CN107271475A - 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法 - Google Patents

一种确定冷热循环条件下金属材料尺寸变化临界条件的方法 Download PDF

Info

Publication number
CN107271475A
CN107271475A CN201710458592.5A CN201710458592A CN107271475A CN 107271475 A CN107271475 A CN 107271475A CN 201710458592 A CN201710458592 A CN 201710458592A CN 107271475 A CN107271475 A CN 107271475A
Authority
CN
China
Prior art keywords
cold cycling
temperature
size
metal material
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710458592.5A
Other languages
English (en)
Inventor
乔菁
杨文澍
武高辉
徐哲强
姜龙涛
张强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710458592.5A priority Critical patent/CN107271475A/zh
Publication of CN107271475A publication Critical patent/CN107271475A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/12Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of critical point; of other phase change

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,本发明涉及一种确定冷热循环条件下金属材料尺寸变化临界条件的方法。本发明是要解决现有方法不能直观反映材料的尺寸稳定性,测量精度低,可操作性差,且不能反映试样尺寸随环境变化的全过程的问题。本发明采用双顶杆热膨胀仪测量圆柱形试样在设定的温度幅度内冷热循环时尺寸变化,采用指数函数对曲线进行拟合。找到曲线上斜率绝对值为10‑6的点,为条件变形极限。对条件变形极限‑冷热循环温度幅度进行线性拟合;再外推至条件变形极限为0处,得到微变形临界温度幅度。本发明测试时间短,精度高。本发明用于定量的表征冷热循环过程开始发生尺寸变化的临界条件。

