CN107247127A - 考虑大气压的采空区自然发火模型试验平台及试验方法 - Google Patents

考虑大气压的采空区自然发火模型试验平台及试验方法 Download PDF

Info

Publication number
CN107247127A
CN107247127A CN201710517021.4A CN201710517021A CN107247127A CN 107247127 A CN107247127 A CN 107247127A CN 201710517021 A CN201710517021 A CN 201710517021A CN 107247127 A CN107247127 A CN 107247127A
Authority
CN
China
Prior art keywords
goaf
model
air
atmospheric pressure
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710517021.4A
Other languages
English (en)
Inventor
王刚
梁运涛
于贵生
唐辉
王帅
田佰征
侯炳超
柳东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCTEG China Coal Technology and Engineering Group Corp
Original Assignee
CCTEG China Coal Technology and Engineering Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCTEG China Coal Technology and Engineering Group Corp filed Critical CCTEG China Coal Technology and Engineering Group Corp
Priority to CN201710517021.4A priority Critical patent/CN107247127A/zh
Publication of CN107247127A publication Critical patent/CN107247127A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明涉及一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特点在于:控制系统由工控机分别电连接PLC、数据采集卡,PLC分别电连接各控制件、数据采集卡分别电连接气压计、各类传感器,模型系统由试验巷道侧设有试验硐室内的设施构成;同时公开了一种考虑大气压的采空区自然发火模型试验平台的试验方法。可实现对工作面倾角、风流温度、空气湿度环境条件的模拟,模型可靠,研究大气压力变化在不同环境参数下对采空区温度场分布影响提供了途径,可广泛用于矿井采空区自然发火模拟以及揭示大气压力变化对矿井采空区自然发火的影响规律的研究中,同时可获取自然发火产生气体浓度分布情况。

