CN107248582A - 燃料电池的动力系统与交通工具 - Google Patents

燃料电池的动力系统与交通工具 Download PDF

Info

Publication number
CN107248582A
CN107248582A CN201710386819.XA CN201710386819A CN107248582A CN 107248582 A CN107248582 A CN 107248582A CN 201710386819 A CN201710386819 A CN 201710386819A CN 107248582 A CN107248582 A CN 107248582A
Authority
CN
China
Prior art keywords
anode
gas
dynamical system
mentioned
anodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710386819.XA
Other languages
English (en)
Inventor
汤浩
宋亚婷
刘煜
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Corp
Original Assignee
Dongfang Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Corp filed Critical Dongfang Electric Corp
Priority to CN201710386819.XA priority Critical patent/CN107248582A/zh
Publication of CN107248582A publication Critical patent/CN107248582A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本申请提供了一种燃料电池的动力系统与交通工具。该动力系统包括:电池堆,包括阴极与阳极,阳极的入口与阳极的出口通过阳极气体循环管路连通;阴极气体供给装置,与阴极的入口连通;阳极气体供给装置,与阳极的入口连通;冷却装置,设置在阳极气体循环管路上,用于对由阳极输出的阳极尾气进行降温,使得阳极尾气中的至少部分水蒸气液化;阳极气体动力装置,设置在冷却装置与阳极的入口之间的阳极气体循环管路上。该动力系统中,在阳极尾气进入氢气循环装置之前,对其进行降温冷却,使得阳极尾气循环回路脱除至少部分水分,进而减少了进入氢气循环装置中的液态水,从而提高氢气循环装置的使用寿命与使用安全性。