Description

一种确定冷热循环条件下金属材料尺寸变化临界条件的方法
技术领域
本发明涉及一种确定冷热循环条件下金属材料尺寸变化临界条件的方法。
背景技术
尺寸稳定性对保持精密仪器的精度具有重要意义。金属及金属基复合材料在无负载条件下的尺寸稳定性是指在工作环境条件下不受外力作用时试样抵抗永久变形的能力。
目前无负载条件下尺寸稳定性的评价方法有X射线测量宏观残余应力、采用“指形”试样长时间检测长度随时间变化、圆环开口法测量残余应力等。
X射线测试宏观残余应力需要材料弹性各向同性,且表面应力为平面应力状态,实际中这些条件不能完全满足。且该方法无法直接表示试样尺寸的变化量,不同材料测量结果也难以进行比较。
采用“指形”试样长时间检测长度随时间变化可直观反映材料的尺寸稳定性。但该方法测试周期长(需一年以上),且测量精度较低,比较不同尺寸稳定化处理工艺的差别极为困难,可操作性较差。
圆环开口法通过精确测量标准圆环试样开口后的即时尺寸变化量,比较材料中宏观残余应力水平的高低,该方法较好的模拟了实际零件情况,测量精度也较高。但属于破坏性测试,测量结果也不能反映试样尺寸随环境变化的全过程。
发明内容
本发明是要解决现有方法不能直观反映材料的尺寸稳定性,测量精度低,可操作性差,且不能反映试样尺寸随环境变化的全过程的问题,而提供一种确定冷热循环条件下金属材料尺寸变化临界条件的方法。
本发明一种确定冷热循环条件下金属材料尺寸变化临界条件的方法是按以下步骤进行:
一、将待评价金属材料制备成测试试样,并量取试样初始长度L0
二、依据待评价金属材料实际需要设定冷热循环温度的幅度Tlower~Tupper,采用双顶杆热膨胀仪测量每次冷热循环后试样的尺寸,得到试样尺寸变化量-时间曲线和试样温度-时间曲线;
三、通过试样尺寸变化量-时间曲线和试样温度-时间曲线读取每次冷热循环后测试试样在温度为20℃时相比于初始尺寸的单位长度形变量,得到材料单位长度形变量-循环次数曲线;
四、采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合,得到单位长度形变量-循环次数拟合曲线;
五、对材料单位长度形变量-循环次数拟合曲线作切线,当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限;
六、改变设定的冷热循环温度的幅度,重复步骤二至步骤五,通过4~8次冷热循环温度的幅度的改变,得到不同冷热循环温度幅度下的条件变形极限;
七、对条件变形极限-冷热循环温度幅度进行线性拟合,得到条件变形极限-冷热循环温度幅度曲线,外推至条件变形极限为0处,所对应的温度变化幅度即为微变形临界温度幅度,得到的微变形临界温度幅度作为定量的表征冷热循环过程开始发生尺寸变化的临界条件。
本发明的有益效果是:
1、本发明采用双顶杆热膨胀仪测量试样冷热循环下的尺寸稳定性可在2天内得到测试结果,具有测试时间短,精度高,能反应尺寸变化全过程的优点。对测量所得数据进行处理,用条件变形极限来衡量试样的最终变形量具有可靠,处理简单的特点;方便比较不同材料的尺寸稳定性差异。以往冷热循环实时检测法仅以循环一定次数后的尺寸变化量作为尺寸稳定性的变化指标。不足以评价尺寸稳定性全部特征。采用本发明所提的微变形量临界温度幅度指标可定量的表征冷热循环过程开始发生尺寸变化的临界条件。具有重要的工程意义。
附图说明
图1为实施例一中试样尺寸变化量-时间曲线;
图2为实施例一中试样温度-时间曲线;
图3为实施例一中材料单位长度形变量-循环次数拟合曲线;其中m点为切线斜率绝对值达到10-6对应的条件变形极限,n点为切线斜率绝对值达到10-6的切点;
图4为实施例一中条件变形极限-冷热循环温度幅度曲线,其中d点为微变形临界温度幅度;
图5为实施例一至实施例五的材料单位长度形变量-循环次数拟合对比曲线,其中1为实施例二,2为实施例三,3为实施例四,4为实施例一,5为实施例五。
具体实施方式
具体实施方式一:本实施方式一种确定冷热循环条件下金属材料尺寸变化临界条件的方法是按以下步骤进行:
一、将待评价金属材料制备成测试试样,并量取试样初始长度L0
二、依据待评价金属材料实际需要设定冷热循环温度的幅度Tlower~Tupper,采用双顶杆热膨胀仪测量每次冷热循环后试样的尺寸,得到试样尺寸变化量-时间曲线和试样温度-时间曲线;
三、通过试样尺寸变化量-时间曲线和试样温度-时间曲线读取每次冷热循环后测试试样在温度为20℃时相比于初始尺寸的单位长度形变量,得到材料单位长度形变量-循环次数曲线;
四、采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合,得到单位长度形变量-循环次数拟合曲线;
五、对材料单位长度形变量-循环次数拟合曲线作切线,当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限;
六、改变设定的冷热循环温度的幅度,重复步骤二至步骤五,通过4~8次冷热循环温度的幅度的改变,得到不同冷热循环温度幅度下的条件变形极限;
