</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
It is 1-3) theoretical according to finite time convergence control, a certain constant T be present1(T1> 0) so that
So as to which the estimate of wheel longitudinal force is:
<mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>&amp;omega;</mi> </msub> <mi>R</mi> </mfrac> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mrow>
Wherein,It is x1Estimate,It is F1Estimate andIt is FxijEstimate;
Wherein, i=f, r, f represent front-wheel, and r represents trailing wheel;J=l, r, l represent revolver, and r represents right wheel;
2) by steering wheel angle signal δ, yaw rate signal r, longitudinal acceleration signal ax, lateral acceleration signal ay, longitudinal direction Rate signal Vx, side velocity signal VyThe longitudinal force estimated with sliding formwork longitudinal force estimation moduleIt is transferred to and is moved based on vehicle The sliding formwork side force estimation module of mechanics, sliding formwork side force estimation module estimate the side force of off-front wheel
3) side force for the off-front wheel for estimating sliding formwork side force estimation module, and steering wheel angle signal δ are sent to filter Ripple module;The filtration module by the off-front wheel side force estimated at the time of steering wheel angle signal δ is zero near carry out Linearization process, accurate off-front wheel side force estimate is exported, and by being simply calculated the near front wheel side force estimate, So as to obtain two final front-wheel side force estimates.
2. the front-wheel side force method of estimation of distributed driving electric car according to claim 1, it is characterised in that described Steering wheel angle signal δ is measured by steering wheel angle sensor, the yaw rate signal r is surveyed by yaw-rate sensor Obtain, the longitudinal acceleration signal axMeasured by longitudinal acceleration sensor, the lateral acceleration signal ayBy side acceleration Sensor measures, the longitudinal speed signal VxMeasured by longitudinal speed sensor, the side velocity signal VyBy side velocity Sensor measures.
3. the front-wheel side force method of estimation of distributed driving electric car according to claim 1, it is characterised in that in institute State in step 2), off-front wheel side force is estimated in sliding formwork side force estimation moduleMethod it is as follows:
2-1) establishing longitudinal dynamics equation is
m(ax-VyR)=(Fxfl+Fxfr)cosδ-(Fyfl+Fyfr)sinδ+Fxrl+Fxrr (2)
Lateral dynamics equation is
m(ay+VxR)=(Fxfl+Fxfr)sinδ+(Fyfl+Fyfr)cosδ+Fyrl+Fyrr (3)
Yaw kinetics equation is
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>a</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
2-2) equation (2), (3) are rewritten as
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>y</mi> </msub> <mi>r</mi> </mrow> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>x</mi> </msub> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Equation (5) 2-3) is substituted into (4), obtained
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>a</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;delta;</mi> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <msub> <mi>bF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&amp;delta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>-</mo> <msub> <mi>d</mi> <mi>f</mi> </msub> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
2-4) equation (6) is rewritten into
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>F</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>r</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>+</mo> <msub> <mi>aF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>-</mo> <msub> <mi>bF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&amp;delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mi>sin</mi> <mi>&amp;delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>/</mo> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msub> <mi>F</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;delta;</mi> </mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> </mfrac> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>.</mo> </mrow>
Super-twisting algorithm 2-5) is used, design Second Order Sliding Mode observer is
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>r</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <msup> <mrow> <mo>|</mo> <mrow> <mover> <mi>r</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>r</mi> </mrow> <mo>|</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mover> <mi>r</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>4</mn> </msub> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dz</mi> <mn>4</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>)</mo> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
t≥T2,T2During > 0, observer can accurately track its actual value, i.e.,
And then the estimate for calculating off-front wheel side force is:
4. the front-wheel side force method of estimation of distributed driving electric car according to claim 1, it is characterised in that in institute State in step 3), filtration module is to the side force that estimatesThe process for optimizing processing is as follows:
Set direction disk angular signal δ is T at the time of being zero, takes a closed neighborhood centered on T, Δ is the radius of neighbourhood, at this When in neighborhood, original function is replaced with straight line, when outside neighborhood, then exports as former state, obtains the piecewise function of side force:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>&amp;Delta;</mi> </mrow> </mfrac> <mo>)</mo> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>T</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mo>)</mo> <mo>+</mo> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>(</mo> <mi>T</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mi>T</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>T</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mi>sin</mi> <mi>&amp;delta;</mi> </mrow> </mfrac> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;NotElement;</mo> <mo>&amp;lsqb;</mo> <mi>T</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>T</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein,For off-front wheel side force estimate,For the near front wheel side force estimate.
CN201610108400.3A 2016-02-26 2016-02-26 A kind of front-wheel side force method of estimation of distributed driving electric car Expired - Fee Related CN105667520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610108400.3A CN105667520B (en) 2016-02-26 2016-02-26 A kind of front-wheel side force method of estimation of distributed driving electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610108400.3A CN105667520B (en) 2016-02-26 2016-02-26 A kind of front-wheel side force method of estimation of distributed driving electric car