Description

考虑大气压的采空区自然发火模型试验平台及试验方法
技术领域
本发明涉及煤矿采空区自然发火相似物理模型试验技术,具体涉及一种考虑大气压的采空区自然发火模型试验平台及试验方法。
背景技术
煤炭是我国的主体能源,2016年全国煤炭生产和消费总量分别达到34.5亿吨与39亿吨,一次能源消费占比约为62.3%。由于煤层自然条件的限制,我国煤炭产量的90%依靠井工开采,受复杂煤层赋存与生产技术条件影响,我国煤矿受火灾影响较为严重,据统计,我国657处重点煤矿中,有煤层自然发火倾向的矿井数量占54.9%,最短自然发火期小于3个月的矿井数量占50%以上,自燃火灾严重影响了煤矿的安全生产。
井下采空区是矿井自燃火灾的多发区,火源多出现在采空区氧化带内,遗留松散煤体作为发火源,在采空区持续性漏风供氧作用下,氧化产生热量在煤岩体蓄热环境中积聚至着火点后发火。同时,采空区自然发火还易引发瓦斯、煤尘爆炸等次生灾害,严重威胁了井下作业人员生命财产安全。因此采取有效的研究手段,准确定位高温火源,消除自燃火灾隐患成为我国煤炭安全生产的当务之急。
物理模型试验是将现场实际的缩放模型置于试验体内,以相似理论为基础,在满足基本相似条件(包括几何、运动、热力、动力和单值条件相似)下,通过在模型试验所获得的某些参数间的规律再回推到原型上,从而获得对原型的规律性认识,以此模拟真实过程主要特征的试验方法。近年来,物理模型试验因其直观、便于测量等特点被广泛用于煤矿开采过程中各类安全问题研究当中。煤矿采空区自然发火的影响因素有很多,根据实践及理论研究表明,采场压力变化对采空区自然发火温度场分布规律具有显著影响,现有采空区自然发火模拟装置均未考虑大气压变化这一因素,而大气压的变化可达10kPa,造成试验结果可靠性降低,无法准确指导现场防灭火工作的开展。基于此,亟需一种模拟大气压变化影响的采空区温度场模拟试验平台。
发明内容
本发明的目的是提供一种考虑大气压的采空区自然发火模型试验平台,可实现对不同大气压力下的采空区渗流场、气体浓度场以及温度场演化规律进行揭示,进而提高采空区自然发火危险区域及高温火源定位精度。
本发明采用的技术方案是:一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特点在于:控制系统由工控机分别电连接PLC、数据采集卡,PLC分别电连接热电偶、模型通风机、正压风机、空气加湿器、液压支柱、空气加热器,数据采集卡分别电连接气压计、若干风速传感器、若干温度传感器、若干气体传感器、若干湿度传感器、若干压力传感器,模型系统由试验巷道侧设有试验硐室内的设施构成,试验巷道内的设施包括一端用第二道风门和调节风窗封堵,另一端用第一道风门封堵,第一道风门上设有连接正压风机的正压风筒,试验硐室内的设施包括底部支座一侧铰接实验箱体模型,另一侧由两个顶端设有定滑轮的液压支柱顶住,还设有气压计,实验箱体模型包括进风巷道入口设有空气加湿器、空气加热器,工作面处设压力传感器,回风巷道端设模型通风机,工作面采煤方向设有煤体,采空区内设置采空区破碎煤岩,同时在采空区坐标网格处设置若干温度传感器、气体传感器、风速传感器、湿度传感器,模拟矿山实际按比例位置设热电偶。
其中:θ为模拟矿山煤层倾角,度,在回风巷道与工作面交接处再设一压力传感器。
其中:实验箱体上部设铰接开启板,底部设铰接卸料板。
一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按相似比,对实验箱体进行该矿煤体及采空区破碎煤岩进行铺装,同时在采空区划分的每个坐标网格节点上均铺设风速传感器、温度传感器、气体传感器、湿度传感器、压力传感器后接入数据采集卡,模拟采空区自然发火位置布入热电偶并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角、工作面风压、工作面湿度、工作面温度、自然发火点温度参数,关闭试验巷道的两道风门,将调节风窗打开,工控机发出指令通过PLC控制液压支柱使煤层倾角θ设定为该矿值,②启动正压风机,人工调节调节风门的开度,当气压计为设定大气压值并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机、空气加湿器、空气加热器、热电偶,达到与该矿参数相同并稳定后,持续一定时间后,采集各传感器数据,采用有限元差分方法绘制采空区温度场云图。
其中:④再获取另一大气压值采空区温度场云图时,工控机关闭后重新启动,直接启动正压风机,人工调节调节风门的开度,当气压计为又一设定大气压值并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区温度场云图。
其中:重复④步骤可获取下一个采空区温度场云图。
其中:还可采用有限元差分方法获取气体浓度分布图。
本发明的有益效果是:可实现对工作面倾角、风流温度、空气湿度环境条件的模拟,模型可靠,研究大气压力变化在不同环境参数下对采空区温度场分布影响提供了途径,可广泛用于矿井采空区自然发火模拟以及揭示大气压力变化对矿井采空区自然发火的影响规律的研究中,同时可获取自然发火产生气体浓度分布情况。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1本发明控制系统结构示意图;
