CN107271403A - 一种基于光散射的光学薄膜lidt测试装置与测试方法 - Google Patents

一种基于光散射的光学薄膜lidt测试装置与测试方法 Download PDF

Info

Publication number
CN107271403A
CN107271403A CN201610213507.4A CN201610213507A CN107271403A CN 107271403 A CN107271403 A CN 107271403A CN 201610213507 A CN201610213507 A CN 201610213507A CN 107271403 A CN107271403 A CN 107271403A
Authority
CN
China
Prior art keywords
optical axis
testing sample
lidt
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610213507.4A
Other languages
English (en)
Inventor
王青
齐思璐
孟令强
杨援
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610213507.4A priority Critical patent/CN107271403A/zh
Publication of CN107271403A publication Critical patent/CN107271403A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Abstract

本发明公开了一种基于光散射的光学薄膜LIDT测试装置,包括共光轴依次设置脉冲激光器、半波片、格兰‑泰勒棱镜、会聚透镜和待测样品,其所在的光轴为脉冲击打光轴;还包括构成共光轴测试光路的半导体激光器、扩束镜和孔径光阑,其所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,半导体激光器发出测试光,经扩束镜和孔径光阑后,射到待测样品前表面,经待测样品前表面散射,被CCD探测器接收;脉冲激光器发出的脉冲激光经半波片至格兰‑泰勒棱镜,经格兰‑泰勒棱镜反射和透射,透射光经会聚透镜会聚至待测样品。本发明更加稳定和高效,且适合在光学工厂中使用和搭建,成本低廉,操作简便。

