CN107265514A - 一种菱形Fe2O3纳米材料及其制备方法 - Google Patents

一种菱形Fe2O3纳米材料及其制备方法 Download PDF

Info

Publication number
CN107265514A
CN107265514A CN201710549304.7A CN201710549304A CN107265514A CN 107265514 A CN107265514 A CN 107265514A CN 201710549304 A CN201710549304 A CN 201710549304A CN 107265514 A CN107265514 A CN 107265514A
Authority
CN
China
Prior art keywords
rhombus
nano material
ctab
water
under conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710549304.7A
Other languages
English (en)
Inventor
李鹿
王春刚
苏忠民
谢海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201710549304.7A priority Critical patent/CN107265514A/zh
Publication of CN107265514A publication Critical patent/CN107265514A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/39Particle morphology extending in three dimensions parallelepiped-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种菱形Fe2O3纳米材料及其制备方法,包括如下步骤:将无水三氯化铁80~100 mg和阳离子表面活性剂10~15 mg溶解于水10~15mL中,搅拌,使其充分溶解成透明溶液;转入15mL的反应釜中,在130~150℃的条件下反应18~24h,取出,自然冷却;洗涤,50~100℃烘箱干燥30~48 h,即得菱形Fe2O3纳米材料;使用该方法制备的菱形Fe2O3纳米材料具有分散性好、比容量大、循环性能好、使用寿命长等特点;采用一步法,以阳离子表面活性剂(CTAB)为模板,在水热条件下一步合成菱形Fe2O3纳米材料,得到的菱形Fe2O3纳米材料粒径均匀,分散性好,结构稳定。