Publications (2)

Publication Number Publication Date
CN105667520A CN105667520A (en) 2016-06-15
CN105667520B true CN105667520B (en) 2018-01-16

Family

ID=56305197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610108400.3A Expired - Fee Related CN105667520B (en) 2016-02-26 2016-02-26 A kind of front-wheel side force method of estimation of distributed driving electric car

Country Status (1)

Country Link
CN (1) CN105667520B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107215329B (en) * 2017-05-10 2020-06-26 江苏大学 Distributed driving electric vehicle transverse stability control method based on ATSM
CN108287934B (en) * 2017-12-11 2020-08-28 江苏大学 Vehicle mass center slip angle robust estimation method based on longitudinal force observer
CN108597058B (en) * 2017-12-11 2020-03-31 江苏大学 Distributed driving electric vehicle state cascade estimation method based on pseudo measurement information
CN107985404B (en) * 2017-12-22 2024-01-26 天津职业技术师范大学 Automobile lateral stability control device
CN109591821B (en) * 2018-12-07 2020-09-01 清华大学 Tire stress calculation method and device and vehicle-mounted computer equipment
CN110620528B (en) * 2019-09-20 2021-07-13 电子科技大学 Multichannel direct current motor system control method based on second-order supercoiled sliding mode
CN111204332B (en) * 2020-02-10 2022-07-15 哈尔滨工业大学 Sliding mode control method for optimizing vehicle yaw dynamic performance under all working conditions
CN111645696B (en) * 2020-04-28 2021-09-10 武汉理工大学 Method for identifying complex off-road working condition of distributed driving off-road vehicle
CN111708977B (en) * 2020-06-28 2023-04-25 南京航空航天大学 Tire force online estimation method based on neural network
CN113044047B (en) * 2021-03-31 2022-06-21 江苏大学 AFS/DYC integrated control method based on class PID-STSM
CN113085880B (en) * 2021-04-15 2022-05-24 南京航空航天大学 Vehicle state prediction method based on particle filter and random walk model
CN114261385B (en) * 2021-12-10 2024-02-09 吉林大学 Vehicle stability control method for low-adhesion road surface
CN116908088B (en) * 2023-07-14 2024-03-22 河北省交通规划设计研究院有限公司 Road friction coefficient acquisition method based on vehicle information