Description

一种基于光散射的光学薄膜LIDT测试装置与测试方法
技术领域
本发明属于光学测试领域,具体涉及一种基于光散射的光学薄膜LIDT(激光损伤阈值)测试装置与测试方法。
背景技术
随着二氧化碳激光器、化学激光器、板条激光器以及光纤激光器等类型激光器的发展,激光器功率不断取得新的突破,高功率激光器应用范围日益扩大。而光学薄膜作为光学系统以及某些激光器内部元器件一直是限制功率提高的瓶颈,光学薄膜激光损伤的判定与提高也一直是高功率激光系统中的一项关键技术。
国际标准协会早在1995年便颁布了ISO 11254光学表面(薄膜)激光损伤阈值测试标准,但该标准由于需要采用的Nomarski相称显微镜、光斑质量分析仪等设备,操作复杂,对专业水平要求较高,并不适合于企业的流水线化要求。等离子体闪光法、反射率透射率测量法、散射光强测量法等虽然一定程度上消除了显微镜观察法的主观误差,但是由于其探测器成本昂贵,对环境要求苛刻等,也决定了其并不能在光学工厂中广泛应用。
发明内容
本发明的目的在于提供一种基于光散射的光学薄膜LIDT测试装置与测试方法,解决了光学元件膜层的激光损伤阈值测试无法快速高效地适应企业的流水线化要求的问题。
实现本发明目的的技术解决方案为:一种基于光散射的光学薄膜LIDT测试装置,包括脉冲激光器、半波片、格兰-泰勒棱镜、会聚透镜、半导体激光器、扩束镜和CCD探测器,共光轴依次设置脉冲激光器、半波片、格兰-泰勒棱镜、会聚透镜和待测样品,其所在的光轴为脉冲击打光轴;半导体激光器、扩束镜和孔径光阑共光轴构成测试光路,其所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,10<α<90,半导体激光器发出测试光,经扩束镜和孔径光阑后,射到待测样品前表面,经待测样品前表面散射,被CCD探测器接收;脉冲激光器发出的脉冲激光经半波片至格兰-泰勒棱镜,经格兰-泰勒棱镜反射和透射,透射光经会聚透镜会聚至待测样品。
一种基于光散射的光学薄膜LIDT测试装置,还包括第一收光器,第一收光器设置在格兰-泰勒棱镜的反射光路上,接收经格兰-泰勒棱镜反射的脉冲激光。所述第一收光器采用黑色平板。
一种基于光散射的光学薄膜LIDT测试装置,还包括第二收光器,第二收光器设置在待测样品后方,且位于脉冲击打光轴,用于接收经待测样品透射的脉冲激光。所述第二收光器采用黑色平板。
一种基于光散射的光学薄膜LIDT测试方法,方法步骤如下:
步骤1:搭设基于光散射的光学薄膜LIDT测试装置。
步骤2:打开脉冲激光器,进行预热。
步骤3:打开半导体激光器和CCD探测器,半导体激光器发出测试光,经扩束镜和孔径光阑后,射到待测样品前表面,经待测样品前表面散射,被CCD探测器接收。
步骤4:将旋转半波片的角度置于0度。
步骤5:脉冲激光器发出脉冲激光,经半波片、格兰-泰勒棱镜、会聚透镜后,对待测样品进行击打。
步骤6:CCD探测器记录散射光图像,即对待测样品的前表面膜层情况进行记录。
步骤7:等角度增加半波片旋转角度,脉冲激光器继续对待测样品进行击打,CCD探测器记录散射光图像。
步骤8:当CCD探测器记录到的散射图存在明显激光损伤时,关闭脉冲激光器。
步骤9:对上述记录到的散射图分别进行灰度图处理,得到LIDT。
步骤10:确定LIDT与其对应的待测样品前表面膜层的关系。
本发明与现有技术相比,其显著优点在于:
(1)采用CCD探测器接收待测样品的散射光图像,并对其灰度图进行处理,得知待测样品薄膜元件发生损伤后散射光的能量分布变化,代替了人眼观察法,使得测量精度更加准确。
(2)通过改变半波片角度改变激光强度,实现对不同强度LIDT进行标定,操作简单、稳定性强。
(3)从实际测量中可能出现的问题和灰度图处理两方面考虑,解决了目测法会出现的不精确问题及传统测量方法会出现的不高效问题,提高了测试效率的同时节约了测试成本。
附图说明
图1为本发明基于光散射的光学薄膜LIDT测试装置的结构图。