Description

一种菱形Fe2O3纳米材料及其制备方法
技术领域
本发明属于纳米材料及其应用技术领域,具体涉及一种Fe2O3纳米材料及其制备方法。
背景技术
随着社会的飞速发展,环境污染和能源危机的挑战日益严峻,绿色能源成为世界各国的研发热点。锂离子电池作为一种新型清洁的可充电电源,具有质量轻、污染小、工作电压高、能量密度大、循环寿命长等优点,在国防、电动车和电子领域展示了广阔的应用前景,被誉为21世纪的理想电源。但是随着电动汽车和混合动力汽车的发展,需要锂离子电池拥有更高容量和更好的倍率放电性能,但是目前的锂离子电池还不能完全达到这些要求。就锂离子电池负极材料而言,目前商业化的碳材料存在比容量低、安全性能欠佳等问题(理论容量仅为372 mAh g-1),已不能满足新一代高比容量电池负极材料的需求。因此,如何用低电压、可嵌锂的化合物替代目前所用的碳材料,以提高锂离子电池的能量密度和安全性能是一个十分重要的课题。为了满足高性能锂离子电池的市场需求,必须寻找能够在低电势下保持高容量的石墨替代材料。
与石墨负极材料相比,过渡金属氧化物为实现具有较高能量密度的锂离子电池提供了更多的选择(Penki T R, Shivakumara S, Minakshi M, Electr℃himica Acta,2015, 167, 330-339; Zhang S, Zhang P, Xie A, et al, Electr℃himica Acta,2016, 212, 912-920.)。在众多的过渡金属氧化物中,Fe2O3由于具有容量高、环境友好、成本较低、安全性能好等优点已引起广泛关注,被认为是锂离子电池商业碳负极材料最有前景的替代材料之一(Qin F, Zhang K, Zhang L, Dalton Transactions, 2015, 44,2150-2156; Jiang T, Bu F, Feng X, ACS Nano, 2017, 11, 5140−5147)。但Fe2O3电极材料在反复嵌/脱锂过程中容易出现大的体积膨胀效应,易造成结构粉化、团聚而失去活性,从而导致Fe2O3电极材料的循环性能及倍率性能变差,极大地限制了Fe2O3作为锂离子电池负极材料的实际应用。众所周知,纳米级的材料与体材料相比有着显著不同的物理与化学性质。在锂离子电池领域,电池电极性质不但与材料的结构有关,而且与电极的形貌有关。最近,虽然有关各种纳米结构的Fe2O3,如纳米颗粒、纳米花、纳米棒和纳米管的制备及其作为锂离电池负极材料相继被报道(Zeng S Y, Tang K B, Li T W. J. Colloid. Interf.Sci, 2007, 312, 513-521;Chen J, Xu L, Li W Y, et a1. Adv. Mater, 2005, 17,582-586; NuLi Y, Zhng P, Guo Z P, et a1. Elctr℃him. Acta, 2008, 53, 4213-4218.)。但粒径均一,分散性好的菱形Fe2O3纳米粒子作为锂离电池的负极还未有报道。
发明内容
本发明目的是提供一种菱形Fe2O3纳米材料及其制备方法,该方法制备的菱形Fe2O3纳米锂电池负极材料具有分散性好、比容量大、循环性能好、使用寿命长等特点。
一种菱形Fe2O3纳米材料,它是由下述方法制备的,包括:
1)将无水三氯化铁80~100 mg和阳离子表面活性剂10~15 mg溶解于水10~15 mL中,搅拌,使其充分溶解成透明溶液;
2)转入15 mL的反应釜中,在130 ~ 150℃的条件下反应18 ~ 24 h,取出,自然冷却;
3)洗涤,50 ~ 100℃烘箱干燥30 ~ 48 h,即得Fe2O3纳米锂电池负极材料;
所述的阳离子表面活性剂为CTAB;所述的洗涤为无水乙醇和蒸馏水交替洗涤;
所述的步骤1)中的无水三氯化铁80mg,CTAB为10mg,水10mL;步骤2)在130℃的条件下反应20h;步骤3)中50℃烘箱干燥48 h;
所述的步骤1)中的无水三氯化铁100mg,CTAB为12mg,水13mL;步骤2)在150℃的条件下反应24h;步骤3)中80℃烘箱干燥30h;
所述的步骤1)中的无水三氯化铁90mg,CTAB为15mg,水15mL;步骤2)在130℃的条件下反应24h;步骤3)中100℃烘箱干燥48h。
一种菱形Fe2O3纳米材料在制备锂离子电池方面的应用。
本发明提供了一种菱形Fe2O3纳米材料及其制备方法,包括如下步骤:将无水三氯化铁80~100 mg和阳离子表面活性剂10~15 mg溶解于水10~15mL中,搅拌,使其充分溶解成透明溶液;转入15mL的反应釜中,在130~150℃的条件下反应18~24h,取出,自然冷却;洗涤,50~100℃烘箱干燥30 ~ 48 h,即得菱形Fe2O3纳米材料;使用该方法制备的菱形Fe2O3纳米材料具有分散性好、比容量大、循环性能好、使用寿命长等特点;采用一步法,以阳离子表面活性剂(CTAB)为模板,在水热条件下一步合成菱形Fe2O3纳米材料,得到的菱形Fe2O3纳米材料粒径均匀,分散性好,结构稳定。
附图说明
图1 菱形Fe2O3纳米材料扫描电镜图;
图2 菱形Fe2O3纳米材料的XRD谱图;
图3 菱形Fe2O3纳米材料的充放电循环曲线。
具体实施方式
实施例1 一种菱形Fe2O3纳米材料制备方法
首先,将80mg无水FeCl3和10mg CTAB(十六烷基三甲基溴化铵),溶解于10mL水中,搅拌使其充分溶解成透明溶液;随后将其转入15mL的反应釜中,在130℃的条件下反应20h;取出自然冷却,用无水乙醇和蒸馏水交替离心分离数次,50℃烘箱干燥48h,即得微米级菱形Fe2O3材料。
实施例2一种菱形Fe2O3纳米材料制备方法
首先,将100 mg无水FeCl3和12 mg CTAB溶解于13 mL水中,搅拌使其充分溶解成透明溶液。随后将其转入15 mL的反应釜中,在150℃的条件下反应24 h,取出自然冷却,用无水乙醇和蒸馏水交替离心分离数次,80℃烘箱干燥30 h,即得微米级菱形Fe2O3材料。
实施例3一种菱形Fe2O3纳米材料制备方法
首先,将90 mg无水FeCl3和15 mg CTAB溶解于15 mL水中,搅拌使其充分溶解成透明溶液。随后将其转入15 mL的反应釜中,在130℃的条件下反应24 h,取出自然冷却,用无水乙醇和蒸馏水交替离心分离数次, 100℃烘箱干燥48 h,即得单分散菱形Fe2O3纳米材料,结果见图1、2。结果表明,得到的菱形Fe2O3纳米材料粒径均匀,分散性好,结构稳定。
实施例4一种菱形Fe2O3纳米材料的应用
单分散菱形Fe2O3纳米材料用于锂离子电池。以合成的单分散菱形Fe2O3纳米材料为活性物质,乙炔黑为导电剂,聚偏氟乙烯(PVDF)为粘结剂,氮甲基吡咯烷酮(NMP)为溶剂。电池的组装过程为:将活性物质 、导电剂、聚偏氟乙烯按70:20:10的重量比准确称量,然后放入玛瑙研钵中充分混合、研磨均匀,然后加入几滴NMP,继续研磨至均匀浆状。将浆料均匀涂于已称量过的铜箔上。然后在真空干燥箱中于120 oC真空干燥12 h至恒重,10 MPa下压片,再继续干燥至少5 h,降到室温后取出称重。
我们用实验半电池来测试合成材料的电化学性能,模拟电池的组装在无水无氧、充有氩气的手套箱中完成。将烘干的极片、电池壳和隔膜放入手套箱。以金属锂片为对电极,Celgard240聚丙烯多孔膜做隔膜,1.0 mol/L LiPF6 的EC-DMC(体积比1:1)溶液做电解液,组装成扣式CR2032模拟电池,进行充放电测试,结果(见图3)。结果表明本发明合成的单分散菱形Fe2O3纳米材料具有很好的循环稳定性。