Description

燃料电池的动力系统与交通工具
技术领域
本申请涉及燃料电池领域,具体而言,涉及一种燃料电池的动力系统与交通工具。
背景技术
燃料电池汽车(FCV)是一种用车载燃料电池装置产生的电能作为动力的汽车。目前,广泛应用于燃料电池汽车的是质子交换膜燃料电池(PEMFC)。
质子交换膜燃料电池汽车的工作原理为:燃料氢气沿燃料电池电池堆阳极板流道分配在膜电极的阳极侧,在阳极催化剂的作用下解离成电子和质子,电子经外电路到达阴极,质子直接穿过膜电极到达阴极,与阴极反应气体中的氧气反应生成水。此过程的产物为电能、热和水。其中电能带动电动机工作,电动机再带动汽车中的机械传动结构,进而带动汽车的前桥(或后桥)等行走机械结构工作,从而驱动电动汽车前进。热和水通过热交换装置直接排放或综合利用。
目前,对于功率等级较大的质子交换膜燃料电池车用动力系统,为了降低系统散热负荷,保证较高的电池堆反应温度,通常空气需要进行外部加湿,外部加湿一般采用气/气型加湿方式,即利用电池堆阴极反应尾气(COG)中的热量和气态水对阴极进堆空气进行加湿。同时为了提高氢气利用率及系统使用安全性,燃料供给系统一般采用氢气循环方式。
图1为质子交换膜燃料电池车用动力系统的简化结构图,其主要包含空气供给、氢气供给与冷却水循环三个回路,电池堆01'电化学反应所需的空气由输送设备02'提供动力进入加湿器03'被电池堆阴极反应尾气加湿升温后进入阴极,阴极尾气与空气在加湿器中完成传热传质后的废气直接排放;来自高压储气瓶04'的氢气通过减压计量装置05'后进入阳极,阳极侧反应后的阳极尾气通过氢气循环装置06'输送又循环进入电池堆。电池堆电化学反应过程产生的热量由冷却水循环回路带出,冷却水循环回路上设置有冷却介质的动力设备08'与散热装置09',电池堆电化学反应过程产生的热量由动力设备08'输送的冷却介质穿过电池堆01'带出后进入散热装置09'完成热量平衡,冷却介质在散热装置降温后又进入电堆,完成一次循环将冷却介质输送至电池堆中。
上述的动力系统从燃料阴阳极反应物料供给给出了较为优化的方案,但对系统循环回路之间的水热耦合、部件对系统水热平衡影响考虑不多,尤其对于氢气循环过程中涉及的水热管理没有给出优化的结构。
电池堆的阳极出堆尾气中水分含量较高(一般为饱和状态),沿着管路流动过程中部分气态水会凝结为液态水。由于考虑泄漏安全及装置寿命等问题,多数氢气循环装置对进入其中的液态水有严格限制,要求氢气回路中液态水进入氢气循环装置之前应尽可能脱除。
因此,亟需一种能够减少进入氢气循环装置的液态水的燃料电池的动力系统。
发明内容
本申请的主要目的在于提供一种燃料电池的动力系统与交通工具,以解决现有技术中的动力系统的氢气循环装置中存在较多的液态水的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种燃料电池的动力系统,该动力系统包括:电池堆,包括阴极与阳极,上述阳极的入口与上述阳极的出口通过阳极气体循环管路连通;阴极气体供给装置,与上述阴极的入口连通;阳极气体供给装置,与上述阳极的入口连通;冷却装置,设置在上述阳极气体循环管路上,用于对由上述阳极输出的阳极尾气进行降温,使得上述阳极尾气中的至少部分水蒸气液化;阳极气体动力装置,设置在上述冷却装置与上述阳极的入口之间的上述阳极气体循环管路上。
进一步地,上述动力系统还包括:排液装置,与上述冷却装置和上述阳极气体动力装置之间的上述阳极气体循环管路连通,用于将上述阳极气体循环管路中的冷凝液排出。
进一步地,上述阴极气体供给装置包括:阴极气体源设备,通过阴极气体输送管路与上述阴极的入口连通;阴极气体动力设备,设置在上述阴极气体输送管路上;加湿器,设置在上述阴极气体输送管路上且位于上述阴极气体动力设备的下游,用于对上述阴极气体动力设备输出的阴极气体进行加湿。
进一步地,上述动力系统还包括:阴极尾气输送管路,与上述阴极的出口连通,上述阴极尾气输送管路穿过上述加湿器以对上述阴极气体进行加湿。