图2本发明模型系统俯视结构示意图;
图3本发明A-A剖面示意图;
图4本发明实验箱体模型结构示意图;
图5本发明大气压99.3kPa时采空区温度场分布图;
图6本发明大气压100.3kPa时采空区温度场分布图。
图中1.工控机,2.试验硐室,3.正压风机,4.第一道风门,5. 第二道风门,6.正压风机,7. 调节风窗, 11.PLC,12.采空区,13.工作面,14.进风巷道,15.回风巷道,16.模型通风机,17.空气加湿器,18.空气加热器,19.热电偶,20.风速传感器,21.温度传感器,22.气体传感器,23.湿度传感器,25.液压支柱,27.压力传感器,30. 气压计,31.试验巷道,40.煤体,50.采空区破碎煤岩,51.底部支座,60.定滑轮,100.数据采集卡。
具体实施方式
第一实施例,参见图1、图2、图3、图4,一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特点在于:控制系统由工控机分别电连接PLC11、数据采集卡100,PLC11分别电连接热电偶19、模型通风机16、正压风机3、空气加湿器17、液压支柱25、空气加热器18,数据采集卡100分别电连接气压计30、若干风速传感器20、若干温度传感器21、若干气体传感器22、若干湿度传感器23、若干压力传感器27,模型系统由试验巷道31侧设有试验硐室2内的设施构成,试验巷道31内的设施包括一端用第二道风门5和调节风窗7封堵,另一端用第一道风门4封堵,第一道风门4上设有连接正压风机3的正压风筒6,试验硐室2内的设施包括底部支座51一侧铰接实验箱体模型,另一侧由两个顶端设有定滑轮60的液压支柱25顶住,还设有气压计30,实验箱体模型包括进风巷道14入口设有空气加湿器17、空气加热器18,工作面13处设压力传感器27,回风巷道15端设模型通风机16,工作面13采煤方向设有煤体40,采空区12内设置采空区破碎煤岩50,同时在采空区12坐标网格处设置若干温度传感器21、气体传感器22、风速传感器20、湿度传感器23,模拟矿山实际按比例位置设热电偶19。
第二实施例,参见图1、图2、图3、图4,一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特点在于:控制系统由工控机分别电连接PLC11、数据采集卡100,PLC11分别电连接热电偶19、模型通风机16、正压风机3、空气加湿器17、液压支柱25、空气加热器18,数据采集卡100分别电连接气压计30、若干风速传感器20、若干温度传感器21、若干气体传感器22、若干湿度传感器23、若干压力传感器27,模型系统由试验巷道31侧设有试验硐室2内的设施构成,试验巷道31内的设施包括一端用第二道风门5和调节风窗7封堵,另一端用第一道风门4封堵,第一道风门4上设有连接正压风机3的正压风筒6,试验硐室2内的设施包括底部支座51一侧铰接实验箱体模型,另一侧由两个顶端设有定滑轮60的液压支柱25顶住,还设有气压计30,实验箱体模型包括进风巷道14入口设有空气加湿器17、空气加热器18,工作面13处设压力传感器27,回风巷道15端设模型通风机16,工作面13采煤方向设有煤体40,采空区12内设置采空区破碎煤岩50,同时在采空区12坐标网格处设置若干温度传感器21、气体传感器22、风速传感器20、湿度传感器23,模拟矿山实际按比例位置设热电偶19。
其中:θ为模拟矿山煤层倾角,度,在回风巷道15与工作面13交接处再设一压力传感器27。
第三实施例,参见图1、图2、图3、图4,一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特点在于:控制系统由工控机分别电连接PLC11、数据采集卡100,PLC11分别电连接热电偶19、模型通风机16、正压风机3、空气加湿器17、液压支柱25、空气加热器18,数据采集卡100分别电连接气压计30、若干风速传感器20、若干温度传感器21、若干气体传感器22、若干湿度传感器23、若干压力传感器27,模型系统由试验巷道31侧设有试验硐室2内的设施构成,试验巷道31内的设施包括一端用第二道风门5和调节风窗7封堵,另一端用第一道风门4封堵,第一道风门4上设有连接正压风机3的正压风筒6,试验硐室2内的设施包括底部支座51一侧铰接实验箱体模型,另一侧由两个顶端设有定滑轮60的液压支柱25顶住,还设有气压计30,实验箱体模型包括进风巷道14入口设有空气加湿器17、空气加热器18,工作面13处设压力传感器27,回风巷道15端设模型通风机16,工作面13采煤方向设有煤体40,采空区12内设置采空区破碎煤岩50,同时在采空区12坐标网格处设置若干温度传感器21、气体传感器22、风速传感器20、湿度传感器23,模拟矿山实际按比例位置设热电偶19。
