CN107331880A - 燃料电池的动力系统与交通工具 - Google Patents
燃料电池的动力系统与交通工具 Download PDFInfo
- Publication number
- CN107331880A CN107331880A CN201710385349.5A CN201710385349A CN107331880A CN 107331880 A CN107331880 A CN 107331880A CN 201710385349 A CN201710385349 A CN 201710385349A CN 107331880 A CN107331880 A CN 107331880A
- Authority
- CN
- China
- Prior art keywords
- gas
- dynamical system
- anode
- anodic
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005183 dynamical system Methods 0.000 title claims abstract description 64
- 239000000446 fuel Substances 0.000 title claims abstract description 33
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 239000002826 coolant Substances 0.000 claims description 63
- 230000017525 heat dissipation Effects 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 2
- 239000007789 gas Substances 0.000 description 184
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000003487 electrochemical reaction Methods 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- 230000006837 decompression Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本申请提供了一种燃料电池的动力系统与交通工具。该动力系统包括:电池堆,包括阴极与阳极,阳极的入口与阳极的出口通过阳极气体循环管路连通;阴极气体供给装置,与阴极的入口连通;阳极气体供给装置,与阳极的入口连通;阳极气体动力装置,设置在阳极气体循环管路上;冷却装置,设置在阳极气体动力装置与阳极的入口之间的阳极气体循环管路上,用于对由阳极气体动力装置输出的阳极尾气进行降温。该动力系统中,在阳极气体动力装置的下游设置冷却装置,该冷却装置对阳极气体动力装置输出的阳极尾气进行降温,进而避免了进入电池堆的阳极气体过于干燥,保证了电池堆的性能。
Description
技术领域
本申请涉及燃料电池领域,具体而言,涉及一种燃料电池的动力系统与交通工具。
背景技术
燃料电池汽车(FCV)是一种用车载燃料电池装置产生的电能作为动力的汽车。目前,广泛应用于燃料电池汽车的是质子交换膜燃料电池(PEMFC)。
质子交换膜燃料电池汽车的工作原理为:燃料阳极气体沿燃料电池电池堆阳极板流道分配在膜电极的阳极侧,在阳极催化剂的作用下解离成电子和质子,电子经外电路到达阴极,质子直接穿过膜电极到达阴极,与阴极反应气体中的阴极气体反应生成水。此过程的产物为电能、热和水。其中电能带动电动机工作,电动机再带动汽车中的机械传动结构,进而带动汽车的前桥(或后桥)等行走机械结构工作,从而驱动电动汽车前进。热和水通过热交换装置直接排放或综合利用。
目前,对于功率等级较大的质子交换膜燃料电池车用动力系统,为了降低系统散热负荷,保证较高的电池堆反应温度,通常空气需要进行外部加湿,外部加湿一般采用气/气型加湿方式,即利用电池堆阴极反应尾气(COG)中的热量和气态水对阴极进堆空气进行加湿。同时为了提高阳极气体利用率及系统使用安全性,燃料供给系统一般采用阳极气体循环方式。