Claims (6)

1.一种菱形Fe2O3纳米材料,它是由下述方法制备的,包括:
1)将无水三氯化铁80~100 mg和阳离子表面活性剂10~15 mg溶解于水10~15 mL中,搅拌,使其充分溶解成透明溶液;
2)转入15 mL的反应釜中,在130 ~ 150℃的条件下反应18 ~ 24 h,取出,自然冷却;
3)洗涤,50 ~ 100℃烘箱干燥30 ~ 48 h,即得Fe2O3纳米材料。
2.根据权利要求1所述的一种菱形Fe2O3纳米材料,其特征在于:所述的阳离子表面活性剂为CTAB;所述的洗涤为无水乙醇和蒸馏水交替洗涤。
3. 根据权利要求2所述的一种菱形Fe2O3纳米材料,其特征在于:步骤1)中所述的无水三氯化铁80mg,CTAB为10mg,水10mL;步骤2)所述的反应为在130℃的条件下反应20h;步骤3)所述的干燥为50℃烘箱干燥48 h。
4.根据权利要求2所述的一种菱形Fe2O3纳米材料,其特征在于:步骤1)所述的的无水三氯化铁100mg,CTAB为12mg,水13mL;步骤2)所述的反应为在150℃的条件下反应24h;步骤3)所述的干燥为80℃烘箱干燥30h。
5.根据权利要求2所述的一种菱形Fe2O3纳米材料,其特征在于:步骤1)所述的无水三氯化铁90mg,CTAB为15mg,水15mL;步骤2)所述的反应为在130℃的条件下反应24h;步骤3)所述的干燥为100℃烘箱干燥48h。
6.权利要求1所述的一种菱形Fe2O3纳米材料在制备锂离子电池方面的应用。
CN201710549304.7A 2017-07-07 2017-07-07 一种菱形Fe2O3纳米材料及其制备方法 Pending CN107265514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710549304.7A CN107265514A (zh) 2017-07-07 2017-07-07 一种菱形Fe2O3纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710549304.7A CN107265514A (zh) 2017-07-07 2017-07-07 一种菱形Fe2O3纳米材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107265514A true CN107265514A (zh) 2017-10-20

