CN107262104A - 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用 - Google Patents

一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用 Download PDF

Info

Publication number
CN107262104A
CN107262104A CN201710625530.9A CN201710625530A CN107262104A CN 107262104 A CN107262104 A CN 107262104A CN 201710625530 A CN201710625530 A CN 201710625530A CN 107262104 A CN107262104 A CN 107262104A
Authority
CN
China
Prior art keywords
bismuth ferrite
graphite oxide
composite material
microwave
oxide doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710625530.9A
Other languages
English (en)
Inventor
张广山
王鹏
李硕
袁晓乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710625530.9A priority Critical patent/CN107262104A/zh
Publication of CN107262104A publication Critical patent/CN107262104A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用,属于合成材料技术领域。所述方法如下:(1)配制硝酸铁、硝酸铋、硝酸铅和氧化石墨的混合液,超声处理,然后加入氢氧化钠及泡沫镍,继续搅拌待用;(2)在微波炉内进行微波辅助水热合成,反应结束,取出产物,清洗、干燥,得到铅、石墨烯掺杂铁酸铋与泡沫镍复合催化材料,可用于类Fenton和光催化反应体系处理难降解有机物废水,有效降低废水中的TOC含量。本发明在制备过程中采用微波辅助水热法一步、快速合成铁酸铋基复合催化材料,充分利用了微波的非热效应和原位生长能力强的优点,能够更快速高效地完成化学合成反应,制备时间大大缩短,并且操作简单、方便易行。