进一步地,上述冷却装置为换热器,上述阴极尾气输送管路在经过上述加湿器后,穿过上述冷却装置以对上述阳极尾气进行降温。
进一步地,上述阳极气体供给装置包括:阳极气体源设备,通过阳极气体输送管路与上述阳极的入口连通;减压计量装置,设置在上述阳极气体输送管路上。
进一步地,上述冷却装置为换热器,上述减压计量装置与上述阳极的入口之间的上述阳极气体输送管路穿过上述冷却装置,以对上述阳极尾气进行降温。
进一步地,上述动力系统还包括:吹扫装置,与上述阳极的出口连通,上述吹扫装置用于定时去除由上述阳极输出的上述阳极尾气。
进一步地,上述动力系统还包括:散热装置,与上述电池堆连接,用于对上述电池堆进行散热。
进一步地,上述电池堆包括冷却介质入口与冷却介质出口,上述散热装置包括:冷却介质循环管路,连接设置在上述冷却介质入口和上述冷却介质出口之间;冷却介质动力设备,设置在上述冷却介质循环管路上;散热设备,设置在上述冷却介质循环管路上,且位于上述冷却介质动力设备和上述冷却介质入口之间。
为了实现上述目的,根据本申请的另一个方面,提供了一种交通工具,该交通工具包括动力系统,该动力系统为任一项上述的动力系统。
应用本申请的技术方案,在阳极尾气进入氢气循环装置之前,对其进行降温冷却,使得阳极尾气循环回路脱除至少部分水分,进而减少了进入氢气循环装置中的液态水,从而提高氢气循环装置的使用寿命与使用安全性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中的一种燃料电池的动力系统的结构示意图;
图2示出了本申请的一种典型实施方式提供的燃料电池的动力系统的结构示意图;
图3示出了本申请的实施例1提供的燃料电池的动力系统的结构示意图;以及
图4示出了本申请的实施例2提供的燃料电池的动力系统的结构示意图。
其中,上述附图包括以下附图标记:
01'、电池堆;02'、输送设备;03'、加湿器;04'、高压储气瓶;05'、减压计量装置;06'、氢气循环装置;08'、动力设备;09'、散热设备;01、电池堆;02、阴极气体动力设备;03、加湿器;04、阳极气体源设备;05、减压计量装置;06、阳极气体动力装置;07、吹扫装置;08、冷却介质动力设备;09、散热设备;10、冷却装置;11、排液装置。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中的燃料电池的动力系统中,氢气循环装置中存在较多的液态水。为了解决如上的技术问题,本申请提出了一种燃料电池的动力系统与交通工具。
本申请的一种典型的实施方式中,提供了一种燃料电池的动力系统,如图2所示,该动力系统包括电池堆01、阴极气体供给装置、阳极气体供给装置、冷却装置10与阳极气体动力装置06,其中,电池堆包括阴极与阳极,上述阳极的入口与上述阳极的出口通过阳极气体循环管路连通;阴极气体供给装置与上述阴极的入口连通,用于向上述阴极提供阴极气体;阳极气体供给装置与上述阳极的入口连通,用于向上述阳极提供阳极气体;冷却装置10设置在上述阳极气体循环管路上,用于对由上述阳极输出的阳极尾气进行降温,使得上述阳极尾气中的至少部分水蒸气液化;阳极气体动力装置06设置在上述冷却装置10与上述阳极的入口之间的上述阳极气体循环管路上,上述阳极气体动力装置06用于将降温后的上述阳极尾气输送至上述阳极。
上述的动力系统中,在阳极尾气进入氢气循环装置之前,先对其进行降温,使得阳极尾气至少有部分气态水变为液态水,进而减少了阳极尾气中的水气,减少了液态水的来源,从而减少了进入氢气循环装置中的液态水,进而提高氢气循环装置的使用寿命与使用安全性。
本申请中可以采用任何的冷源装置与冷却装置连通,以对阳极尾气进行降温。本领域技术人员可以根据实际情况选择合适的冷源装置与冷却装置连通。
本申请的一种实施例中,上述的阴极气体为空气,阳极气体为氢气,当然,并不限于上述的气体,本领域技术人员可以根据实际情况选择合适的阳极气体与阴极气体,比如,将氧气作为阴极气体。