图2为本发明实施例中激光辐照前后CCD探测器所得图像及图像处理后图片,其中,(a)为激光处理前的散射光斑图像,(b)为激光处理后的散射光光斑图像,(c)为图像处理后得到的图像。
图3为本发明基于光散射的光学薄膜LIDT测试方法流程图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
本发明总体思路为:第一,考虑到光学薄膜损伤阈值的观察不准确性,引入了CCD探测的方法,对各散射光探测图像进行采集;第二,考虑到脉冲激光的调节难度,引入二分之一波片(即半波片)对其强度进行调整,不同的旋转角度对应不同激光强度,以得到在不同强度冲击下的薄膜损伤情况;第三,考虑到强激光对镜头的破坏性损伤,改变CCD探测角度,使其根据散射光的图像对损伤情况进行判断;第四,考虑到CCD采集图像仍带有不确定性,设计图像处理程序对其灰度图进行分析,以保证该系统可以简单快捷的对光学薄膜的损伤阈值进行判断。
结合图1,一种基于光散射的光学薄膜LIDT测试装置,包括脉冲激光器1、半波片2、格兰-泰勒棱镜3、会聚透镜5、半导体激光器8、扩束镜9和CCD探测器10,共光轴依次设置脉冲激光器1、半波片2、格兰-泰勒棱镜3、会聚透镜5和待测样品6,上述元件所在的光轴为脉冲击打光轴。半导体激光器8、扩束镜9和孔径光阑11共光轴构成测试光路,上述元件所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,10°<α<90°,半导体激光器8发出测试光,经扩束镜9和孔径光阑11后,射到待测样品6前表面,经待测样品6前表面散射,被CCD探测器10接收。脉冲激光器1发出的脉冲激光经半波片2至格兰-泰勒棱镜3,经格兰-泰勒棱镜3反射和透射,透射光经会聚透镜5会聚至待测样品6。
处于人员安全和环保角度,一种基于光散射的光学薄膜LIDT测试装置,还包括第一收光器4和第二收光器7,第一收光器4设置在格兰-泰勒棱镜3的反射光路上。第二收光器7设置在待测样品6后方,且位于脉冲击打光轴。
所述第一收光器4和第二收光器7均采用黑色平板,用于接收多余的脉冲激光。
结合图3,一种基于光散射的光学薄膜LIDT测试方法,方法步骤如下:
步骤1:搭设基于光散射的光学薄膜LIDT测试装置。
步骤2:打开脉冲激光器1,进行预热。
步骤3:打开半导体激光器8和CCD探测器10,半导体激光器8发出测试光,经扩束镜9和孔径光阑11后,射到待测样品6前表面,经待测样品6前表面散射,被CCD探测器10接收。
步骤4:将旋转半波片2的角度置于0度。
步骤5:脉冲激光器1发出脉冲激光,对待测样品6进行击打
步骤6:CCD探测器10记录散射光图像,即对待测样品6的前表面膜层情况进行记录。
步骤7:等角度增加半波片2旋转角度,脉冲激光器1继续对待测样品6进行击打,CCD探测器10记录散射光图像。
步骤8:当CCD探测器10记录到的散射图存在明显激光损伤时,关闭脉冲激光器1。
步骤9:对上述记录到的散射图分别进行灰度图处理,得到LIDT(激光损伤阈值)。
步骤10:确定LIDT与对应的待测样品6前表面膜层的关系。
实施例1
本发明所采用的技术方案是通过散射光照射在CCD探测器10上,并对所得图像进行灰度图处理与分析:从非接触式测量与图像处理两方面出发,提高了光学薄膜在脉冲激光的冲击下损伤阈值的判定精度;首先将待测样品6放置在卡座上,保证激光垂直入射到待测样品6的薄膜表面;随后通过改变半波片2的角度从而改变脉冲激光器1的激光入射角度,得到不同强度激光下待测样品6薄膜表面的损伤情况;用另外的半导体激光器8照射待测样品6前表面,CCD探测器10收集不同强度激光下待测样品6薄膜的LIDT散射光图像;对图像进行灰度图处理和比较,获得不同薄膜的激光损伤阈值。
脉冲激光击打光路,采用S-ON-1法,在暗场下测量。脉冲激光器1为Nd:YAG激光器,采用10Hz重频模式,每个能量下待测样品6选取20测试点,每个点辐照100次,测试点间的间隔大于3倍样品表面处光斑直径,以避免激光预处理效应的影响。薄膜损伤阈值采用0损伤概率阈值定义,其定义如下:
其中,Dth为损伤阈值,S为阈值的扩展范围,Fmax(ND)为薄膜最大不损伤能量密度,Fmin(D)为薄膜最小损伤能量密度。
我们采用半波片2不同旋转角度来调节不同脉冲能量,并将能量计放在待测样品6位置处进行定标,以确定半波片6的角度(半波片6夹具上标注的角度)与待测样品6处激光能量的关系;有效光斑面积采用光敏相纸法结合高斯光束理论进行分析。激光空域与时域分布则由激光器厂家提供的参数确定。
光斑有效面积也是系统中的一个重要参数,它的准确性直接影响着最终测量的激光能量密度值的准确性。光斑直径的确定采用可变孔径测试法,即将可变光阑放置在激光器与能量计之间,调节可变光阑,让透过的能量为不加光阑时的86.5%,测量此时可变光阑的直径d2,则根据理论修正公式(3)即可得到实际高斯光束直径d1,式中m2为光束传输比。若用相纸测量聚焦处光斑直径d3,则聚焦处光斑直径d4定义如(4)式所示。在当激光为TEM00模高斯光束时,由ISO 11254标准得,光斑有效面积Aeff定义如(5)式所得,由此可得有效光斑面积。
Aeff=πd4 2/8 (5)
由于相纸测试不能显示出激光束的空间分布,并且相纸存在一定的显像阈值和光斑显像区扩散现象,因此该方法确定的有效光斑面积会有一定的误差,但由于其成本低廉,方便快捷,工厂应用较为广泛。
结合图1,一种基于光散射的光学薄膜LIDT测试装置,包括脉冲激光器1、半波片2、格兰-泰勒棱镜3、会聚透镜5、半导体激光器8、扩束镜9和CCD探测器10,共光轴依次设置脉冲激光器1、半波片2、格兰-泰勒棱镜3、会聚透镜5和待测样品6,上述元件所在的光轴为脉冲击打光轴。半导体激光器8、扩束镜9和孔径光阑11共光轴构成测试光路,上述元件所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,α为45°,半导体激光器8发出测试光,经扩束镜9和孔径光阑11后,射到待测样品6前表面,经待测样品6前表面散射,被CCD探测器10接收。
处于人员安全和环保角度,一种基于光散射的光学薄膜LIDT测试装置,还包括第一收光器4和第二收光器7,第一收光器4设置在格兰-泰勒棱镜3的反射光路上。第二收光器7设置在待测样品6后方,且位于脉冲击打光轴。
第一收光器4和第二收光器7均采用黑色平板,用于接收多余的脉冲激光。
结合图2和图3,一种基于光散射的光学薄膜LIDT测试方法,方法步骤如下:
步骤1:搭设基于光散射的光学薄膜LIDT测试装置。
步骤2:打开脉冲激光器1,进行预热,改变输出模式,将其设置成TEMoo;调整脉宽,约为6.46ns;修改激光器工作频率,为10Hz重频模式。
步骤3:打开半导体激光器8和CCD探测器10,半导体激光器8发出测试光,经扩束镜9和孔径光阑11后,射到待测样品6前表面,经待测样品6前表面散射,被CCD探测器10接收。
步骤4:将旋转半波片2的角度置于0度。
步骤5:脉冲激光器1发出脉冲激光,对待测样品6进行击打。
步骤6:CCD探测器10记录散射光图像,即对待测样品6的前表面膜层情况进行记录。
步骤7:等角度增加半波片2的旋转角度,脉冲激光器1继续对待测样品6进行击打,CCD探测器10记录散射光图像。
步骤8:当CCD探测器10记录到的散射图存在明显激光损伤时,关闭脉冲激光器1,同时停止旋转半波片2。
步骤9:对上述记录到的散射图分别进行灰度图处理,得到LIDT(激光损伤阈值)。
步骤10:确定LIDT与对应的待测样品6前表面膜层的关系。
综上所述,本发明采用CCD探测器接收待测样品的散射光图像,并对其灰度图进行处理,得知待测样品薄膜元件发生损伤后散射光的能量分布变化,代替了人眼观察法,使得测量精度更加准确。
通过改变半波片角度改变激光强度,实现对不同强度LIDT进行标定,操作简单、稳定性强。
从实际测量中可能出现的问题和灰度图处理两方面考虑,解决了目测法会出现的不精确问题及传统测量方法会出现的不高效问题,提高了测试效率的同时节约了测试成本。