七、对条件变形极限-冷热循环温度幅度进行线性拟合,得到条件变形极限-冷热循环温度幅度曲线,外推至条件变形极限为0处,所对应的温度变化幅度即为微变形临界温度幅度,得到的微变形临界温度幅度作为定量的表征冷热循环过程开始发生尺寸变化的临界条件。
本实施方式中定义Tupper与Tlower的差值为冷热循环温度幅度,Tupper与Tlower的平均值为冷热循环平均温度。
本实施方式中考虑仪器的测量误差,冷热循环过程中相邻两次冷热循环的单位长度形变量的差值小于10-6时,试样的尺寸未发生明显的变化。因此我们定义:经过一次冷热后,若相邻两次冷热循环的单位长度形变量的差值小于10-6,则认为试样尺寸已趋于稳定。所对应的单位长度形变量△L/L0,即为试样的条件变形极限;改变温度幅度进行多次冷热循环测试,可以得到不同冷热循环温度幅度所对应的条件变形极限。对条件变形极限-冷热循环温度幅度进行线性拟合,外推至条件变形极限为0处,可得到条件变形极限为0时所对应的冷热循环温度幅度;定义其为“微变形临界温度幅度”。该指标表示在该温度幅度下,无论循环多少次试样都不会发生可测量的尺寸变化。因此认为当冷热循环温度幅度高于微变形临界温度幅度时,试样才出现可测量的尺寸变化。。
金属及金属基复合材料在冷热循环过程中,受温度交变的影响,其尺寸会逐渐变化,且随着循环次数的增加,试样的尺寸变化会逐渐减小,最终尺寸趋于稳定。试样尺寸趋于稳定时所发生的尺寸变化对于评价材料的尺寸稳定性具有重要意义。不同材料冷热循环过程中具有不同的变形规律,一些尺寸难以稳定的材料,在测试完成时,仍具有继续发生变形的倾向,仅以循环一定次数后的单位长度形变量来评价不同材料的尺寸稳定性是不准确的。同时变形量相同的两种材料,其尺寸达到稳定所需的时间也是不同的。
本实施方式步骤二中采用双顶杆热膨胀仪进行测量之前需要采用差示法对测试试样进行修正;即在双顶杆热膨胀仪的两个顶杆上分别顶住测试试样和测试标样,使测试试样与测试标样在相同环境下测试,用测试标样试验数据修正测试试样的试验数据,消除样品支架和顶杆测试过程中的热膨胀带来的误差。
本实施方式步骤二中所述双顶杆热膨胀仪为具有双顶杆的热膨胀仪,其中一个顶杆负责测试标样的信息,另一个顶杆负责采集测试试样的信息。设备测试温度范围为-180~500℃,加热和冷却速度在0.1~99K/min范围内可调。样品支架和顶杆均为二氧化硅材质,两者热膨胀系数低且差异小于±1%。位移传感器的材质为因瓦合金,分辨率可达0.125nm,可充分保证测试过程中的重复性和准确性;SiO2标样在同一温度下两次测量差值不超过10-7,测试精度可达10-8。设备配有恒温循环水浴,使位移传感器系统处于恒定温度环境下,保证测试的精度。设备外接真空泵,可抽真空。实验时使用氦气作为吹扫气,氦气的热导率高,可保证炉体内温度均匀。
本实施方式将冷热循环条件下试样尺寸变化量-时间曲线中每次冷热循环后试样在20℃时的尺寸,与初始试样长度L0相比较,得到试样经不同次数交变温度循环后,其单位长度形变量;所述单位长度形变量通过公式进行计算,式中L0为在20℃下测试初始点测试试样的尺寸,Li为经i次循环后测试试样在20℃测量时的尺寸。
本实施方式在步骤二中冷热循环条件下所能达到的最大变形量与条件变形极限相同。当条件变形极限小,测试试样的尺寸稳定性好。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述待评价金属材料为金属或金属基复合材料。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述待评价金属材料为T6态2024铝合金。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中所述测试试样为圆柱体或长方体;所述测试试样的两个端面间平行度大于0.025μm,端面粗糙度优于Ra0.4;所述测试试样的长度为最小长度为25mm,为圆柱体时端面直径为3mm~10mm。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中所述冷热循环过程中的升温速率为5K/min,降温速率为5K/min;在每次冷热循环前将测试试样在20℃的条件下保温25min后再进行冷热循环,且当温度达到Tlower或Tupper温度时需保温5min后再进行温度的改变。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中所述冷热循环温度的幅度Tlower~Tupper,所述-180℃≤Tlower~Tupper≤500℃。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中所述采用双顶杆热膨胀仪测量冷热循环5~30次的数据。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中所述采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合是指采用origin软件对材料单位长度形变量-循环次数曲线进行非线性拟合,拟合方程为origin软件可自动给出待定系数a、b、c的值,其中为单位长度形变量,n为冷热循环的次数。其它与具体实施方式一至七之一相同。