为了将阳极气体循环管路中的液态水排出,进一步保证进入阳极气体动力装置中的阳极尾气中的液态水较少,如图2至图4所示,本申请的一种实施例中,上述动力系统还包括排液装置11,排液装置11与上述冷却装置10和上述阳极气体动力装置06之间的上述阳极气体循环管路连通,用于将上述阳极气体循环管路中的冷凝液排出。
本申请的一种实施例中,如图2至图4所示,上述阴极气体供给装置包括阴极气体源设备、阴极气体动力设备02与加湿器03,阴极气体源设备通过阴极气体输送管路与上述阴极的入口连通;阴极气体动力设备02设置在上述阴极气体输送管路上,用于给阴极气体提供动力,使其能够由阴极气体源设备经过加湿器03进入上述电池堆的阴极中;加湿器03设置在上述阴极气体输送管路上且位于上述阴极气体动力设备02的下游,用于对上述阴极气体动力设备02输出的阴极气体进行加湿,以进一步提高燃料电池的效率。
本申请中的阴极气体供给装置并不限于上述的结构,本领域技术人员可以根据实际情况选择合适结构的阴极气体供给装置,例如,包括阴极气体动力设备02与加湿器03的阴极气体供给装置,该装置不需要阴极气体源设备,阴极气体动力设备02将收集来的阴极气体通过阴极气体输送管路经过加湿器输送到阴极中。
为了更好地利用阴极出口输出的阴极尾气,本申请的一种实施例中,如图2至图4所示,上述动力系统还包括阴极尾气输送管路,阴极尾气输送管路与上述阴极的出口连通,上述阴极尾气输送管路穿过上述加湿器03以对上述阴极气体进行加湿。
具体地,加湿器03包括第一冷源入口、第一热源入口、第一冷源出口与第一热源出口,阴极气体输送管路通过第一冷源入口进入加湿器03中,阴极尾气输送管路通过上述第一热源入口进入加湿器03中,二者进行换热,降温后的阴极尾气经过第一热源出口排出,升温后的阴极气体经上述第一冷源出口进入上述阴极。
本申请的另一种实施例中,如图3所示,上述冷却装置10为换热器,上述阴极尾气输送管路在经过上述加湿器03后,穿过上述冷却装置10,以对上述阳极尾气进行降温。这样对经过加湿器降温后的阴极尾气再次利用,使其对阳极尾气进行降温,进一步提高了动力系统的废热利用率。
具体地,上述冷却装置10包括第二冷源入口、第二热源入口、第二冷源出口与第二热源出口,穿出加湿器03的阴极尾气输出管路经过上述第二冷源入口进入冷却装置10,阳极气体循环管路经过上述第二热源入口进入冷却装置,阴极尾气与阳极尾气进行换热,换热后的阳极尾气经过上述第二热源出口输出,升温后的阴极尾气经上述第二冷源出口排出动力系统。
为了进一步确保将一定重量或体积的阳极气体输送到电池堆中,如图2至图4所示,本申请的一种实施例中,上述阳极气体供给装置包括阳极气体源设备04与减压计量装置05,阳极气体源设备04通过阳极气体输送管路与上述阳极的入口连通,上述阳极气体源设备用于存储阳极气体;减压计量装置05,设置在上述阳极气体输送管路上,用于对上述阳极气体进行减压并计量。
本申请中的一种实施例中,上述阳极气体源设备04为高压储气瓶。
本申请的再一种实施例中,如图4所示,上述冷却装置10为换热器,上述减压计量装置05与上述阳极的入口之间的上述阳极气体输送管路穿过上述冷却装置10,以对上述阳极尾气进行降温。
具体地,如图4所示,阳极气体输送管路经过第二冷源入口进入冷却装置10中,阳极气体输送管路中的阳极气体对阳极尾气进行降温,降温后的上述阳极尾气经过上述第二热源出口进入上述阳极气体动力装置06,升温后的上述氢气经过上述第二冷源出口进入上述阳极中。
为了避免阳极尾气中的杂质以及水气过多,本申请的一种实施例中,如图2至图4所示,上述动力系统还包括吹扫装置07,吹扫装置07与上述阳极出口连通,上述吹扫装置07用于定时去除由上述阳极出口输出的上述阳极尾气。一种具体的实施例中,上述吹扫装置07通过管路与阳极气体循环管路连通,即图2至图4所示的情况。
为了及时地对电池堆进行降温,保证电池堆的效率,本申请的一种实施例中,上述动力系统还包括散热装置,散热装置与上述电池堆01连接,用于对上述电池堆01进行散热。