图1为质子交换膜燃料电池车用动力系统的简化结构图,其主要包含空气供给、氢气供给与冷却水循环三个回路,电池堆01'电化学反应所需的空气由输送设备02'提供动力进入加湿器03'被电池堆阴极反应尾气加湿升温后进入阴极,阴极尾气与空气在加湿器中完成传热传质后的废气直接排放;来自高压储气瓶04'的氢气通过减压计量装置05'后进入阳极,阳极侧反应后的阳极尾气通过氢气循环装置06'输送又循环进入电池堆。电池堆电化学反应过程产生的热量由冷却水循环回路带出,冷却水循环回路上设置有冷却介质的动力设备08'与散热装置09',电池堆电化学反应过程产生的热量由动力设备08'输送的冷却介质穿过电池堆01'带出后进入散热装置09'完成热量平衡,冷却介质在散热装置降温后又进入电堆,完成一次循环将冷却介质输送至电池堆中。
上述的动力系统中,阳极尾气(主要为阳极气体)经过阳极气体动力装置后,温度会有一定的升高,尤其对于较高功率等级的系统而言,阳极尾气温升比较大,如果直接进入电池堆会造成电池堆入口处过于干燥,影响电池堆的性能。
因此,亟需一种能够降低进入电池堆的阳极尾气的温度的动力系统。
发明内容
本申请的主要目的在于提供一种燃料电池的动力系统与交通工具,以解决现有技术中的动力系统的经过阳极气体动力装置后的阳极尾气的温度较高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种燃料电池的动力系统,该动力系统包括:电池堆,包括阴极与阳极,上述阳极的入口与上述阳极的出口通过阳极气体循环管路连通;阴极气体供给装置,与上述阴极的入口连通;阳极气体供给装置,与上述阳极的入口连通;阳极气体动力装置,设置在上述阳极气体循环管路上;冷却装置,设置在上述阳极气体动力装置与上述阳极的入口之间的上述阳极气体循环管路上,用于对由上述阳极气体动力装置输出的阳极尾气进行降温。
进一步地,上述动力系统还包括:排液装置,与上述阳极的出口和上述阳极气体动力装置的入口之间的上述阳极气体循环管路连通,用于将上述阳极气体循环管路中的冷凝液排出。
进一步地,上述阴极气体供给装置包括:阴极气体源设备,通过阴极气体输送管路与上述阴极的入口连通;阴极气体动力设备,设置在上述阴极气体输送管路上;加湿器,设置在上述阴极气体输送管路上且位于上述阴极气体动力设备的下游,用于对上述阴极气体动力设备输出的阴极气体进行加湿。
进一步地,上述动力系统还包括:阴极尾气输送管路,与上述阴极的出口连通,上述阴极尾气输送管路穿过上述加湿器以对上述阴极气体进行加湿。
进一步地,上述冷却装置为换热器,上述阴极尾气输送管路在经过上述加湿器之前,穿过上述换热器以对上述阳极尾气进行降温。
进一步地,上述冷却装置为换热器,上述阴极尾气输送管路在经过上述加湿器之后,穿过上述换热器以对上述阳极尾气进行降温。
进一步地,上述动力系统还包括:散热装置,与上述电池堆连接,用于对上述电池堆进行散热。
进一步地,上述电池堆包括冷却介质入口与冷却介质出口,上述散热装置包括:冷却介质循环管路,连接设置在上述冷却介质入口和上述冷却介质出口之间;冷却介质动力设备,设置在上述冷却介质循环管路上;散热设备,设置在上述冷却介质循环管路上,且位于上述冷却介质动力设备和上述冷却介质入口之间。
进一步地,上述冷却装置为换热器,上述冷却介质动力设备与上述冷却介质入口之间的上述冷却介质循环管路穿过上述换热器,以对上述阳极尾气进行降温。
进一步地,上述动力系统还包括:吹扫装置,与上述阳极的出口连通,上述吹扫装置用于定时去除由上述阳极输出的上述阳极尾气。
为了实现上述目的,根据本申请的另一个方面,提供了一种交通工具,该交通工具包括动力系统,该动力系统为任一项上述的动力系统。
应用本申请的技术方案,在阳极气体动力装置的下游设置冷却装置,该冷却装置对阳极气体动力装置输出的阳极尾气进行降温,进而避免了进入电池堆的阳极气体过于干燥,保证了电池堆的性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中的一种燃料电池的动力系统的结构示意图;
图2示出了本申请的一种典型的实施方式提供的动力系统的结构示意图;
图3示出了本申请的实施例1提供的燃料电池的动力系统的结构示意图;
图4示出了本申请的实施例2提供的燃料电池的动力系统的结构示意图;以及
图5示出了本申请的实施例3提供的燃料电池的动力系统的结构示意图。