通过测试结果可以看出,对于金属及金属基复合材料,单位长度形变量△L/L0随冷热循环次数的增加单调变化,且变化速率逐渐减慢。△L/L0与循环次数间近似满足指数函数关系。故可用形式为的指数函数对单位长度形变量-循环次数曲线进行拟合。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤五中当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限,其条件变形极限是当切线斜率绝对值达到10-6时通过b×10-6+c计算得到的。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤六中通过5次冷热循环温度的幅度的改变;其中5次冷热循环温度分别为0~40℃、-10~50℃、-20~60℃、-30~70℃和-40~80℃。其它与具体实施方式一至九之一相同。
通过以下实施例验证本发明的有益效果:
实施例一:一种确定冷热循环条件下金属材料尺寸变化临界条件的方法是按以下步骤进行:
一、将T6态2024铝合金制备成测试试样;
二、依据T6态2024铝合金实际需要设定冷热循环温度的幅度Tlower~Tupper,采用双顶杆热膨胀仪测量冷热循环n次的数据,得到试样尺寸变化量-时间曲线和试样温度-时间曲线;所述Tlower为-30℃,Tupper为70℃;
三、通过试样尺寸变化量-时间曲线和温度-时间曲线读取单次冷热循环前后圆柱形测试试样在温度为20℃时尺寸的变化量,得到材料单位长度形变量-循环次数曲线;
四、采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合,得到材料单位长度形变量-循环次数拟合曲线;
五、对材料单位长度形变量-循环次数拟合曲线作切线,当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限;
六、改变设定的冷热循环温度的幅度,重复步骤二至步骤五,通过4~8次冷热循环温度的幅度的改变,得到不同冷热循环温度幅度下的条件变形极限;
七、对条件变形极限-冷热循环温度幅度进行线性拟合,得到条件变形极限-冷热循环温度幅度曲线,外推至条件变形极限为0处,所对应的温度变化幅度即为微变形临界温度幅度,得到的微变形临界温度幅度作为定量的表征冷热循环过程开始发生尺寸变化的临界条件。
实施例中选用圆柱体作为测试试样,试样长度L0应满足ΔL/L0检测精度的需要,推荐试样的最小长度应为25mm±0.1mm,直径为3mm~10mm。试样应轴向均匀,上下两端面(与推杆间的接触面)要求相互平行,且垂直于试样轴线,两端面间的平行度大于0.025μm。此外,端面粗糙度优于Ra0.4。
步骤二中所述冷热循环过程中的升温速率为5K/min,降温速率为5K/min;在每次冷热循环前将测试试样在20℃的条件下保温25min后再进行冷热循环,且当温度达到-30℃或70℃温度时需保温5min后再进行温度的改变。
步骤四中所述采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合是指采用origin软件对材料单位长度形变量-循环次数曲线进行非线性拟合,拟合方程为origin软件可自动给出待定系数a为2.77×10-5、b为1.96、c为-2.73×10-5的值,其中为单位长度形变量,n为冷热循环的次数,尺寸变形量的单位为10-5。从图3中读取数据经b×10-6+c进行计算,得到条件变形极限为-2.72×10-5
结合图1和图2可读出每次冷热循环后试样在20℃时的尺寸,与初始试样长度L0相比较,得到试样经不同次数交变温度循环后,其单位长度形变量;所述单位长度形变量通过公式进行计算,式中L0为在20℃下测试初始点测试试样的尺寸,Li为经i次循环后测试试样在20℃测量时的尺寸。
实施例二:本实施例与实施例一的不同之处在于:步骤二中所述Tlower为0℃,Tupper为40℃。其他与实施例一相同。
实施例三:本实施例与实施例一的不同之处在于:步骤二中所述Tlower为-10℃,Tupper为50℃。其他与实施例一相同。
实施例四:本实施例与实施例一的不同之处在于:步骤二中所述Tlower为-20℃,Tupper为60℃。其他与实施例一相同。
实施例五:本实施例与实施例一的不同之处在于:步骤二中所述Tlower为-40℃,Tupper为80℃。其他与实施例一相同。
图4为实施例一中条件变形极限-冷热循环温度幅度曲线,其中d点为微变形临界温度幅度;图5为实施例一至实施例五的材料单位长度形变量-循环次数拟合对比曲线,其中1为实施例二,2为实施例三,3为实施例四,4为实施例一,5为实施例五。从图中可以看出再外推至条件变形极限为0处,所对应的横坐标为微变形临界温度幅度。该试样的临界温度幅度为26.9℃。