本申请的又一种实施例中,上述电池堆包括冷却介质入口与冷却介质出口,如图2至图4所示,上述散热装置包括冷却介质循环管路(图中未示出)、冷却介质动力设备08与散热设备09,连接设置在上述冷却介质入口和上述冷却介质出口之间;冷却介质动力设备08设置在上述冷却介质循环管路上,用于给冷却介质提供动力,将冷却介质经冷却介质入口输送到电池堆中,冷却介质携带电池堆中的热量经电池堆中的流道到冷却介质出口处,经过冷却介质循环管路到达散热设备中;散热设备09设置在上述冷却介质循环管路上,且位于上述冷却介质动力设备08和上述冷却介质入口之间,散热设备09用于对由冷却介质出口输出的冷却介质降温,降温后的冷却介质又输送到冷却介质动力设备08中,经过冷却介质动力设备将冷却介质经冷却介质入口再输送至电池堆中。
本申请的再一种实施例中,上述冷却装置10为换热器。当然,本申请中的冷却装置并不限于换热器,本领域技术人员可以根据实际情况选择合适的设备作为冷却装置。
本申请的另一种典型的实施方式中,提供了一种交通工具,该交通工具包括动力系统,该动力系统为任一项上述的动力系统。
该交通工具由于具有上述的动力系统,能够更好地运行。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案。
实施例1
燃料电池的动力系统的具体结构如图3所示,阳极气体为氢气,阴极气体为氧气,且冷却装置10为换热器,该阴极气体供给装置不包括阴极气体源设备,阳极气体源设备04为高压储气瓶。该燃料电池的动力系统的工作过程具体包括:
电池堆01电化学反应所需的空气由阴极气体动力设备02提供动力进入加湿器03,被阴极尾气加湿升温后进入阴极,阴极尾气与空气在加湿器03中完成传热传质后进入换热器。
来自高压储气瓶的氢气通过减压计量装置05后进入阳极,阳极反应后的阳极尾气先进入换热器中,经阴极尾气冷却后通过阳极气体动力装置06输送循环进入电池堆01的阳极,此过程循环回路的冷凝液通过排液装置11排出;
在阳极的出口与吹扫装置07连通,以便定时定量进行阳极杂质气体与水气的排放。电池堆01电化学反应过程产生的热量由冷却介质动力设备08输送的冷却介质穿过电池堆01带出热量后经过冷却介质出口进入散热设备09,完成热量平衡,冷却介质在散热设备09降温后又循环经冷却介质入口进入电池堆01。
实施例2
燃料电池的动力系统的具体结构如图4所示,阳极气体为氢气,阴极气体为氧气,且冷却装置10为换热器,该阴极气体供给装置不包括阴极气体源设备,阳极气体源设备04为高压储气瓶。该燃料电池的动力系统的工作过程具体包括:
电池堆01电化学反应所需的空气由阴极气体动力设备02提供动力进入加湿器03,被阴极尾气加湿升温后进入阴极,阴极尾气与空气在加湿器03中完成传热传质后进入换热器。
来自高压储气瓶的氢气通过减压计量装置05后,先作为冷源进入换热器,换热后的氢气再进入阳极。
阳极反应后的氢气尾气先进入换热器中,经氢气降温后通过阳极气体动力装置06输送循环进入电池堆01的阳极,此过程循环回路的冷凝液通过排液装置11排出。
在阳极的出口与吹扫装置07连通,以便定时定量进行阳极杂质气体排放与阳极水气的排放。
电池堆01电化学反应过程产生的热量由冷却介质动力设备08输送的冷却介质穿过电池堆01带出热量后经过冷却介质出口进入散热设备09,完成热量平衡,冷却介质在散热设备09降温后又循环经冷却介质入口进入电池堆01。
上述两个动力系统均可以实现较好的水气管理,避免过多的液态水进入阳极气体动力装置,并且该动力系统中通过冷却介质循环管路以及散热装置较好地实现了对电池堆中的热量平衡,保证了电池堆具有较高的反应效率。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的动力系统中,在阳极尾气进入氢气循环装置之前,先对其进行降温,使得阳极尾气至少有部分气态水变为液态水,进而减少了阳极尾气中的水气,减少了液态水的来源,从而减少了进入氢气循环装置中的液态水,进而提高氢气循环装置的使用寿命与使用安全性。
2)、本申请的交通工具由于具有上述的动力系统,能够更好地运行。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