其中,上述附图包括以下附图标记:
01'、电池堆;02'、输送设备;03'、加湿器;04'、高压储气瓶;05'、减压计量装置;06'、氢气循环装置;08'、动力设备;09'、散热设备;01、电池堆;02、阴极气体动力设备;03、加湿器;04、阳极气体源设备;05、减压计量装置;06、阳极气体动力装置;07、吹扫装置;08、冷却介质动力设备;09、散热设备;10、冷却装置;11、排液装置。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术的燃料电池的动力系统中,经过阳极气体动力装置后的阳极尾气的温度较高,为了解决如上的技术问题,本申请提出了一种燃料电池的动力系统与交通工具。
本申请的一种典型的实施方式中,提供了一种燃料电池的动力系统,如图2所示,该动力系统包括电池堆01、阴极气体供给装置、阳极气体供给装置、冷却装置10与阳极气体动力装置06,其中,电池堆01包括阴极与阳极,上述阳极的入口与上述阳极的出口通过阳极气体循环管路连通;阴极气体供给装置与上述阴极的入口连通,用于向上述阴极提供阴极气体;阳极气体供给装置与上述阳极的入口连通,用于向上述阳极提供阳极气体;阳极气体动力装置06设置在上述阳极气体循环管路上,用于运输由阳极出口输出的阳极尾气;冷却装置10设置在上述阳极气体动力装置06与上述阳极的入口之间的上述阳极气体循环管路上,上述冷却装置10用于对由阳极气体动力装置06输出的上述阳极尾气进行降温。
上述的燃料电池的动力系统中,在阳极气体动力装置的下游设置冷却装置,该冷却装置对阳极气体动力装置输出的阳极尾气进行降温,从而提高了阳极尾气的湿度,进而避免了进入电池堆的阳极气体过于干燥,保证了电池堆具有良好的性能。
本申请中可以采用任何的冷源装置与冷却装置连通,以对阳极尾气进行降温。本申请的一种实施例中,上述的阴极气体为空气,阳极气体为氢气,当然,并不限于上述的气体,本领域技术人员可以根据实际情况选择合适的阳极气体与阴极气体,比如,将氧气作为阴极气体。
为了及时将阳极气体循环管路中的液态水排出,保证进入阳极气体动力装置中的阳极尾气中的液态水较少,进而保证阳极气体动力装置运行的安全性,如图2至图5所示,本申请的一种实施例中,上述动力系统还包括排液装置11,排液装置11与上述阳极的出口和上述阳极气体动力装置06之间的上述阳极气体循环管路连通,用于将上述阳极气体循环管路中的冷凝液排出。
本申请的一种实施例中,如图2至图5所示,上述阴极气体供给装置包括阴极气体源设备、阴极气体动力设备02与加湿器03,阴极气体源设备通过阴极气体输送管路与上述阴极的入口连通;阴极气体动力设备02设置在上述阴极气体输送管路上,用于给阴极气体提供动力,使其能够由阴极气体源设备经过加湿器03进入上述电池堆的阴极中;加湿器03设置在上述阴极气体输送管路上且位于上述阴极气体动力设备02的下游,用于对上述阴极气体动力设备02输出的阴极气体进行加湿,以进一步提高燃料电池的效率。
本申请中的阴极气体供给装置并不限于上述的结构,本领域技术人员可以根据实际情况选择合适结构的阴极气体供给装置,例如,包括阴极气体动力设备02与加湿器03的阴极气体供给装置,该装置不需要阴极气体源设备,阴极气体动力设备02将收集来的阴极气体通过阴极气体输送管路经过加湿器输送到阴极中。
为了更好地利用阴极出口输出的阴极尾气,本申请的一种实施例中,如图2至图5所示,上述动力系统还包括阴极尾气输送管路,阴极尾气输送管路与上述阴极的出口连通,上述阴极尾气输送管路穿过上述加湿器03以对上述阴极气体进行加湿。
本申请的另一种实施例中,如图3所示,在穿入上述加湿器03之前,上述阴极尾气输送管路还穿过上述冷却装置10以对上述阳极尾气进行降温。
本申请的再一种实施例中,如图4所示,上述冷却装置10为换热器,上述阴极尾气输送管路经过上述加湿器03后,还穿过上述冷却装置10,以对上述阳极尾气进行降温。这样对经过加湿器降温后的阴极尾气再次利用,使其对阳极尾气进行降温,进一步提高了动力系统的废热利用率。
为了及时地对电池堆进行降温,保证电池堆的效率,本申请的一种实施例中,上述动力系统还包括散热装置,散热装置与上述电池堆01连接,用于对上述电池堆01进行散热。