Claims (9)

1.一种基于光散射的光学薄膜LIDT测试装置,其特征在于:包括脉冲激光器(1)、半波片(2)、格兰-泰勒棱镜(3)、会聚透镜(5)、半导体激光器(8)、扩束镜(9)和CCD探测器(10),共光轴依次设置脉冲激光器(1)、半波片(2)、格兰-泰勒棱镜(3)、会聚透镜(5)和待测样品(6),其所在的光轴为脉冲击打光轴;半导体激光器(8)、扩束镜(9)和孔径光阑(11)共光轴构成测试光路,其所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,10<α<90,半导体激光器(8)发出测试光,经扩束镜(9)和孔径光阑(11)后,射到待测样品(6)前表面,经待测样品(6)前表面散射,被CCD探测器(10)接收;脉冲激光器(1)发出的脉冲激光经半波片(2)至格兰-泰勒棱镜(3),经格兰-泰勒棱镜(3)反射和透射,透射光经会聚透镜(5)会聚至待测样品(6)。
2.根据权利要求1所述的基于光散射的光学薄膜LIDT测试装置,其特征在于:还包括第一收光器(4),第一收光器(4)设置在格兰-泰勒棱镜(3)的反射光路上,接收经格兰-泰勒棱镜(3)反射的脉冲激光。
3.根据权利要求2所述的基于光散射的光学薄膜LIDT测试装置,其特征在于:所述第一收光器(4)采用黑色平板。
4.根据权利要求1所述的基于光散射的光学薄膜LIDT测试装置,其特征在于:还包括第二收光器(7),第二收光器(7)设置在待测样品(6)后方,且位于脉冲击打光轴,用于接收经待测样品(6)透射的脉冲激光。
5.根据权利要求4所述的基于光散射的光学薄膜LIDT测试装置,其特征在于:所述第二收光器(7)采用黑色平板。
6.基于权利要求1所述的基于光散射的光学薄膜LIDT测试方法,其特征在于,方法步骤如下:
步骤1:搭设基于光散射的光学薄膜LIDT测试装置;
步骤2:打开脉冲激光器(1),进行预热;
步骤3:打开半导体激光器(8)和CCD探测器(10),半导体激光器(8)发出测试光,经扩束镜(9)和孔径光阑(11)后,射到待测样品(6)前表面,经待测样品(6)前表面散射,被CCD探测器(10)接收;
步骤4:将旋转半波片(2)的角度置于0度;
步骤5:脉冲激光器(1)发出脉冲激光,经半波片(2)、格兰-泰勒棱镜(3)、会聚透镜(5)后,对待测样品(6)进行击打;
步骤6:CCD探测器(10)记录散射光图像,即对待测样品(6)的前表面膜层情况进行记录;
步骤7:等角度增加半波片(2)旋转角度,脉冲激光器(1)继续对待测样品(6)进行击打,CCD探测器(10)记录散射光图像;
步骤8:当CCD探测器(10)记录到的散射图存在明显激光损伤时,关闭脉冲激光器(1);
步骤9:对上述记录到的散射图分别进行灰度图处理,得到LIDT;
步骤10:确定LIDT与其对应的待测样品(6)前表面膜层的关系。
7.根据权利要求6所述的基于光散射的光学薄膜LIDT的测试方法,其特征在于,所述步骤1中,搭设基于光散射的光学薄膜LIDT测试装置,装置的结构如下:包括脉冲激光器(1)、半波片(2)、格兰-泰勒棱镜(3)、会聚透镜(5)、半导体激光器(8)、扩束镜(9)和CCD探测器(10),共光轴依次设置脉冲激光器(1)、半波片(2)、格兰-泰勒棱镜(3)、会聚透镜(5)和待测样品(6),其所在的光轴为脉冲击打光轴;半导体激光器(8)、扩束镜(9)和孔径光阑(11)共光轴构成测试光路,其所在的光轴为测试光轴,测试光轴与脉冲击打光轴存在夹角α,10°<α<90°,半导体激光器(8)发出测试光,经扩束镜(9)和孔径光阑(11)后,射到待测样品(6)前表面,经待测样品(6)前表面散射,被CCD探测器(10)接收;脉冲激光器(1)发出的脉冲激光经半波片(2)至格兰-泰勒棱镜(3),经格兰-泰勒棱镜(3)反射和透射,透射光经会聚透镜(5)会聚至待测样品(6)。
8.根据权利要求7所述的基于光散射的光学薄膜LIDT的测试方法,其特征在于:还包括第一收光器(4),第一收光器(4)设置在格兰-泰勒棱镜(3)的反射光路上,所述第一收光器(4)采用黑色平板。
9.根据权利要求7所述的基于光散射的光学薄膜LIDT的测试方法,其特征在于:还包括第二收光器(7),第二收光器(7)设置在待测样品(6)后方,且位于脉冲击打光轴,所述第二收光器(7)采用黑色平板。
CN201610213507.4A 2016-04-07 2016-04-07 一种基于光散射的光学薄膜lidt测试装置与测试方法 Pending CN107271403A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610213507.4A CN107271403A (zh) 2016-04-07 2016-04-07 一种基于光散射的光学薄膜lidt测试装置与测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610213507.4A CN107271403A (zh) 2016-04-07 2016-04-07 一种基于光散射的光学薄膜lidt测试装置与测试方法