1.一种燃料电池的动力系统,其特征在于,所述动力系统包括:
电池堆(01),包括阴极与阳极,所述阳极的入口与所述阳极的出口通过阳极气体循环管路连通;
阴极气体供给装置,与所述阴极的入口连通;
阳极气体供给装置,与所述阳极的入口连通;
冷却装置(10),设置在所述阳极气体循环管路上,用于对由所述阳极输出的阳极尾气进行降温,使得所述阳极尾气中的至少部分水蒸气液化;以及
阳极气体动力装置(06),设置在所述冷却装置(10)与所述阳极的入口之间的所述阳极气体循环管路上。
2.根据权利要求1所述的动力系统,其特征在于,所述动力系统还包括:
排液装置(11),与所述冷却装置(10)和所述阳极气体动力装置(06)之间的所述阳极气体循环管路连通,用于将所述阳极气体循环管路中的冷凝液排出。
3.根据权利要求1所述的动力系统,其特征在于,所述阴极气体供给装置包括:
阴极气体源设备,通过阴极气体输送管路与所述阴极的入口连通;
阴极气体动力设备(02),设置在所述阴极气体输送管路上;以及
加湿器(03),设置在所述阴极气体输送管路上且位于所述阴极气体动力设备(02)的下游,用于对所述阴极气体动力设备(02)输出的阴极气体进行加湿。
4.根据权利要求3所述的动力系统,其特征在于,所述动力系统还包括:
阴极尾气输送管路,与所述阴极的出口连通,所述阴极尾气输送管路穿过所述加湿器(03)以对所述阴极气体进行加湿。
5.根据权利要求4所述的动力系统,其特征在于,所述冷却装置(10)为换热器,所述阴极尾气输送管路在经过所述加湿器(03)后,穿过所述冷却装置(10)以对所述阳极尾气进行降温。
6.根据权利要求1所述的动力系统,其特征在于,所述阳极气体供给装置包括:
阳极气体源设备(04),通过阳极气体输送管路与所述阳极的入口连通;以及
减压计量装置(05),设置在所述阳极气体输送管路上。
7.根据权利要求6所述的动力系统,其特征在于,所述冷却装置(10)为换热器,所述减压计量装置(05)与所述阳极的入口之间的所述阳极气体输送管路穿过所述冷却装置(10),以对所述阳极尾气进行降温。
8.根据权利要求1所述的动力系统,其特征在于,所述动力系统还包括:
吹扫装置(07),与所述阳极的出口连通,所述吹扫装置(07)用于定时去除由所述阳极输出的所述阳极尾气。
9.根据权利要求8所述的动力系统,其特征在于,所述动力系统还包括:
散热装置,与所述电池堆(01)连接,用于对所述电池堆(01)进行散热。
10.根据权利要求9所述的动力系统,其特征在于,所述电池堆包括冷却介质入口与冷却介质出口,所述散热装置包括:
冷却介质循环管路,连接设置在所述冷却介质入口和所述冷却介质出口之间;
冷却介质动力设备(08),设置在所述冷却介质循环管路上;以及
散热设备(09),设置在所述冷却介质循环管路上,且位于所述冷却介质动力设备(08)和所述冷却介质入口之间。
11.一种交通工具,包括动力系统,其特征在于,所述动力系统为权利要求1至10中任一项所述的动力系统。
CN201710386819.XA 2017-05-26 2017-05-26 燃料电池的动力系统与交通工具 Pending CN107248582A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710386819.XA CN107248582A (zh) 2017-05-26 2017-05-26 燃料电池的动力系统与交通工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710386819.XA CN107248582A (zh) 2017-05-26 2017-05-26 燃料电池的动力系统与交通工具