其中:θ为模拟矿山煤层倾角,度,在回风巷道15与工作面13交接处再设一压力传感器27。
其中:实验箱体上部设铰接开启板,底部设铰接卸料板。
第四实施例,参见图1、图2、图3、图4、图5、图6,一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按1:50相似比,对实验箱体进行该矿煤体40及采空区破碎煤岩50进行铺装,同时在采空区12划分的每个坐标网格(横坐标间隔600毫米,纵坐标间隔500毫米,共划分80个网格)节点上均铺设风速传感器20、温度传感器21、气体传感器22(一氧化碳传感器)、湿度传感器23、压力传感器27后接入数据采集卡100,模拟采空区自然发火位置(2700毫米,1250毫米)布入热电偶19并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角θ(10度)、工作面风压(进风侧机械风压0.66kPa,回风侧机械风压0.79 kPa)、工作面湿度(45%)、工作面温度(21度)、自然发火点温度(60度,即热电偶温度)参数,关闭试验巷道31的两道风门,将调节风窗打开,工控机发出指令通过PLC(可编程控制器)控制液压支柱60使煤层倾角θ设定为该矿值(10度),②启动正压风机3,人工调节调节风门7的开度,当气压计30为设定大气压值99.3kPa并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机16、空气加湿器17、空气加热器18、热电偶19,达到与该矿参数相同并稳定后,持续一定时间(5分钟)后,采集各传感器数据,采用有限元差分方法绘制采空区12温度场云图。为本发明大气压99.3kPa时采空区温度场分布图。
第五实施例,参见图1、图2、图3、图4、图5、图6,一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按1:50相似比,对实验箱体进行该矿煤体40及采空区破碎煤岩50进行铺装,同时在采空区12划分的每个坐标网格(横坐标间隔600毫米,纵坐标间隔500毫米,共划分80个网格)节点上均铺设风速传感器20、温度传感器21、气体传感器22(一氧化碳传感器)、湿度传感器23、压力传感器27后接入数据采集卡100,模拟采空区自然发火位置(2700毫米,1250毫米)布入热电偶19并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角θ(10度)、工作面风压(进风侧机械风压0.66kPa,回风侧机械风压0.79 kPa)、工作面湿度(45%)、工作面温度(21度)、自然发火点温度(60度,即热电偶温度)参数,关闭试验巷道31的两道风门,将调节风窗打开,工控机发出指令通过PLC(可编程控制器)控制液压支柱60使煤层倾角θ设定为该矿值(10度),②启动正压风机3,人工调节调节风门7的开度,当气压计30为设定大气压值99.3kPa并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机16、空气加湿器17、空气加热器18、热电偶19,达到与该矿参数相同并稳定后,持续一定时间(5分钟)后,采集各传感器数据,采用有限元差分方法绘制采空区12温度场云图。为本发明大气压99.3kPa时采空区温度场分布图。
其中:④再获取另一大气压值100.3kPa采空区12温度场云图时,工控机关闭后重新启动,直接启动正压风机3,人工调节调节风门7的开度,当气压计30为又一设定大气压值100.3kPa并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区12温度场云图。为本发明大气压100.3kPa时采空区温度场分布图。
第六实施例,参见图1、图2、图3、图4、图5、图6,一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按1:50相似比,对实验箱体进行该矿煤体40及采空区破碎煤岩50进行铺装,同时在采空区12划分的每个坐标网格(横坐标间隔600毫米,纵坐标间隔500毫米,共划分80个网格)节点上均铺设风速传感器20、温度传感器21、气体传感器22(一氧化碳传感器)、湿度传感器23、压力传感器27后接入数据采集卡100,模拟采空区自然发火位置(2700毫米,1250毫米)布入热电偶19并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角θ(10度)、工作面风压(进风侧机械风压0.66kPa,回风侧机械风压0.79 kPa)、工作面湿度(45%)、工作面温度(21度)、自然发火点温度(60度,即热电偶温度)参数,关闭试验巷道31的两道风门,将调节风窗打开,工控机发出指令通过PLC(可编程控制器)控制液压支柱60使煤层倾角θ设定为该矿值(10度),②启动正压风机3,人工调节调节风门7的开度,当气压计30为设定大气压值99.3kPa并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机16、空气加湿器17、空气加热器18、热电偶19,达到与该矿参数相同并稳定后,持续一定时间(5分钟)后,采集各传感器数据,采用有限元差分方法绘制采空区12温度场云图。为本发明大气压99.3kPa时采空区温度场分布图。