Description

一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材 料的方法及应用
技术领域
本发明属于合成材料技术领域,具体涉及一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用。
背景技术
铁酸铋(BiFeO3,BFO)是一种多铁性材料,最早成功合成于上世纪五十年代末,因其具有铁电性和反铁磁性,是当前多铁材料研究的热点之一。钙钛矿结构的铁酸铋晶体结构在室温下属于R3c空间群,其结构可以反相八面体倾斜,离子从对称中心分别沿[111]伪立方方向偏移。BFO既具有铁电性,又具有G型反铁磁性,其铁电居里温度为830℃,反铁磁奈尔温度为370℃,而且每一个[111]晶面自旋形成摆线,具有很大的饱和极化强度,饱和极化强度可达100µCcm-2
石墨烯是目前自然界最薄、强度最高、导电导热性能最强的一种新型纳米材料,因其独特的性能,石墨烯作为"新材料之王"成为材料领域中新的宠儿。随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐逐步加快,基于石墨烯复合材料是石墨烯应用领域中的重要研究方向,其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能,具有广阔的应用前景。作为催化剂的载体,石墨烯具有增大比表面积、改变催化剂的禁带宽度以及抑制激发电子-空穴复合等作用。这些作用都大大提高了催化剂的催化性能,并且在实际应用中有不可小觑的作用。
催化材料在实际应用中的研究重点是发展负载型催化材料,以提高反应过程中反应物与催化剂的接触面积,提高催化效率。载体的选择和催化剂的固定成为研发负载型催化剂的关键环节。泡沫镍具有比表面积大、多孔结构、可快速传热、导电的特点,是一种良好的载体选择。而催化材料的另一个限制因素是合成方法的选择,快速、高效的制备催化材料是研究的热点之一。
目前在合成材料中,传统的合成方法包括水热法、浸渍法、共沉淀法和溶胶凝胶法,这些方法都需要较长的合成时间,合成条件较为复杂,并且合成的催化剂效率不稳定,这些因素都限制了催化剂在实际生产中的应用。然而微波因其热效应与非热效应的共同作用可以大大缩短反应时间,简化合成步骤,同时提升合成材料的性能等优点被视为一种在加热过程中起着独一无二作用的新技术,更加难能可贵的是微波是一种绿色、无污染并且不会对环境造成二次污染的新型技术。因此,研发快速合成材料的新方法在实际生产中显得尤为重要。
目前关于泡沫镍的相关发明专利还没有,石墨烯复合材料种类较多,但大多都应用在化学化工、冶金、石油等领域(如:过渡金属硫化物/石墨烯复合材料及其合成方法和应用:201210254567.2;PbSe立方颗粒/石墨烯复合材料及其合成方法和应用:201310105877.2;Bi2Te3薄片/石墨烯复合材料及其合成方法和应用:201210254834.6),但是在环境领域用于处理难降解有机物的相关内容还未见报道。在合成方法上大多是水热合成法或溶胶凝胶法(如:锡基复杂氧化物/石墨烯复合材料及其合成方法和应用专利号:201210254843.5;钴基复杂氧化物/石墨烯复合材料及其合成方法和应用:201310032042.9;PbTe立方颗粒/石墨烯复合材料及其合成方法和应用:201210254645.9),但这些合成催化剂的方法均需要消耗很长时间,给实际应用带来困难。
发明内容
本发明的目的是为了解决现有复合催化材料的合成时间较长、合成效果不佳以及在环境领域应用较少的问题,提供了一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用。该方法可以快速合成性能良好、环境友好型的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料,原料来源广泛、廉价易得,合成方法快速简单、易于实现工业化,而且对环境没有污染。
为实现上述目的,本发明采取的技术方案如下:
一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,所述方法步骤如下:
一、铁酸铋基复合材料的预处理
取4~5 g硝酸铁、4~5 g硝酸铋、0.1~0.3 g硝酸铅、0.5~1.0 g氧化石墨及25~35 mL去离子水或超纯水混合在烧杯中,在25~30℃条件下超声处理15~ 30 min,然后加入3~5 g氢氧化钠继续搅拌20~30 min,随后添加1~2 g泡沫镍,最后将混合物移至聚四氟乙烯反应罐中待合成;
二、预处理铁酸铋基复合材料的微波快速合成
将聚四氟乙烯反应罐放置于微波炉中进行微波辅助水热合成,反应结束后取出聚四氟乙烯反应罐,清洗后将产物置于烘箱内烘干至恒重,得到铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料。
一种上述方法制备的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的应用,所述复合材料应用于类Fenton和光催化反应体系处理难降解有机物废水,有效去除有机污染物以及降低废水中的TOC含量。
本发明相对于现有技术的有益效果是:
1、本发明在合成过程中采用微波辐照技术对复合材料进行一步法快速合成,得到铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料,充分利用了微波的非热效应和热点效应的优点,反应在30 min内即完成合成过程,合成时间大大缩短,并且操作简单、方便易行。
2、本发明选用的氧化石墨由本申请人制备得到,已申请专利(CN106082197A)。
3、本发明合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料具有良好的催化性能,可以在微波强化类Fenton体系中,有效降解全氟辛酸废水。
4、本发明合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料同时还具有一定的光催化活性,在紫外光照射下,可以有效降解全氟辛酸废水。
5、本发明合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料对大肠杆菌也具有一定的抑制作用。
6、本发明合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料因合成方法简单、合成时间短,具有一定的实际应用价值,对处理废水有显著的效果。
7、本发明合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料具有可回收、重复利用等优点,可在实际废水处理中得到广泛应用。
8、本发明使用的原料来源广泛、廉价易得,制得的复合材料易于实现工业化,对环境没有污染。
附图说明
图1为实施例1中铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的SEM图;
图2为实施例1中铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的EDX图;
图3为实施例1中铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的XRD图;
图4为实施例1中铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料去除PFOA和TOC的效果图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
具体实施方式一:本实施方式记载的是一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,所述方法步骤如下:
一、铁酸铋基复合材料的预处理
取4~5 g硝酸铁、4~5 g硝酸铋、0.1~0.3 g硝酸铅、0.5~1.0 g氧化石墨(粉末状)及25~35 mL去离子水或超纯水混合在烧杯中,在25~30℃条件下超声处理15~ 30 min,然后加入3~5 g氢氧化钠继续搅拌20~30 min,随后添加1~2 g泡沫镍,最后将混合物移至聚四氟乙烯反应罐中待合成;
二、预处理铁酸铋基复合材料的微波快速合成
将聚四氟乙烯反应罐放置于微波炉中进行微波辅助水热合成,反应结束后取出聚四氟乙烯反应罐,清洗后将产物置于烘箱内烘干至恒重,得到铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料。
具体实施方式二:具体实施方式一所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,步骤二中,微波反应温度为180~200oC,反应时间为20~40 min。
具体实施方式三:具体实施方式一所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,步骤二中,烘干温度为70~100℃,烘干时间2 h。
具体实施方式四:具体实施方式一所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,步骤二中,使用无水乙醇和去离子水进行离心清洗,离心转速为3500 rap/min,离心时间为5 min。
具体实施方式五:一种具体实施方式一所述方法制备的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的应用,所述复合材料应用于类Fenton和光催化反应体系处理难降解有机物废水,有效去除有机污染物以及降低废水中的TOC含量。
具体步骤为:在不改变初始溶液pH的条件下,室温下2 g/L的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料,在微波强化Fenton-like体系中降解全氟辛酸废水,反应6 min溶液即可降解90%以上。
实施例1:
本实施例以铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料作为催化剂,选择全氟辛酸作为目标污染物,具体技术方案如下:
一、先将4.84 g硝酸铋、4.04 g硝酸铁、0.2 g硝酸铅和0.07 g氧化石墨放入烧杯中,加入30 mL去离子水超声20 min,然后加入4 g氢氧化钠继续搅拌30 min,随后将1 g泡沫镍加入上述混合液中,然后移至聚四氟乙烯反应罐中待合成;
二、经过步骤一预处理,将聚四氟乙烯反应罐放置于微波炉中,反应在微波炉内进行,调节温度在185~195℃,反应时间控制在25~30 min,取出聚四氟乙烯反应罐,清洗后将产物置于烘箱内烘干至恒重,得到铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料。铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的形貌分析如图1所示、元素分析如图2所示、晶型分析如图3所示。
三、降解步骤:取0.2 g上述方法合成的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料置于500 mL的三口烧瓶中,加入100 mL的全氟辛酸溶液(PFOA,20 mg/L),不改变溶液的pH值,将三口烧瓶转入微波炉中,调整微波功率为150 W,加入1 mL过氧化氢,反应6 min,采用超高效液相色谱对PFOA进行检测分析。采用TOC分析仪对全氟辛酸溶液中的总碳进行检测。反应6 min后PFOA的去除率达到90%以上,TOC去除率达到60%。铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料去除PFOA和TOC的效果如图4所示。
本研究采用微波强化类Fenton工艺,通过对催化剂添加量、微波反应时间、微波反应温度、过氧化氢添加量以及PFOA的初始浓度进行研究,确定最佳工艺参数。同时发现铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料具有很好的吸波效果,以及催化性能。