Publications (1)

Publication Number Publication Date
CN107248582A true CN107248582A (zh) 2017-10-13

Family

ID=60016757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710386819.XA Pending CN107248582A (zh) 2017-05-26 2017-05-26 燃料电池的动力系统与交通工具

Country Status (1)

Country Link
CN (1) CN107248582A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447993A (zh) * 2000-06-13 2003-10-08 洁能氏公司 质子交换膜燃料电池的阳极侧中的水回收
CN1522476A (zh) * 2001-06-01 2004-08-18 UTCȼ�ϵ�����޹�˾ 用于氢气-空气燃料电池系统的关闭程序
CN102640342A (zh) * 2009-07-09 2012-08-15 丰田自动车株式会社 燃料电池系统以及燃料电池系统的运行方法
CN103178278A (zh) * 2011-12-23 2013-06-26 现代摩比斯株式会社 氢气液滴防止装置及应用该装置的燃料电池车
CN104409750A (zh) * 2014-10-28 2015-03-11 航天新长征电动汽车技术有限公司 一种燃料电池尾气循环系统
CN106058284A (zh) * 2016-06-22 2016-10-26 清华大学 再循环燃料电池系统
CN205900704U (zh) * 2016-08-19 2017-01-18 上海汽车集团股份有限公司 燃料电池的排氢系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447993A (zh) * 2000-06-13 2003-10-08 洁能氏公司 质子交换膜燃料电池的阳极侧中的水回收
CN1522476A (zh) * 2001-06-01 2004-08-18 UTCȼ�ϵ�����޹�˾ 用于氢气-空气燃料电池系统的关闭程序
CN102640342A (zh) * 2009-07-09 2012-08-15 丰田自动车株式会社 燃料电池系统以及燃料电池系统的运行方法
CN103178278A (zh) * 2011-12-23 2013-06-26 现代摩比斯株式会社 氢气液滴防止装置及应用该装置的燃料电池车
CN104409750A (zh) * 2014-10-28 2015-03-11 航天新长征电动汽车技术有限公司 一种燃料电池尾气循环系统
CN106058284A (zh) * 2016-06-22 2016-10-26 清华大学 再循环燃料电池系统
CN205900704U (zh) * 2016-08-19 2017-01-18 上海汽车集团股份有限公司 燃料电池的排氢系统

Similar Documents

Publication Publication Date Title
CN213988943U (zh) 一种含氢-空热交换器的燃料电池热管理系统
CN104733748B (zh) 一种中高温燃料电池集成运行系统
CN103000233B (zh) 核电站被动式冷却系统
US9537193B2 (en) Fuel cell system
JP3823181B2 (ja) 燃料電池用発電システム及び発電システムの廃熱再循環冷却システム
CN101529632A (zh) 用于气体分配系统的燃料电池混合发电系统和方法
CN104835976A (zh) 一种利用相变冷却的燃料电池散热系统
CN105576269A (zh) 一种固定式的微型燃料电池热电联产装置的热控制系统
CN106252693A (zh) 电池系统
CN113540502A (zh) 一种基于氢气蒸发气的燃料电池余热发电系统
JP2010257644A (ja) 燃料電池システムの制御方法
CN106299412A (zh) 一种氢储能系统中的热控制系统及应用
Chabane et al. Coupling a metal hydride tank with a PEMFC for vehicular applications: A simulations framework
CN105914386A (zh) 一种在线供氢风冷燃料电池系统
CN107394230A (zh) 采用燃料电池的动力系统及具有其的整车系统
CN113067014B (zh) 用于氢燃料电池的氢气循环供应方法
CN107195924A (zh) 燃料电池系统、其控制方法及包括其的交通工具
Ajayan et al. Implementation of firefly algorithm in optimal sizing of proton exchange membrane fuel cell–battery hybrid locomotive
CN107331880A (zh) 燃料电池的动力系统与交通工具
CN107195928A (zh) 加湿装置及具有其的燃料电池动力系统
CN107394231A (zh) 采用燃料电池的动力系统及具有其的整车系统
CN107248582A (zh) 燃料电池的动力系统与交通工具
CN109713337B (zh) 直接甲醇燃料电池与锂离子电池混合输出装置和输出方法
CN204668398U (zh) 一种利用相变冷却的燃料电池散热系统
CN107230794A (zh) 燃料电池的动力系统与交通工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171013