其中:④再获取另一大气压值100.3kPa采空区12温度场云图时,工控机关闭后重新启动,直接启动正压风机3,人工调节调节风门7的开度,当气压计30为又一设定大气压值100.3kPa并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区12温度场云图。为本发明大气压100.3kPa时采空区温度场分布图。
其中:重复④步骤可获取下一个采空区12温度场云图。
第七实施例,参见图1、图2、图3、图4、图5、图6,一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按1:50相似比,对实验箱体进行该矿煤体40及采空区破碎煤岩50进行铺装,同时在采空区12划分的每个坐标网格(横坐标间隔600毫米,纵坐标间隔500毫米,共划分80个网格)节点上均铺设风速传感器20、温度传感器21、气体传感器22(一氧化碳传感器)、湿度传感器23、压力传感器27后接入数据采集卡100,模拟采空区自然发火位置(2700毫米,1250毫米)布入热电偶19并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角θ(10度)、工作面风压(进风侧机械风压0.66kPa,回风侧机械风压0.79 kPa)、工作面湿度(45%)、工作面温度(21度)、自然发火点温度(60度,即热电偶温度)参数,关闭试验巷道31的两道风门,将调节风窗打开,工控机发出指令通过PLC(可编程控制器)控制液压支柱60使煤层倾角θ设定为该矿值(10度),②启动正压风机3,人工调节调节风门7的开度,当气压计30为设定大气压值99.3kPa并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机16、空气加湿器17、空气加热器18、热电偶19,达到与该矿参数相同并稳定后,持续一定时间(5分钟)后,采集各传感器数据,采用有限元差分方法绘制采空区12温度场云图。为本发明大气压99.3kPa时采空区温度场分布图。
其中:④再获取另一大气压值100.3kPa采空区12温度场云图时,工控机关闭后重新启动,直接启动正压风机3,人工调节调节风门7的开度,当气压计30为又一设定大气压值100.3kPa并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区12温度场云图。为本发明大气压100.3kPa时采空区温度场分布图。
其中:重复④步骤可获取下一个采空区12温度场云图。
第八实施例,参见图1、图2、图3、图4、图5、图6,一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按1:50相似比,对实验箱体进行该矿煤体40及采空区破碎煤岩50进行铺装,同时在采空区12划分的每个坐标网格(横坐标间隔600毫米,纵坐标间隔500毫米,共划分80个网格)节点上均铺设风速传感器20、温度传感器21、气体传感器22(一氧化碳传感器)、湿度传感器23、压力传感器27后接入数据采集卡100,模拟采空区自然发火位置(2700毫米,1250毫米)布入热电偶19并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角θ(10度)、工作面风压(进风侧机械风压0.66kPa,回风侧机械风压0.79 kPa)、工作面湿度(45%)、工作面温度(21度)、自然发火点温度(60度,即热电偶温度)参数,关闭试验巷道31的两道风门,将调节风窗打开,工控机发出指令通过PLC(可编程控制器)控制液压支柱60使煤层倾角θ设定为该矿值(10度),②启动正压风机3,人工调节调节风门7的开度,当气压计30为设定大气压值99.3kPa并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机16、空气加湿器17、空气加热器18、热电偶19,达到与该矿参数相同并稳定后,持续一定时间(5分钟)后,采集各传感器数据,采用有限元差分方法绘制采空区12温度场云图。为本发明大气压99.3kPa时采空区温度场分布图。
其中:④再获取另一大气压值100.3kPa采空区12温度场云图时,工控机关闭后重新启动,直接启动正压风机3,人工调节调节风门7的开度,当气压计30为又一设定大气压值100.3kPa并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区12温度场云图。为本发明大气压100.3kPa时采空区温度场分布图。
其中:重复④步骤可获取下一个采空区12温度场云图。
其中:还可采用有限元差分方法获取一氧化碳气体浓度分布图。当气体传感器22采用氧气传感器时采用有限元差分方法可获取耗氧量分布图。