Claims (10)

1.一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于确定冷热循环条件下金属材料尺寸变化临界条件的方法是按以下步骤进行:
一、将待评价金属材料制备成测试试样,并量取试样初始长度L0
二、依据待评价金属材料实际需要设定冷热循环温度的幅度Tlower~Tupper,采用双顶杆热膨胀仪测量每次冷热循环后试样的尺寸,得到试样尺寸变化量-时间曲线和试样温度-时间曲线;
三、通过试样尺寸变化量-时间曲线和试样温度-时间曲线读取每次冷热循环后测试试样在温度为20℃时相比于初始尺寸的单位长度形变量,得到材料单位长度形变量-循环次数曲线;
四、采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合,得到单位长度形变量-循环次数拟合曲线;
五、对材料单位长度形变量-循环次数拟合曲线作切线,当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限;
六、改变设定的冷热循环温度的幅度,重复步骤二至步骤五,通过4~8次冷热循环温度的幅度的改变,得到不同冷热循环温度幅度下的条件变形极限;
七、对条件变形极限-冷热循环温度幅度进行线性拟合,得到条件变形极限-冷热循环温度幅度曲线,外推至条件变形极限为0处,所对应的温度变化幅度即为微变形临界温度幅度,得到的微变形临界温度幅度作为定量的表征冷热循环过程开始发生尺寸变化的临界条件。
2.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤一中所述待评价金属材料为金属或金属基复合材料。
3.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤一中所述待评价金属材料为T6态2024铝合金。
4.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤一中所述测试试样为圆柱体或长方体;所述测试试样的两个端面间平行度大于0.025μm,端面粗糙度优于Ra0.4;所述测试试样的长度为最小长度为25mm,为圆柱体时端面直径为3mm~10mm。
5.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤二中所述冷热循环过程中的升温速率为5K/min,降温速率为5K/min;在每次冷热循环前将测试试样在20℃的条件下保温25min后再进行冷热循环,且当温度达到Tlower或Tupper温度时需保温5min后再进行温度的改变。
6.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤二中所述冷热循环温度的幅度Tlower~Tupper,所述-180℃≤Tlower~Tupper≤500℃。
7.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤二中所述采用双顶杆热膨胀仪测量冷热循环5~30次的数据。
8.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤四中所述采用指数函数对材料单位长度形变量-循环次数曲线中的数据进行拟合是指采用origin软件对材料单位长度形变量-循环次数曲线进行非线性拟合,拟合方程为origin软件可自动给出待定系数a、b、c的值,其中为单位长度形变量,n为冷热循环的次数。
9.根据权利要求8所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤五中当切线斜率绝对值达到10-6时对应的单位长度形变量即为条件变形极限,其条件变形极限是当切线斜率绝对值达到10-6时通过b×10-6+c计算得到的。
10.根据权利要求1所述的一种确定冷热循环条件下金属材料尺寸变化临界条件的方法,其特征在于步骤六中通过5次冷热循环温度的幅度的改变;其中5次冷热循环温度分别为0~40℃、-10~50℃、-20~60℃、-30~70℃和-40~80℃。
CN201710458592.5A 2017-06-16 2017-06-16 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法 Pending CN107271475A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458592.5A CN107271475A (zh) 2017-06-16 2017-06-16 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458592.5A CN107271475A (zh) 2017-06-16 2017-06-16 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法

Publications (1)

Publication Number Publication Date
CN107271475A true CN107271475A (zh) 2017-10-20

Family

ID=60066444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458592.5A Pending CN107271475A (zh) 2017-06-16 2017-06-16 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法

Country Status (1)