本申请的又一种实施例中,上述电池堆包括冷却介质入口与冷却介质出口,如图2至图5所示,上述散热装置包括冷却介质循环管路(图中未示出)、冷却介质动力设备08与散热设备09,连接设置在上述冷却介质入口和上述冷却介质出口之间;冷却介质动力设备08设置在上述冷却介质循环管路上,用于给冷却介质提供动力,将冷却介质经冷却介质入口输送到电池堆中,冷却介质携带电池堆中的热量经电池堆中的流道到冷却介质出口处,经过冷却介质循环管路到达散热设备中;散热设备09设置在上述冷却介质循环管路上,且位于上述冷却介质动力设备08和上述冷却介质入口之间,散热设备09用于对由冷却介质出口输出的冷却介质降温,降温后的冷却介质又输送到冷却介质动力设备08中,经过冷却介质动力设备将冷却介质经冷却介质入口再输送至电池堆中。
为了更好地利用上述冷却介质,如图5所示,本申请的一种实施例中,上述冷却装置10为换热器,上述冷却介质动力设备08与上述冷却介质入口之间的上述冷却介质循环管路穿过上述冷却装置10,以对上述阳极尾气进行降温。
当然,本申请中的冷却装置并不限于换热器,本领域技术人员可以根据实际情况选择合适的设备作为冷却装置。
为了避免阳极尾气中的杂质以及水气过多,本申请的一种实施例中,如图2至图5所示,上述动力系统还包括吹扫装置07,吹扫装置07与上述阳极出口连通,上述吹扫装置07用于定时去除由上述阳极出口输出的上述阳极尾气。一种具体的实施例中,上述吹扫装置07通过管路与阳极气体循环管路连通,即图2至图5所示的情况。
为了进一步确保将一定重量或体积的阳极气体输送到电池堆中,如图2至图5所示,本申请的一种实施例中,上述阳极气体供给装置包括阳极气体源设备04与减压计量装置05,阳极气体源设备04通过阳极气体输送管路与上述阳极的入口连通,上述阳极气体源设备用于存储阳极气体;减压计量装置05,设置在上述阳极气体输送管路上,用于对上述阳极气体进行减压并计量。
本申请中的一种实施例中,上述阳极气体源设备04为高压储气瓶。
本申请的另一种典型的实施方式中,提供了一种交通工具,该交通工具包括动力系统,该动力系统为任一项上述的动力系统。
该交通工具由于具有上述的动力系统,能够更好地运行。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案。
实施例1
燃料电池的动力系统的具体结构如图3所示,阳极气体为阳极气体,阴极气体为氧气,且冷却装置10为换热器,该阴极气体供给装置不包括阴极气体源设备,阳极气体源设备04为高压储气瓶。该燃料电池的动力系统的工作过程具体包括:
电池堆01电化学反应所需的空气由阴极气体动力设备02提供动力进入加湿器03中,被电池堆01阴极尾气加湿升温后进入电池堆01的阴极,阴极尾气与空气在加湿器中完成传热传质后的废气直接排放,在阴极尾气进入加湿器03之前,阴极尾气先经过换热器与阳极尾气换热。
来自高压储气瓶的氢气通过减压计量装置05后进入电池堆01的阳极,阳极反应后的阳极尾气通过阳极气体动力装置06输送先进入换热器降温,再进入电池堆01。此过程循环回路的冷凝液通过排液装置11排出。
阳极的出口与吹扫装置07连通,以便定时定量进行阳极杂质气体排放与阳极气水的排放。
电池堆01电化学反应过程产生的热量由冷却介质动力设备08输送的冷却介质穿过电池堆01带出热量后,进入散热设备09完成热量平衡,冷却介质在散热设备降温后又循环进入电池堆01。
实施例2
燃料电池的动力系统的具体结构如图4所示,阳极气体为阳极气体,阴极气体为氧气,且冷却装置10为换热器,该阴极气体供给装置不包括阴极气体源设备,阳极气体源设备04为高压储气瓶。该燃料电池的动力系统的工作过程具体包括:
电池堆01电化学反应所需的阴极气体动力设备02提供动力进入加湿器03中,被阴极尾气加湿升温后进入电池堆01的阴极。
与空气在加湿器03中完成传热传质后的阴极尾气进入换热器中,对阳极尾气进行降温。
来自高压储气瓶的氢气通过减压计量装置05后进入电池堆01阳极侧,反应后的阳极尾气通过阳极气体动力装置06输送循环,先进入换热器降温后再进入电池堆01,此过程循环回路的冷凝液通过排液装置11排出。
在阳极出口阳极气体管路设置了吹扫装置07,以便定时定量进行阳极杂质气体排放与阳极气水的排放。
电池堆01电化学反应过程产生的热量由冷却介质动力设备08输送的冷却介质穿过电池堆01带出热量后进入散热设备09完成热量平衡,冷却介质在散热设备降温后又循环进入电池堆01。
实施例3