Claims (6)

1.一种考虑大气压的采空区自然发火模型试验平台,包括控制系统和模型系统,特征在于:控制系统由工控机分别电连接PLC、数据采集卡,PLC分别电连接热电偶、模型通风机、正压风机、空气加湿器、液压支柱、空气加热器,数据采集卡分别电连接气压计、若干风速传感器、若干温度传感器、若干气体传感器、若干湿度传感器、若干压力传感器,模型系统由试验巷道侧设有试验硐室内的设施构成,试验巷道内的设施包括一端用第二道风门和调节风窗封堵,另一端用第一道风门封堵,第一道风门上设有连接正压风机的正压风筒,试验硐室内的设施包括底部支座一侧铰接实验箱体模型,另一侧由两个顶端设有定滑轮的液压支柱顶住,还设有气压计,实验箱体模型包括进风巷道入口设有空气加湿器、空气加热器,工作面处设压力传感器,回风巷道端设模型通风机,工作面采煤方向设有煤体,采空区内设置采空区破碎煤岩,同时在采空区坐标网格处设置若干温度传感器、气体传感器、风速传感器、湿度传感器,模拟矿山实际按比例位置设热电偶。
2.根据权利要求1所述的一种考虑大气压的采空区自然发火模型试验平台,特征在于:θ为模拟矿山煤层倾角,度,在回风巷道与工作面交接处再设一压力传感器。
3.根据权利要求1或2所述的一种考虑大气压的采空区自然发火模型试验平台,,特征在于:实验箱体上部设铰接开启板,底部设铰接卸料板。
4.一种考虑大气压的采空区自然发火模型试验平台的试验方法,包括以某煤矿一工作面为例,特点在于:①打开实验箱体上部开启板,按相似比,对实验箱体进行该矿煤体及采空区破碎煤岩进行铺装,同时在采空区划分的每个坐标网格节点上均铺设风速传感器、温度传感器、气体传感器、湿度传感器、压力传感器后接入数据采集卡,模拟采空区自然发火位置布入热电偶并接入PLC,盖上实验箱体上部开启板,启动工控机,设置该矿煤层倾角、工作面风压、工作面湿度、工作面温度、自然发火点温度参数,关闭试验巷道的两道风门,将调节风窗打开,工控机发出指令通过PLC控制液压支柱使煤层倾角θ设定为该矿值,②启动正压风机,人工调节调节风门的开度,当气压计为设定大气压值并稳定时,停止调节风窗的调节,③按该矿参数启动模型通风机、空气加湿器、空气加热器、热电偶,达到与该矿参数相同并稳定后,持续一定时间后,采集各传感器数据,采用有限元差分方法绘制采空区温度场云图。
5.根据权利要求4所述的一种考虑大气压的采空区自然发火模型试验平台的试验方法,特征在于:④再获取另一大气压值采空区温度场云图时,工控机关闭后重新启动,直接启动正压风机,人工调节调节风门的开度,当气压计为又一设定大气压值并稳定时,停止调节风窗的调节,重复③的步骤获取又一个采空区温度场云图。
6.根据权利要求4或5所述的一种考虑大气压的采空区自然发火模型试验平台的试验方法,特征在于:还可采用有限元差分方法获取气体浓度分布图。
CN201710517021.4A 2017-06-29 2017-06-29 考虑大气压的采空区自然发火模型试验平台及试验方法 Pending CN107247127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710517021.4A CN107247127A (zh) 2017-06-29 2017-06-29 考虑大气压的采空区自然发火模型试验平台及试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710517021.4A CN107247127A (zh) 2017-06-29 2017-06-29 考虑大气压的采空区自然发火模型试验平台及试验方法