Country Link
CN (1) CN107271475A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195875A (zh) * 2017-12-12 2018-06-22 中国科学院过程工程研究所 一种宽温区快速自动化测定相变材料冷热循环的系统及其测定方法
CN108220560A (zh) * 2018-01-12 2018-06-29 哈尔滨工业大学 一种高温轴承钢零件提高尺寸稳定性的冷热循环处理工艺
CN109029236A (zh) * 2018-07-25 2018-12-18 中铁第四勘察设计院集团有限公司 一种消除温度影响的工程结构机械应变测试方法及装置
CN112547567A (zh) * 2020-12-29 2021-03-26 国家烟草质量监督检验中心 一种用于低强度剔除的爆珠检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304630A (ja) * 1999-04-19 2000-11-02 Denso Corp 半導体パッケージ実装構造の解析方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304630A (ja) * 1999-04-19 2000-11-02 Denso Corp 半導体パッケージ実装構造の解析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONG MEI-HUI ET AL.: "《Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M40/AZ91D composites》", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 *
谢尔盖耶夫 等: "《铀及反应堆材料的金属学》", 31 May 1966, 上海科学技术出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195875A (zh) * 2017-12-12 2018-06-22 中国科学院过程工程研究所 一种宽温区快速自动化测定相变材料冷热循环的系统及其测定方法
CN108195875B (zh) * 2017-12-12 2020-01-21 中国科学院过程工程研究所 一种宽温区快速自动化测定相变材料冷热循环的系统及其测定方法
CN108220560A (zh) * 2018-01-12 2018-06-29 哈尔滨工业大学 一种高温轴承钢零件提高尺寸稳定性的冷热循环处理工艺
CN109029236A (zh) * 2018-07-25 2018-12-18 中铁第四勘察设计院集团有限公司 一种消除温度影响的工程结构机械应变测试方法及装置
CN112547567A (zh) * 2020-12-29 2021-03-26 国家烟草质量监督检验中心 一种用于低强度剔除的爆珠检测方法

Similar Documents

Publication Publication Date Title
Wills The correction of hot-wire readings for proximity to a solid boundary
CN107271475A (zh) 一种确定冷热循环条件下金属材料尺寸变化临界条件的方法
Schubring et al. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part I: Methods and data
Tomlinson et al. Thermoelasticity for the analysis of crack tip stress fields—a review
Burgreen et al. Vibration of rods induced by water in parallel flow
CN110470227A (zh) 一种激光位移传感器温度自适应补偿方法
CN111006793A (zh) 一种基于热管法的k型铠装热电偶响应时间测量方法
Duan et al. A novel parameter to evaluate fatigue crack closure: Crack opening ratio
CN107063169A (zh) 一种定量评价金属材料冷热循环条件下尺寸变化量的方法
CN110220603B (zh) 一种摩擦磨损试验温度测量系统及方法
CN109870258A (zh) 一种平面任意残余应力的仪器化球形压入检测方法
CN109029304A (zh) 一种混凝土的表面粗糙度测量方法
CN107064205A (zh) 一种定量评价金属材料冷热循环条件下尺寸变化速度的方法
Jamroz Relationship between dynamic coefficients of two temperature sensors under nonstationary flow conditions
Yeow et al. Obtaining the shear rate profile of steady laminar tube flow of Newtonian and non-Newtonian fluids from nuclear magnetic resonance imaging and laser Doppler velocimetry data
CN103994927B (zh) 金属的杨氏模量测量方法
Silin et al. Thermal mixing between subchannels: measurement method and applications
CN112098457B (zh) 一种导热系数测量仪的多项式回归校准方法
CN101556255A (zh) 一种围护结构热阻现场检测数据分析方法
Fenyvesi et al. Investigation on the Nonconstant Behavior of a Vortex Flow Meter with Narrow Gauge Pipe via Conducting Measurements and Numerical Simulations
Sawyer et al. A model for geometry-dependent errors in length artifacts
Brzezinski et al. Effects of interface resistance on measurements of thermal conductivity of composites and polymers
Kolhe et al. Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region
Smith Calibrations for the electrical potential method of crack growth measurement by a direct electrical analogy
Yamazawa et al. Evaluation of small-sized platinum resistance thermometers with ITS-90 characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020