Publications (1)

Publication Number Publication Date
CN107271403A true CN107271403A (zh) 2017-10-20

Family

ID=60051942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610213507.4A Pending CN107271403A (zh) 2016-04-07 2016-04-07 一种基于光散射的光学薄膜lidt测试装置与测试方法

Country Status (1)

Country Link
CN (1) CN107271403A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827850A (zh) * 2019-01-15 2019-05-31 广东工业大学 一种柔性薄膜拉伸弯曲装置
CN110587122A (zh) * 2019-10-28 2019-12-20 中国科学院上海光学精密机械研究所 激光材料损伤性能的预处理装置和处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718712A (zh) * 2009-12-02 2010-06-02 西安工业大学 薄膜及光学元件激光损伤阈值组合测试装置及测试方法
CN101806657A (zh) * 2010-03-17 2010-08-18 中国科学院上海光学精密机械研究所 双波长激光同时辐照光学薄膜损伤阈值测量装置和方法
CN102393383A (zh) * 2011-11-07 2012-03-28 中国科学院长春光学精密机械与物理研究所 辐照密度高均匀性的ArF激光薄膜元件损伤测试装置
CN102589848A (zh) * 2011-12-14 2012-07-18 北京国科世纪激光技术有限公司 光学薄膜损伤阈值的测试系统
CN102778426A (zh) * 2012-06-29 2012-11-14 西北核技术研究所 一种光学薄膜激光损伤测试装置
CN103162941A (zh) * 2013-03-01 2013-06-19 长春理工大学 一种光学薄膜和光电器件表面激光损伤阈值测量装置
CN103926057A (zh) * 2013-11-14 2014-07-16 中国电子科技集团公司第十一研究所 一种激光抗损伤测试系统
CN105021627A (zh) * 2015-07-20 2015-11-04 中国科学院长春光学精密机械与物理研究所 光学薄膜及元件表面激光损伤的高灵敏快速在线探测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718712A (zh) * 2009-12-02 2010-06-02 西安工业大学 薄膜及光学元件激光损伤阈值组合测试装置及测试方法
CN101806657A (zh) * 2010-03-17 2010-08-18 中国科学院上海光学精密机械研究所 双波长激光同时辐照光学薄膜损伤阈值测量装置和方法
CN102393383A (zh) * 2011-11-07 2012-03-28 中国科学院长春光学精密机械与物理研究所 辐照密度高均匀性的ArF激光薄膜元件损伤测试装置
CN102589848A (zh) * 2011-12-14 2012-07-18 北京国科世纪激光技术有限公司 光学薄膜损伤阈值的测试系统
CN102778426A (zh) * 2012-06-29 2012-11-14 西北核技术研究所 一种光学薄膜激光损伤测试装置
CN103162941A (zh) * 2013-03-01 2013-06-19 长春理工大学 一种光学薄膜和光电器件表面激光损伤阈值测量装置
CN103926057A (zh) * 2013-11-14 2014-07-16 中国电子科技集团公司第十一研究所 一种激光抗损伤测试系统
CN105021627A (zh) * 2015-07-20 2015-11-04 中国科学院长春光学精密机械与物理研究所 光学薄膜及元件表面激光损伤的高灵敏快速在线探测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827850A (zh) * 2019-01-15 2019-05-31 广东工业大学 一种柔性薄膜拉伸弯曲装置
CN110587122A (zh) * 2019-10-28 2019-12-20 中国科学院上海光学精密机械研究所 激光材料损伤性能的预处理装置和处理方法

Similar Documents

Publication Publication Date Title
CN106679940B (zh) 一种高精度激光发散角参数标定装置
JP6552513B2 (ja) 明視野検査、暗視野検査、光熱検査を組み合わせた装置及び方法
CN106770311B (zh) 一种晶体激光预处理与点对点损伤测试装置及测试方法
CN109186958A (zh) 一种多光共轴激光损伤阈值测试装置及实现方法
CN102393383B (zh) 辐照密度高均匀性的ArF激光薄膜元件损伤测试装置
CN105842248B (zh) 一种光学元件表面损伤阈值测试系统及其测试方法
CN105021627B (zh) 光学薄膜及元件表面激光损伤的高灵敏快速在线探测方法
CN107144419B (zh) 一种基于夏克-哈特曼波前传感器的光学系统波像差测量装置与方法
CN105973897B (zh) Kdp晶体针状损伤点几何尺寸分布的测量方法
CN108801439A (zh) 一种声场测量装置及测量方法
CN103926057A (zh) 一种激光抗损伤测试系统
JP2015172570A (ja) 測定装置、および測定方法
CN104807761A (zh) 一种实现微区光谱测量的光谱仪设计方法
WO2018059135A1 (zh) 测量太赫兹光束参数的方法
CN114440800A (zh) 一种激光损伤阈值测试中光斑有效面积准确测定方法
CN107271403A (zh) 一种基于光散射的光学薄膜lidt测试装置与测试方法
CN102252828B (zh) 一种监测高反射光学元件在激光辐照下反射率实时变化的方法
JP7000198B2 (ja) キャリア寿命測定方法及びキャリア寿命測定装置
US10942063B2 (en) Apparatus and method for measuring amplitude of scanning reflector
CN106770335B (zh) 一种基于反射式点衍射干涉仪的位相缺陷检测系统与方法
CN109798849A (zh) 倍频晶体定轴误差测量装置及测量方法
CN109900737A (zh) 基于等效温度的光学元件弱吸收测试装置及方法
CN115791982A (zh) 基于正交热栅的激光超声残余应力检测系统及方法
CN109297585A (zh) 一种基于光斑偏移法测量激光光斑聚焦直径的光学实验系统及实验方法
Świt et al. Beam characterization of a microfading tester: evaluation of several methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020

RJ01 Rejection of invention patent application after publication