Publications (1)

Publication Number Publication Date
CN107247127A true CN107247127A (zh) 2017-10-13

Family

ID=60013742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710517021.4A Pending CN107247127A (zh) 2017-06-29 2017-06-29 考虑大气压的采空区自然发火模型试验平台及试验方法

Country Status (1)

Country Link
CN (1) CN107247127A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333291A (zh) * 2018-02-01 2018-07-27 山东科技大学 一种模拟采空区自然发火的实验装置及试验方法
CN108708760A (zh) * 2018-05-15 2018-10-26 中国恩菲工程技术有限公司 用于矿井巷道的智能控制风窗系统
CN109060599A (zh) * 2018-09-18 2018-12-21 中国矿业大学(北京) 煤矿采空区内低温氮气运移规律模拟实验平台及实验方法
CN109406372A (zh) * 2018-12-17 2019-03-01 中国矿业大学(北京) 一种松散介质液氮渗流运移特征测试实验装置及方法
CN110261056A (zh) * 2019-06-26 2019-09-20 郑州轻工业学院 一种综采工作面火灾烟气运移仿真试验系统及其工作方法
CN111764962A (zh) * 2020-06-25 2020-10-13 陕西省一九四煤田地质有限公司 一种煤矿开采后瓦斯预测模型
CN111785147A (zh) * 2020-08-13 2020-10-16 陕西省一九四煤田地质有限公司 一种天然气产量预测模型
CN111964708A (zh) * 2020-06-06 2020-11-20 浙江好得电气有限公司 大型风机在线监测系统及其监测方法
CN113030372A (zh) * 2021-03-24 2021-06-25 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126889C1 (ru) * 1997-02-18 1999-02-27 Стекольщиков Геннадий Гаврилович Способ проветривания газообильного выемочного участка
CN201228557Y (zh) * 2007-10-30 2009-04-29 河南理工大学 综采工作面周期来压采空区瓦斯涌出的模拟试验装置
CN102444606A (zh) * 2011-11-10 2012-05-09 大同煤矿集团有限责任公司 矿井回采工作面风压动态平衡的风机变频控制系统及方法
CN102777201A (zh) * 2012-07-26 2012-11-14 山东科技大学 基于正压通风系统的火区下近距离煤层开采通风方法
CN103306701A (zh) * 2013-04-28 2013-09-18 中国矿业大学(北京) 大区域自动控制均压防灭火系统
CN104933230A (zh) * 2015-05-29 2015-09-23 煤科集团沈阳研究院有限公司 考虑大气压影响的矿井采空区温度场仿真方法
CN105372397A (zh) * 2015-12-16 2016-03-02 华北科技学院 一种采空区自然发火的模拟实验装置
CN207020169U (zh) * 2017-06-29 2018-02-16 煤科集团沈阳研究院有限公司 考虑大气压的采空区自然发火模型试验平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126889C1 (ru) * 1997-02-18 1999-02-27 Стекольщиков Геннадий Гаврилович Способ проветривания газообильного выемочного участка
CN201228557Y (zh) * 2007-10-30 2009-04-29 河南理工大学 综采工作面周期来压采空区瓦斯涌出的模拟试验装置
CN102444606A (zh) * 2011-11-10 2012-05-09 大同煤矿集团有限责任公司 矿井回采工作面风压动态平衡的风机变频控制系统及方法
CN102777201A (zh) * 2012-07-26 2012-11-14 山东科技大学 基于正压通风系统的火区下近距离煤层开采通风方法
CN103306701A (zh) * 2013-04-28 2013-09-18 中国矿业大学(北京) 大区域自动控制均压防灭火系统
CN104933230A (zh) * 2015-05-29 2015-09-23 煤科集团沈阳研究院有限公司 考虑大气压影响的矿井采空区温度场仿真方法
CN105372397A (zh) * 2015-12-16 2016-03-02 华北科技学院 一种采空区自然发火的模拟实验装置
CN207020169U (zh) * 2017-06-29 2018-02-16 煤科集团沈阳研究院有限公司 考虑大气压的采空区自然发火模型试验平台