燃料电池的动力系统的具体结构如图5所示,阳极气体为阳极气体,阴极气体为氧气,且冷却装置10为换热器,该阴极气体供给装置不包括阴极气体源设备,阳极气体源设备04为高压储气瓶。该燃料电池的动力系统的工作过程具体包括:
电池堆01电化学反应所需的空气由阴极气体动力设备02提供动力进入加湿器03中,被电池堆01阴极尾气加湿升温后进入电池堆01的阴极,阴极尾气与阴极气体在加湿器中完成传热传质后的废气直接排放。
来自高压储气瓶的氢气通过减压计量装置05后进入电池堆01阳极,阳极反应后的阳极尾气通过阳极气体动力装置06输送先进入换热器降温,再进入电池堆01,此过程循环回路的冷凝液通过排液装置11排出。
在阳极的出口与吹扫装置07连通,以便定时定量进行阳极杂质气体排放与阳极气水的排放。
电池堆01冷却介质出堆后经过散热设备09后由冷却介质动力设备08输送进入换热器对阳极尾气进行降温后循环进入电池堆01。
上述三个动力系统均可以对由阳极气体动力装置输出的阳极尾气进行降温,避免电池堆入口处过于干燥,并且该动力系统中通过冷却介质循环管路以及散热装置较好地实现了对电池堆中的热量平衡,保证了电池堆具有较高的反应效率。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的动力系统中,在阳极气体动力装置的下游设置冷却装置,该冷却装置对阳极气体动力装置输出的阳极尾气进行降温,进而避免了进入电池堆的阳极气体过于干燥,保证了电池堆的性能。
2)、本申请的交通工具由于具有上述的动力系统,能够更好地运行。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (11)
1.一种燃料电池的动力系统,其特征在于,所述动力系统包括:
电池堆(01),包括阴极与阳极,所述阳极的入口与所述阳极的出口通过阳极气体循环管路连通;
阴极气体供给装置,与所述阴极的入口连通;
阳极气体供给装置,与所述阳极的入口连通;
阳极气体动力装置(06),设置在所述阳极气体循环管路上;以及
冷却装置(10),设置在所述阳极气体动力装置(06)与所述阳极的入口之间的所述阳极气体循环管路上,用于对由所述阳极气体动力装置(06)输出的阳极尾气进行降温。
2.根据权利要求1所述的动力系统,其特征在于,所述动力系统还包括:
排液装置(11),与所述阳极的出口和所述阳极气体动力装置(06)的入口之间的所述阳极气体循环管路连通,用于将所述阳极气体循环管路中的冷凝液排出。
3.根据权利要求1所述的动力系统,其特征在于,所述阴极气体供给装置包括:
阴极气体源设备,通过阴极气体输送管路与所述阴极的入口连通;
阴极气体动力设备(02),设置在所述阴极气体输送管路上;以及
加湿器(03),设置在所述阴极气体输送管路上且位于所述阴极气体动力设备(02)的下游,用于对所述阴极气体动力设备(02)输出的阴极气体进行加湿。
4.根据权利要求3所述的动力系统,其特征在于,所述动力系统还包括:
阴极尾气输送管路,与所述阴极的出口连通,所述阴极尾气输送管路穿过所述加湿器(03)以对所述阴极气体进行加湿。
5.根据权利要求4所述的动力系统,其特征在于,所述冷却装置(10)为换热器,所述阴极尾气输送管路在经过所述加湿器(03)之前,穿过所述换热器以对所述阳极尾气进行降温。
6.根据权利要求4所述的动力系统,其特征在于,所述冷却装置(10)为换热器,所述阴极尾气输送管路在经过所述加湿器(03)之后,穿过所述换热器以对所述阳极尾气进行降温。
7.根据权利要求3所述的动力系统,其特征在于,所述动力系统还包括:
散热装置,与所述电池堆(01)连接,用于对所述电池堆(01)进行散热。
8.根据权利要求7所述的动力系统,其特征在于,所述电池堆包括冷却介质入口与冷却介质出口,所述散热装置包括:
冷却介质循环管路,连接设置在所述冷却介质入口和所述冷却介质出口之间;
冷却介质动力设备(08),设置在所述冷却介质循环管路上;以及
散热设备(09),设置在所述冷却介质循环管路上,且位于所述冷却介质动力设备(08)和所述冷却介质入口之间。
9.根据权利要求8所述的动力系统,其特征在于,所述冷却装置(10)为换热器,所述冷却介质动力设备(08)与所述冷却介质入口之间的所述冷却介质循环管路穿过所述换热器,以对所述阳极尾气进行降温。
10.根据权利要求1至9中任一项所述的动力系统,其特征在于,所述动力系统还包括:
吹扫装置(07),与所述阳极的出口连通,所述吹扫装置(07)用于定时去除由所述阳极输出的所述阳极尾气。
11.一种交通工具,包括动力系统,其特征在于,所述动力系统为权利要求1至10中任一项所述的动力系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710385349.5A CN107331880B (zh) | 2017-05-26 | 2017-05-26 | 燃料电池的动力系统与交通工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710385349.5A CN107331880B (zh) | 2017-05-26 | 2017-05-26 | 燃料电池的动力系统与交通工具 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107331880A true CN107331880A (zh) | 2017-11-07 |
CN107331880B CN107331880B (zh) | 2020-09-04 |
Family
ID=60193947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710385349.5A Active CN107331880B (zh) | 2017-05-26 | 2017-05-26 | 燃料电池的动力系统与交通工具 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107331880B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110661020A (zh) * | 2019-11-05 | 2020-01-07 | 大连依勒斯涡轮增压技术有限公司 | 一种燃料电池的空气系统 |
CN111446470A (zh) * | 2020-04-29 | 2020-07-24 | 珠海格力电器股份有限公司 | 一种燃料电池冷却系统、氢燃料电池及氢燃料电池发动机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409750A (zh) * | 2014-10-28 | 2015-03-11 | 航天新长征电动汽车技术有限公司 | 一种燃料电池尾气循环系统 |
CN105552404A (zh) * | 2015-12-07 | 2016-05-04 | 中国东方电气集团有限公司 | 燃料电池系统与利用其供电的方法 |
CN205900704U (zh) * | 2016-08-19 | 2017-01-18 | 上海汽车集团股份有限公司 | 燃料电池的排氢系统 |
-
2017
- 2017-05-26 CN CN201710385349.5A patent/CN107331880B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409750A (zh) * | 2014-10-28 | 2015-03-11 | 航天新长征电动汽车技术有限公司 | 一种燃料电池尾气循环系统 |
CN105552404A (zh) * | 2015-12-07 | 2016-05-04 | 中国东方电气集团有限公司 | 燃料电池系统与利用其供电的方法 |
CN205900704U (zh) * | 2016-08-19 | 2017-01-18 | 上海汽车集团股份有限公司 | 燃料电池的排氢系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110661020A (zh) * | 2019-11-05 | 2020-01-07 | 大连依勒斯涡轮增压技术有限公司 | 一种燃料电池的空气系统 |
CN111446470A (zh) * | 2020-04-29 | 2020-07-24 | 珠海格力电器股份有限公司 | 一种燃料电池冷却系统、氢燃料电池及氢燃料电池发动机 |
Also Published As
Publication number | Publication date |
---|---|