Family

ID=60072363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710549304.7A Pending CN107265514A (zh) 2017-07-07 2017-07-07 一种菱形Fe2O3纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107265514A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288712A (zh) * 2017-12-21 2018-07-17 浙江天能能源科技股份有限公司 一种锂离子电池负极材料Fe2O3的制备方法
CN108314090A (zh) * 2018-04-18 2018-07-24 中国科学院青海盐湖研究所 一种菱面体α型三氧化二铁的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150541A (zh) * 2014-09-03 2014-11-19 安徽工业大学 一种米粒状α-Fe2O3纳米粉末的制备方法
CN106025263A (zh) * 2016-05-17 2016-10-12 安徽师范大学 一种三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池
CN105999277A (zh) * 2016-08-05 2016-10-12 东北师范大学 一种梭形Fe3O4@C/Zn3(PO4)2纳米粒子的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150541A (zh) * 2014-09-03 2014-11-19 安徽工业大学 一种米粒状α-Fe2O3纳米粉末的制备方法
CN106025263A (zh) * 2016-05-17 2016-10-12 安徽师范大学 一种三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池
CN105999277A (zh) * 2016-08-05 2016-10-12 东北师范大学 一种梭形Fe3O4@C/Zn3(PO4)2纳米粒子的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋彩霞: ""无机微纳米晶的合成、组装及性能研究"", 《中国博士学位论文全文数据库(电子期刊) 工程科技Ⅰ辑》 *
杜庆波等: ""α-Fe2O3纳米材料的制备及性能研究"", 《硅酸盐通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288712A (zh) * 2017-12-21 2018-07-17 浙江天能能源科技股份有限公司 一种锂离子电池负极材料Fe2O3的制备方法
CN108314090A (zh) * 2018-04-18 2018-07-24 中国科学院青海盐湖研究所 一种菱面体α型三氧化二铁的制备方法

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN103441247B (zh) 一种基于化学键构筑的高性能硅/氧化石墨烯负极材料及其制备方法
CN105006551B (zh) 一种钠离子电池磷化锡/石墨烯负极复合材料及其制备方法
CN106920989B (zh) 一种铜硒化合物为负极材料的钠离子电池
CN105977458A (zh) 纳米金刚石粉和石墨烯的复合电极材料及其制备方法
CN102324511A (zh) 一种锂离子电池复合负极材料的制备方法
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
Chen et al. Co 2 B 2 O 5 as an anode material with high capacity for sodium ion batteries
CN107611411A (zh) 一种三维分级多孔氮掺杂碳包硅复合材料的制备方法及应用
CN104300129A (zh) 电池、电池负极、电池负极材料及其制备方法
CN103606672A (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
CN104733699B (zh) 一种制备二氧化钼包覆钛酸锂负极材料的方法
CN108539143A (zh) 一种快速制备高容量锂离子电池硅基负极材料的方法
CN103915623B (zh) 纳米多孔金属硫化物可充镁电池正极材料的制备方法
CN105702938B (zh) 一种铁基氧化物锂离子电池负极材料及其制备方法与应用
CN104282894B (zh) 一种多孔Si/C复合微球的制备方法
CN107732203A (zh) 一种纳米二氧化铈/石墨烯/硫复合材料的制备方法
CN105470468A (zh) 一种氟掺杂磷酸铁锰锂正极材料及其制备方法
CN108172744B (zh) 一种用于锂硫电池隔膜的Sb2Se3复合材料的制备方法
CN106887572A (zh) 一种锑‑碳复合材料及其制备方法和应用
CN102169980A (zh) 一种负极活性材料的制备方法
CN106992295B (zh) 一种单分散α-氧化铁纳米片的制备方法
CN116332154A (zh) 一种多孔硅碳负极材料的制备方法
CN106340400B (zh) 一种碳包覆正交晶系纳米棒状Nb2O5材料及其制备方法
CN107799748A (zh) 一种纳米级立方体锡酸钴和石墨烯复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171020