Claims (5)

1.一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,其特征在于:所述方法步骤如下:
一、铁酸铋基复合材料的预处理
取4~5 g硝酸铁、4~5 g硝酸铋、0.1~0.3 g硝酸铅、0.5~1.0 g氧化石墨及25~35 mL去离子水或超纯水混合在烧杯中,在25~30℃条件下超声处理15~ 30 min,然后加入3~5 g氢氧化钠继续搅拌20~30 min,随后添加1~2 g泡沫镍,最后将混合物移至聚四氟乙烯反应罐中待合成;
二、预处理铁酸铋基复合材料的微波快速合成
将聚四氟乙烯反应罐放置于微波炉中进行微波辅助水热合成,反应结束后取出聚四氟乙烯反应罐,清洗后将产物置于烘箱内烘干至恒重,得到铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料。
2.根据权利要求1所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,其特征在于:步骤二中,微波反应温度为180~200oC,反应时间为20~40 min。
3.根据权利要求1所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,其特征在于:步骤二中,烘干温度为70~100℃,烘干时间2 h。
4.根据权利要求1所述的微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法,其特征在于:步骤二中,使用无水乙醇和去离子水进行离心清洗,离心转速为3500rap/min,离心时间为5 min。
5.一种权利要求1所述方法制备的铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的应用,其特征在于:所述复合材料应用于类Fenton和光催化反应体系处理难降解有机物废水,有效去除有机污染物以及降低废水中的TOC含量。
CN201710625530.9A 2017-07-27 2017-07-27 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用 Pending CN107262104A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710625530.9A CN107262104A (zh) 2017-07-27 2017-07-27 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710625530.9A CN107262104A (zh) 2017-07-27 2017-07-27 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用

Publications (1)

Publication Number Publication Date
CN107262104A true CN107262104A (zh) 2017-10-20

Family

ID=60074588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710625530.9A Pending CN107262104A (zh) 2017-07-27 2017-07-27 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用

Country Status (1)