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880048A (en) * 2012-10-12 2013-01-16 江苏大学 Method for linearization control of side force of tire
CN103879307A (en) * 2014-03-13 2014-06-25 浙江大学 Rear wheel independent drive control system and method for electric automobile
CN103909933A (en) * 2014-03-27 2014-07-09 清华大学 Method for estimating lateral force of front wheels of distributed-type electrically-driven vehicle
EP2757007A1 (en) * 2013-01-17 2014-07-23 Autoliv Development AB A vehicle safety system
CN104527775A (en) * 2014-12-20 2015-04-22 株洲易力达机电有限公司 Estimation method for steering moment of steering system and lateral forces of tires
CN105083373A (en) * 2015-06-15 2015-11-25 南京航空航天大学 Steering-by-wire feeling device based on parameter estimation and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137792B2 (en) * 2008-11-25 2013-02-06 三菱電機株式会社 Vehicle lateral force disturbance estimation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880048A (en) * 2012-10-12 2013-01-16 江苏大学 Method for linearization control of side force of tire
EP2757007A1 (en) * 2013-01-17 2014-07-23 Autoliv Development AB A vehicle safety system
CN103879307A (en) * 2014-03-13 2014-06-25 浙江大学 Rear wheel independent drive control system and method for electric automobile
CN103909933A (en) * 2014-03-27 2014-07-09 清华大学 Method for estimating lateral force of front wheels of distributed-type electrically-driven vehicle
CN104527775A (en) * 2014-12-20 2015-04-22 株洲易力达机电有限公司 Estimation method for steering moment of steering system and lateral forces of tires
CN105083373A (en) * 2015-06-15 2015-11-25 南京航空航天大学 Steering-by-wire feeling device based on parameter estimation and control method thereof

Also Published As

Publication number Publication date
CN105667520A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105667520B (en) A kind of front-wheel side force method of estimation of distributed driving electric car
CN103909933B (en) A kind of front wheel side of distributed electro-motive vehicle is to force evaluating method
CN104554274B (en) Road friction estimating system and method
CN105835721B (en) A kind of four-wheel wheel hub electric automobile method for controlling driving speed
CN108482379B (en) Wheel-hub motor driven vehicle coefficient of road adhesion and the synchronous real-time estimation system and method for road gradient
CN103946679B (en) Vehicle mass identification method and system
CN103921786B (en) A kind of nonlinear model predictive control method of electric vehicle process of regenerative braking
CN103245610B (en) Method for estimating pavement peak attachment coefficients of distributed driving electric vehicle
CN103612634B (en) The evaluation method of distributing In-wheel motor driving electronlmobil coefficient of road adhesion
CN105691403B (en) The full drive electric automobile coefficient of road adhesion method of estimation of four-wheel
CN104021310B (en) Based on UKF and correction Dugoff tire model peak value of road adhesion coefficient evaluation method
CN103754218B (en) Coefficient of road adhesion method of estimation under a kind of motor tire lateral deviation operating mode
CN105835889B (en) A kind of method of estimation of the vehicle centroid side drift angle based on Second Order Sliding Mode observer
CN109606378A (en) Vehicle running state estimation method towards non-Gaussian noise environment
CN106649983A (en) Vehicle dynamics model modeling method used in unmanned vehicle high-velocity motion planning
CN104773173A (en) Autonomous driving vehicle traveling status information estimation method
CN103661398B (en) A kind of vehicle based on sliding mode observer non-port trailing wheel linear velocity method of estimation
CN104354700A (en) Vehicle parameter on-line estimation method based on unscented Kalman filtering
CN103279675B (en) Tire-road attachment coefficient and the method for estimation of slip angle of tire
CN103946039B (en) Method for estimating wheel of vehicle rolling resistance
CN108241773A (en) A kind of improved vehicle running state method of estimation
CN102582626A (en) Method for estimating heavy semitrailer status
CN111006884B (en) Method for measuring wheel axle slip angle and slip stiffness based on Fourier transform
CN102975720A (en) Vehicle longitudinal speed measuring and calculating device and vehicle longitudinal speed measuring and calculating method and vehicle using vehicle longitudinal speed measuring and calculating device
CN108287934A (en) A kind of vehicle centroid side drift angle robust estimation method based on longitudinal force observer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180116

Termination date: 20190226

CF01 Termination of patent right due to non-payment of annual fee