CN107331880B (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Parametric analysis and optimization of PEMFC system for maximum power and efficiency using MOEA/D | |
CN104733748B (zh) | 一种中高温燃料电池集成运行系统 | |
CN213988943U (zh) | 一种含氢-空热交换器的燃料电池热管理系统 | |
US20060172176A1 (en) | Method and apparatus for thermal, mechanical, and electrical optimization of a solid-oxide fuel cell stack | |
CN107425210A (zh) | 一种质子交换膜燃料电池冷启动系统及工作方法 | |
JP2942999B2 (ja) | 溶融炭酸塩型燃料電池発電装置 | |
CN104835976A (zh) | 一种利用相变冷却的燃料电池散热系统 | |
CN107394230A (zh) | 采用燃料电池的动力系统及具有其的整车系统 | |
CN203674322U (zh) | 一种中高温燃料电池集成运行系统 | |
CN106252693A (zh) | 电池系统 | |
EP3869599A1 (en) | Reversible water electrolysis system and method for operating same | |
CN106099143A (zh) | 一种缓解电池水淹的燃料电池系统 | |
CN113571737A (zh) | 一种空冷电堆环境模拟测试系统及其控制方法 | |
CN109088082A (zh) | 一种金属堆燃料电池低温启动热控制系统及运行方法 | |
CN107331880A (zh) | 燃料电池的动力系统与交通工具 | |
CN105914386A (zh) | 一种在线供氢风冷燃料电池系统 | |
CN114744243B (zh) | 用于氢燃料电池的氢气循环供应方法 | |
Ajayan et al. | Implementation of firefly algorithm in optimal sizing of proton exchange membrane fuel cell–battery hybrid locomotive | |
CN107394231A (zh) | 采用燃料电池的动力系统及具有其的整车系统 | |
CN107195928A (zh) | 加湿装置及具有其的燃料电池动力系统 | |
CN107195924A (zh) | 燃料电池系统、其控制方法及包括其的交通工具 | |
CN204668398U (zh) | 一种利用相变冷却的燃料电池散热系统 | |
KR101300092B1 (ko) | 연료전지용 공기공급장치 및 이를 포함하는 연료전지시스템 | |
US20100285381A1 (en) | Method and apparatus for operating a fuel cell in combination with an orc system | |
CN107230794A (zh) | 燃料电池的动力系统与交通工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200821 Address after: 610097 No. 18 Xixin Avenue, Chengdu High-tech Zone, Sichuan Province Applicant after: Dongfang Electric (Chengdu) Hydrogen Fuel Cell Technology Co.,Ltd. Address before: 611731, No. 18, West core road, hi tech West District, Sichuan, Chengdu Applicant before: DONGFANG ELECTRIC Corp. |
|
TA01 | Transfer of patent application right |