Country Link
CN (1) CN107262104A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171787A (zh) * 2020-01-15 2020-05-19 南京理工大学 一种BiFeO3/RGO复合吸波材料及制备方法
CN112871178A (zh) * 2021-01-14 2021-06-01 齐齐哈尔大学 微波活化过硫酸盐氧化降解含氟废水催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486785A (zh) * 2003-08-12 2004-04-07 上海交通大学 泡沫金属负载TiO2纳米光催化过滤网的制备方法
CN2686718Y (zh) * 2003-12-19 2005-03-23 佛山市顺德区凯纳方实业有限公司 复合光催化抗菌泡沫金属
CN106179318A (zh) * 2016-09-27 2016-12-07 安阳师范学院 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法
CN106334562A (zh) * 2016-09-21 2017-01-18 郑州峰泰纳米材料有限公司 石墨烯‑泡沫镍负载纳米TiO2的光催化材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486785A (zh) * 2003-08-12 2004-04-07 上海交通大学 泡沫金属负载TiO2纳米光催化过滤网的制备方法
CN2686718Y (zh) * 2003-12-19 2005-03-23 佛山市顺德区凯纳方实业有限公司 复合光催化抗菌泡沫金属
CN106334562A (zh) * 2016-09-21 2017-01-18 郑州峰泰纳米材料有限公司 石墨烯‑泡沫镍负载纳米TiO2的光催化材料及其制备方法
CN106179318A (zh) * 2016-09-27 2016-12-07 安阳师范学院 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUO LI ET AL: "Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171787A (zh) * 2020-01-15 2020-05-19 南京理工大学 一种BiFeO3/RGO复合吸波材料及制备方法
CN111171787B (zh) * 2020-01-15 2023-03-28 南京理工大学 一种BiFeO3/RGO复合吸波材料及制备方法
CN112871178A (zh) * 2021-01-14 2021-06-01 齐齐哈尔大学 微波活化过硫酸盐氧化降解含氟废水催化剂的制备方法
CN112871178B (zh) * 2021-01-14 2022-06-03 齐齐哈尔大学 微波活化过硫酸盐氧化降解含氟废水催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN106563816B (zh) 一种多孔碳负载石墨烯包覆纳米镍颗粒吸波材料的制备方法
Jiang et al. Synthesis of flowerlike g‐C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation
CN106944053A (zh) 一种污泥炭基类Fenton催化剂及其制备方法和应用
CN108538611B (zh) 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用
Desalegn et al. Highly Efficient g‐C3N4 Nanorods with Dual Active Sites as an Electrocatalyst for the Oxygen Evolution Reaction
CN111569878B (zh) 一种丝瓜络遗态多孔碳负载类芬顿催化剂的制备方法及应用
CN106082313A (zh) 棒状二氧化锡/二维纳米碳化钛复合材料的制备方法
CN102324502A (zh) 一种花状二氧化锡与石墨烯复合材料的制备方法
CN108097261A (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN105668719A (zh) 负载钴氧化物的活性炭催化粒子电极及制备方法
CN107262104A (zh) 一种微波快速合成铅、氧化石墨掺杂铁酸铋与泡沫镍复合材料的方法及应用
Xu et al. Co-doping g-C3N4 with P and Mo for efficient photocatalytic tetracycline degradation under visible light
Huang et al. Construction of ternary Bi2O3/biochar/g-C3N4 heterojunction to accelerate photoinduced carrier separation for enhanced tetracycline photodegradation
Wu et al. Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2Tx hybrid for effectively removing tetracycline hydrochloride and rhodamine B
Shi et al. Green Synthesis and Direct Z‐Scheme CdSe/BiOCl Heterojunctions for Enhanced Photocatalytic Performance
Yang et al. Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability
Kulkarni et al. Latest trends and advancement in porous carbon for biowaste organization and utilization
Yin et al. In‐situ synthesis of MoS2/BiOBr material via mechanical ball milling for boosted photocatalytic degradation pollutants performance
Soni et al. Visible-light-driven photodegradation of methylene blue and doxycycline hydrochloride by waste-based S-scheme heterojunction photocatalyst Bi5O7I/PCN/tea waste biochar
Zahra et al. High-performance MoO3/g-CN supercapacitor electrode material utilizing MoO3 nanoparticles grafted on g-CN nanosheets
CN107970893A (zh) 一种茉莉花基多孔炭MOFs复合材料及其制备方法
CN108172841B (zh) 一种应用于微生物燃料电池改性石墨毡电极及其制备方法
CN109967114A (zh) 柚子皮基氮硫共掺杂碳材料及其制备方法和应用
CN108383107A (zh) 一种高密度微晶石墨烯基多孔炭材料的制备方法
CN113976127B (zh) 一种光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020