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333291A (zh) * 2018-02-01 2018-07-27 山东科技大学 一种模拟采空区自然发火的实验装置及试验方法
CN108708760A (zh) * 2018-05-15 2018-10-26 中国恩菲工程技术有限公司 用于矿井巷道的智能控制风窗系统
CN109060599A (zh) * 2018-09-18 2018-12-21 中国矿业大学(北京) 煤矿采空区内低温氮气运移规律模拟实验平台及实验方法
CN109406372A (zh) * 2018-12-17 2019-03-01 中国矿业大学(北京) 一种松散介质液氮渗流运移特征测试实验装置及方法
CN109406372B (zh) * 2018-12-17 2024-04-05 中国矿业大学(北京) 一种松散介质液氮渗流运移特征测试实验装置及方法
CN110261056A (zh) * 2019-06-26 2019-09-20 郑州轻工业学院 一种综采工作面火灾烟气运移仿真试验系统及其工作方法
CN111964708A (zh) * 2020-06-06 2020-11-20 浙江好得电气有限公司 大型风机在线监测系统及其监测方法
CN111764962A (zh) * 2020-06-25 2020-10-13 陕西省一九四煤田地质有限公司 一种煤矿开采后瓦斯预测模型
CN111785147A (zh) * 2020-08-13 2020-10-16 陕西省一九四煤田地质有限公司 一种天然气产量预测模型
CN113030372A (zh) * 2021-03-24 2021-06-25 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法
CN113030372B (zh) * 2021-03-24 2024-04-12 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法

Similar Documents

Publication Publication Date Title
CN107247127A (zh) 考虑大气压的采空区自然发火模型试验平台及试验方法
CN207020169U (zh) 考虑大气压的采空区自然发火模型试验平台
CN103630364B (zh) 一种模拟高原环境试验柴油机的方法
CN203287341U (zh) 瓦斯不均匀分布爆炸实验装置
CN205426830U (zh) 一种瓦斯爆炸引发煤尘爆炸的模拟装置
CN104296956B (zh) 综放/采长壁工作面采空区流场模拟试验装置及方法
CN205679555U (zh) 一种煤矿采空区温度场分布规律相似模拟试验装置
CN110925008B (zh) 一种煤矿局部通风设备智能调节测试实验平台
CN104251894A (zh) 一种模拟煤矿采空区注co2防灭火的测试装置
CN110905580B (zh) 一种综掘工作面通风优化方法
CN204101524U (zh) 一种模拟煤矿采空区注co2防灭火的测试装置
CN104345118A (zh) 固体推进剂多靶线动态燃烧性能测试系统及方法
CN203584452U (zh) 金属矿山深部开采掘进巷道热交换模拟系统
CN105372397A (zh) 一种采空区自然发火的模拟实验装置
CN106200607A (zh) 基于热动力灾害多参数时空演化分析实验台的实验方法
CN110030739A (zh) 一种燃气热水器的燃烧控制方法
CN206269594U (zh) 一种烧结机点火炉燃烧自动控制装置
CN105842281A (zh) 一种煤矿采空区温度场分布规律相似模拟试验装置
CN107204146A (zh) 一种矿井火灾烟流紊乱实验装置
CN206057228U (zh) 一种煤田火灾演化过程的相似模拟系统
CN105973935A (zh) 空间及多组分气体对煤自燃倾向性影响的试验装置
CN110030738A (zh) 一种燃气热水器的燃烧控制方法
CN105974048B (zh) 多组分气体对煤自燃倾向性影响的试验方法
CN105352996B (zh) 一种测试地下煤田火区覆岩温度变化的模型试验方法
CN203455178U (zh) 垂直构件耐火检测控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination