CN107245154B - 一种金属配位物理水凝胶薄膜及其制备方法 - Google Patents

一种金属配位物理水凝胶薄膜及其制备方法 Download PDF

Info

Publication number
CN107245154B
CN107245154B CN201710448483.5A CN201710448483A CN107245154B CN 107245154 B CN107245154 B CN 107245154B CN 201710448483 A CN201710448483 A CN 201710448483A CN 107245154 B CN107245154 B CN 107245154B
Authority
CN
China
Prior art keywords
monomer
physics
thin film
hydrogel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710448483.5A
Other languages
English (en)
Other versions
CN107245154A (zh
Inventor
吴子良
郑司雨
郑强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710448483.5A priority Critical patent/CN107245154B/zh
Publication of CN107245154A publication Critical patent/CN107245154A/zh
Application granted granted Critical
Publication of CN107245154B publication Critical patent/CN107245154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种金属配位物理水凝胶薄膜的制备方法,包括:单体I、单体II、过硫酸钾和去离子水混合后,通入惰性气体,静置后加入四甲基乙二胺,室温下放置得到聚合物溶液,将聚合物溶液旋涂在基片上,得到液膜层,液膜层浸泡在Fe3+溶液中得到物理水凝胶薄膜,将物理水凝胶薄膜与基片分离,浸泡在去离子水中,得到金属配位物理水凝胶薄膜。本发明还公开了通过上述制备方法得到的金属配位物理水凝胶薄膜。本发明制备的薄膜具有较好的力学性能,其厚度为2~1400μm,可以通过调节聚合物溶液的浓度、旋涂转速以及旋涂时间进行调控。

Description

一种金属配位物理水凝胶薄膜及其制备方法
技术领域
本发明涉及水凝胶材料领域,具体涉及一种金属配位物理水凝胶薄膜及其制备方法。
背景技术
金属配位物理水凝胶薄膜是一种通过非共价作用形成的可回复的动态交联网络结构的物理水凝胶薄膜。非共价作用包括氢键、离子键、配位键、疏水缔合和主客体相互作用等。用非共价作用替代共价作用可以实现凝胶的后交联工艺,即可以将聚合物溶液加工成一定结构后再交联固化。
水凝胶薄膜在分子分离、医用敷料以及柔性器件等领域有着重要应用。目前限制水凝胶薄膜应用的主要问题在于:一方面水凝胶的力学性能往往比较弱,尤其是在将其制成薄膜之后;另一方面水凝胶薄膜的厚度很难得到精确的控制。
Hayward等通过溶液的旋涂以及后续的光交联工艺制备了厚度为几到几十微米的具有梯度结构的水凝胶薄膜,该薄膜能够展现出较好的三维变形,但是其力学性能却比较弱(Kim,J.;Hanna,J.A.;Byun,M.;Santangelo,C.D.;Hayward,R.C.Science,2012,335:1201-1205)。
近年来科学家们提出了许多增强水凝胶力学性能的方法,如双网络水凝胶,纳米复合的水凝胶等。Liang等通过三步自由基聚合制备出厚度为30-100微米厚的双网络水凝胶薄膜,并且该薄膜具备较好的力学性能(Liang,S.;Yu,Q.;Yin,H.;Wu,Z.L.;Kurokawa,T.;Gong,J.P.Chem.Commum.,2009:48,7518-7520)。但是这种双网络水凝胶薄膜的制备工艺十分繁琐,而且由于双网络水凝胶含有永久交联的共价交联网络结构,该薄膜的厚度很难调控并且不可回收。
目前,很多水凝胶薄膜的制备是通过溶剂挥发的方式,但是该方法很难精确调控薄膜的厚度,并且很难得到厚度均匀的大面积水凝胶薄膜。
发明内容
本发明提供了一种金属配位物理水凝胶薄膜及其制备方法,反应条件温和、操作简单易行、耗时短,制备的金属配位物理水凝胶薄膜的厚度可调,具有较好的力学性能。
一种金属配位物理水凝胶薄膜的制备方法,包括:
(1)单体I、单体II、过硫酸钾以及去离子水在室温下混合后,通入惰性气体,静置后加入四甲基乙二胺,室温下放置一段时间后得到聚合物溶液;
(2)将步骤(1)的聚合物溶液旋涂在基片上,得到液膜层;
(3)将步骤(2)的液膜层在Fe3+溶液中浸泡,得到物理水凝胶薄膜;
(4)将步骤(3)的物理水凝胶薄膜与基片分离,在去离子水中浸泡,得到金属配位物理水凝胶薄膜;
所述的单体I为丙烯酸,单体II为丙烯酰胺或N-异丙基丙烯酰胺。
在室温条件下,本发明首先通过自由基无规聚合制备得到聚合物溶液,单体I提供交联位点,单体II提供交联点间的链段长度以及引入响应性链段。然后利用旋涂工艺,把聚合物溶液均匀地涂制成液膜层,最后将液膜层先后浸泡到Fe3+溶液和去离子水中,Fe3+溶液提供Fe3+交联聚合物链段,得到物理水凝胶薄膜;去离子水使羧酸基团与Fe3+的金属配位作用进一步固化,得到金属配位物理水凝胶薄膜。
所述的单体I的摩尔数占单体I与单体II的总摩尔数的8%~35%。
所述的过硫酸钾的质量占单体I和单体II的总质量的0.5%~2.0%。
所述的四甲基乙二胺的质量占单体I和单体II的总质量的0.25%~0.75%。
过硫酸钾和四甲基乙二胺的加入量会影响聚合物溶液的粘度,也会对金属配位物理水凝胶薄膜的厚度分布产生影响。
所述的聚合物溶液的质量百分比浓度为3%~12%。
优选地,所述的聚合物溶液的质量百分比浓度为3%~10%。
聚合物溶液的质量百分比浓度越低,金属配位物理水凝胶薄膜越薄,其厚度分布越趋于均匀。
所述的旋涂转速为300rpm~2000rpm,旋涂时间为10s~120s。
优选地,所述的旋涂转速为1000rpm~2000rpm,旋涂时间为60s~120s。
旋涂转速越大,旋涂时间越长,金属配位物理水凝胶的厚度分布越趋于均匀。
所述的Fe3+溶液的摩尔浓度为0.01~1.0mol/L。
Fe3+溶液提供Fe3+交联聚合物链段,此浓度条件下,Fe3+能更好地与聚合物链段进行金属配位作用,使金属配位物理水凝胶薄膜具有更好的力学性能。
与现有技术相比,本发明的有益效果具体体现在:
1、反应条件温和、操作简单易行、耗时短。
2、本发明的金属配位物理水凝胶薄膜的厚度为2~1400μm,其厚度可以通过调节聚合物溶液的质量百分比浓度、旋涂转速以及旋涂时间进行调控。
3、本发明的金属配位物理水凝胶薄膜具有较好的力学性能,具备较好的断裂应力、弹性模量和拉伸应变,分别可以达到0.02~14.53MPa、0.01~61.68Mpa和85.21%~984.93%。
附图说明
图1为实施例1制备的金属配位物理水凝胶薄膜的厚度分布图。
图2为实施例3制备的金属配位物理水凝胶薄膜的厚度分布图。
图3为不同厚度的金属配位物理水凝胶薄膜的力学性能图,其中,a)为拉伸应力-应变图,b)为拉伸性能图。
图4为实施例4制备的金属配位物理水凝胶薄膜的力学性能图,其中,a)为拉伸应力-应变图,b)为拉伸性能图。
图5为实施例5制备的金属配位物理水凝胶薄膜的力学性能图,其中,a)为拉伸应力-应变图,b)为拉伸性能图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述,有必要指出的是,本实施例只用于对本发明进行进一步的说明,并不能理解为对本发明保护范围的界定。
实施例1
在18mL去离子水中加入0.2g丙烯酸、1.8g丙烯酰胺和0.02g过硫酸钾,得到均一透明的溶液。然后向该溶液中通入高纯氩气10min,静置5min后,再加入10μL四甲基乙二胺,吸入注射器中,室温下静置48h,得到均一的聚合物溶液,质量百分比浓度为10%。
将聚合物溶液均匀地滴涂在直径为6cm的圆形玻璃基片上,然后通过旋涂仪驱动基片旋转,300~2000rpm的旋涂转速下旋涂10~120s后得到液膜层。再将液膜层在0.1mol/L的氯化铁溶液中浸泡3h,得到物理水凝胶薄膜。最后将物理水凝胶薄膜从基片上揭下,在去离子水中浸泡8h后,得到高强度的物理水凝胶薄膜。
本实施例制备的不同转速下金属配位物理水凝胶薄膜的厚度见表1所示,可以发现:延长旋涂时间可以得到更薄更均匀的金属配位物理水凝胶薄膜;但旋涂转速太小不利于聚合物溶液的铺展,即使延长了旋涂时间仍然较难制得厚度均匀的金属配位物理水凝胶薄膜,要得到更为均匀的金属配位物理水凝胶薄膜需要更大的旋涂转速。
本实施例测试了厚度分布为10~600μm的金属配位物理水凝胶薄膜的力学性能,相应的力学性能见图3。由图可知:在厚度分布为10~600μm内,本实施例制备的薄膜都具有MPa级别的断裂应力和弹性模量,具有较好的力学强度,但是厚度太薄或者太厚都会削弱本发明制备的薄膜的伸长能力,拉伸应变在厚度为200μm时达到最高,约为450%。
表1不同旋涂转速和旋涂时间下金属配位物理水凝胶薄膜的厚度分布
实施例2
分别在14mL、16mL、18mL、38mL、64mL去离子水中加入0.2g丙烯酸、1.8g丙烯酰胺和0.02g过硫酸钾,得到均一透明的溶液。然后向该溶液中通入高纯氩气10min,静置5min后,再加入10μL四甲基乙二胺,吸入注射器中,室温下静置48h,得到均一的聚合物溶液,质量百分比浓度分别为12%、11%、10%、5%、3%。
将聚合物溶液均匀地滴涂在直径为6cm的圆形玻璃基片上,然后通过旋涂仪驱动基片旋转,1000rpm的旋涂转速下旋涂10~120s后得到液膜层。再将液膜层在0.1mol/L的氯化铁溶液中浸泡3h,得到物理水凝胶薄膜。最后将物理水凝胶薄膜从基片上揭下,在去离子水中浸泡8h后,得到高强度的物理水凝胶薄膜。
本实施例制备的不同聚合物溶液的质量百分比浓度、旋涂时间下金属配位物理水凝胶薄膜的厚度如表2所示,可以发现:聚合物溶液的质量百分比浓度越小,聚合物溶液越容易铺展,所得的金属配位物理水凝胶薄膜的厚度越薄;聚合物溶液的质量百分比浓度越大,聚合物溶液越难铺展,所得的金属配位物理水凝胶薄膜的厚度越厚,且更容易变得更不均匀;延长旋涂时间可以获得厚度更小更均匀的金属配位物理水凝胶薄膜。聚合物溶液的质量百分比浓度为10%、旋涂转速为1000rpm时,不同旋涂时间下的金属配位物理水凝胶薄膜的厚度分布如图1所示。
本实施例测试了厚度分布为10~600μm的金属配位物理水凝胶薄膜的力学性能,不同厚度的金属配位物理水凝胶薄膜的力学性能见图3。由图可知:在厚度分布为10~600μm内,本实施例制备的薄膜都具有MPa级别的断裂应力和弹性模量,具有较好的力学强度,但是厚度太薄或者太厚都会削弱本发明制备的薄膜的伸长能力,拉伸应变在厚度为200μm时达到最高,约为450%。
表2不同聚合物溶液的质量百分比浓度和旋涂时间下金属配位物理水凝胶薄膜的厚度分布
实施例3
在19mL去离子水中加入0.29g丙烯酸、1.81g N-异丙基丙烯酰胺和0.02g过硫酸钾,得到均一透明的溶液。然后向该溶液中通入高纯氩气10min,静置5min后,再加入10μL四甲基乙二胺,吸入注射器中,室温下静置48h,得到均一的聚合物溶液,质量百分比浓度为10%。
将聚合物溶液均匀地滴涂在直径为6cm的圆形玻璃基片上,然后通过旋涂仪驱动基片旋转,1000rpm的旋涂转速下分别旋涂10~120s后得到液膜层。再将液膜层在0.1mol/L的氯化铁溶液中浸泡3h,得到物理水凝胶薄膜。最后将物理水凝胶薄膜从基片上揭下,在去离子水中浸泡8h后,得到高强度的物理水凝胶薄膜。
本实施例制备的高强度物理水凝胶薄膜的厚度分布为92~400μm,如图2所示,在固定的旋涂转速下,旋涂时间越长,制备得到的金属配位物理水凝胶薄膜越薄越均匀。相应的力学性能见图3。由图可知:本实施例制备的薄膜都具有MPa级别的断裂应力和弹性模量,具有较好的力学强度,但是厚度太薄或者太厚都会削弱本实施例制备的薄膜的伸长能力,在200μm时达到最高,约为450%。
实施例4
在18mL去离子水中分别加入不同质量的丙烯酸和丙烯酰胺(0.16g丙烯酸、1.84g丙烯酰胺,0.2g丙烯酸、1.8g丙烯酰胺,0.3g丙烯酸、1.7g丙烯酰胺,0.4g丙烯酸、1.6g丙烯酰胺,0.5g丙烯酸、1.5g丙烯酰胺),丙烯酸和丙烯酰胺的总量为2.0g,以及0.02g过硫酸钾,得到均一透明的溶液,使丙烯酸含量(丙烯酸含量为丙烯酸的摩尔数占丙烯酸和丙烯酰胺的总摩尔数的百分比)分别为8%,10%,15%,20m%和25%。然后向该溶液中通入高纯氩气10min,静置5min后,再加入10μL四甲基乙二胺,吸入注射器中,室温下静置48h,得到均一的聚合物溶液,质量百分比浓度为10%。
将聚合物溶液均匀地滴涂在直径为6cm的圆形玻璃基片上,然后通过旋涂仪驱动基片旋转,1000rpm的旋涂转速下旋涂120s后得到液膜层。再将液膜层在1.0mol/L的氯化铁溶液中浸泡3h,得到物理水凝胶薄膜。最后将物理水凝胶薄膜从基片上揭下,在去离子水中浸泡8h后,得到高强度的物理水凝胶薄膜。
本实施例制备的不同丙烯酸含量的金属配位物理水凝胶薄膜的力学性能见图4,随着丙烯酸含量的增加,本实施例的薄膜的断裂应力和弹性模量均上升,而拉伸应变下降;在丙烯酸含量为8%,10%,15%,20%和25%时,本实施例的薄膜具有较好的力学性能。
实施例5
在18mL去离子水中分别加入不同质量的丙烯酸和N-异丙基丙烯酰胺(0.216g丙烯酸、1.924g N-异丙基丙烯酰胺,0.288g丙烯酸、1.811g N-异丙基丙烯酰胺,0.360g丙烯酸、1.698g N-异丙基丙烯酰胺,0.432g丙烯酸、1.585g N-异丙基丙烯酰胺,0.504g丙烯酸、1.471g N-异丙基丙烯酰胺),丙烯酸和N-异丙基丙烯酰胺的总量约为2.0g,以及0.02g过硫酸钾,得到均一透明的溶液,使丙烯酸含量(丙烯酸含量为丙烯酸的摩尔数占丙烯酸和N-异丙基丙烯酰胺的总摩尔数的百分比)分别为15%,20%,25%,30%和35%。然后向该溶液中通入高纯氩气10min,静置5min后,再加入10μL四甲基乙二胺,吸入注射器中,室温下静置48h,得到均一的聚合物溶液,质量百分比浓度为10%。
将聚合物溶液均匀地滴涂在直径为6cm的圆形玻璃基片上,然后通过旋涂仪驱动基片旋转,1000rpm的旋涂转速下旋涂120s后得到液膜层。再将液膜层在0.01mol/L的氯化铁溶液中浸泡3h,得到物理水凝胶薄膜。最后将物理水凝胶薄膜从基片上揭下,在去离子水中浸泡8h后,得到高强度的物理水凝胶薄膜。
本实施例制备的不同丙烯酸含量的金属配位物理水凝胶薄膜的力学性能见图5,随着丙烯酸含量的增加,本实施例的薄膜的断裂应力和弹性模量均上升,而拉伸应变下降;在丙烯酸含量为15%,20%,25%,30%和35%时,本实施例的薄膜具有较好的力学性能。
上述是结合实施例对本发明作详细说明,但是本发明的实施方式并不受上述实施例的限制,其它任何在本发明专利核心指导思想下所作的改变、替换、组合简化等都包含在本发明专利的保护范围之内。

Claims (4)

1.一种金属配位物理水凝胶薄膜的制备方法,包括:
(1)单体I、单体II、过硫酸钾以及去离子水在室温下混合后,通入惰性气体,静置后加入四甲基乙二胺,室温下放置一定时间得到聚合物溶液;
所述的单体I的摩尔数占单体I和单体II的总摩尔数的8%~35%;
所述的过硫酸钾的质量占单体I和单体II的总质量的0.5%~2.0%;
所述的四甲基乙二胺的质量占单体I和单体II的总质量的0.25%~0.75%;
所述的聚合物溶液的质量百分比浓度为3%~10%;
(2)将步骤(1)的聚合物溶液旋涂在基片上,得到液膜层;所述的旋涂转速为300rpm~2000rpm,旋涂时间为10s~120s;
(3)将步骤(2)的液膜层在Fe3+溶液中浸泡,得到物理水凝胶薄膜;
(4)将步骤(3)的物理水凝胶薄膜与基片分离,在去离子水中浸泡,得到金属配位物理水凝胶薄膜;所述的金属配位物理水凝胶薄膜的厚度为2~1400μm;
所述的单体I为丙烯酸,单体II为丙烯酰胺或N-异丙基丙烯酰胺。
2.根据权利要求1所述的金属配位物理水凝胶薄膜的制备方法,其特征在于:所述的旋涂转速为1000rpm~2000rpm,旋涂时间为60s~120s。
3.根据权利要求1所述的金属配位物理水凝胶薄膜的制备方法,其特征在于:所述的Fe3 +溶液的摩尔浓度为0.01~1.0mol/L。
4.一种根据权利要求1-3任一项所述的金属配位物理水凝胶薄膜。
CN201710448483.5A 2017-06-14 2017-06-14 一种金属配位物理水凝胶薄膜及其制备方法 Active CN107245154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710448483.5A CN107245154B (zh) 2017-06-14 2017-06-14 一种金属配位物理水凝胶薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710448483.5A CN107245154B (zh) 2017-06-14 2017-06-14 一种金属配位物理水凝胶薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107245154A CN107245154A (zh) 2017-10-13
CN107245154B true CN107245154B (zh) 2019-11-08

Family

ID=60018471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710448483.5A Active CN107245154B (zh) 2017-06-14 2017-06-14 一种金属配位物理水凝胶薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107245154B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409989B (zh) * 2018-03-14 2019-09-06 浙江大学 一种可编程变形的强韧水凝胶的4d打印方法
CN109762113B (zh) * 2018-12-20 2021-08-03 河北大学 一种快速制备高质量丙烯酰胺凝胶膜的方法
CN111072849B (zh) * 2019-12-26 2023-05-23 浙江清华柔性电子技术研究院 功能凝胶及其制备方法、应用
CN112898597B (zh) * 2021-01-22 2022-06-14 湖北工业大学 离子键与配位键协同增强聚两性电解质水凝胶及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175755A (zh) * 2015-08-27 2015-12-23 华南理工大学 一种高强度高拉伸双网络物理交联水凝胶及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175755A (zh) * 2015-08-27 2015-12-23 华南理工大学 一种高强度高拉伸双网络物理交联水凝胶及其制备方法

Also Published As

Publication number Publication date
CN107245154A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
CN107245154B (zh) 一种金属配位物理水凝胶薄膜及其制备方法
Wang et al. Adaptive ionogel paint from room‐temperature autonomous polymerization of α‐thioctic acid for stretchable and healable electronics
Sa et al. Surface modification of aramid fibers by bio-inspired poly (dopamine) and epoxy functionalized silane grafting
Zhao et al. A moss‐inspired electroless gold‐coating strategy toward stretchable fiber conductors by dry spinning
CN102086538B (zh) 碳纤维
US20170251941A1 (en) Biological electrode and manufacturing method thereof
Zhai et al. Conductive composite films composed of polyaniline thin layers on microporous polyacrylonitrile surfaces
US20230173138A1 (en) Method for modifying hydrogel lubricating coating on surface of general equipment, and hydrogel lubricating coating-modified general equipment
Yan et al. Synthesis and characterization of a novel difunctional fluorinated acrylic oligomer used for UV-cured coatings
JP2017042415A (ja) 表面改質金属及び金属表面の改質方法
Chen et al. Synthesis of a cationic fluorinated polyacrylate emulsifier-free emulsion via ab initio RAFT emulsion polymerization and its hydrophobic properties of coating films
Li et al. Facile preparation for robust and freestanding silk fibroin films in a 1‐butyl‐3‐methyl imidazolium acetate ionic liquid system
Wang et al. Preparation and property of waterborne UV‐curable chain‐extended polyurethane surface sizing agent: Strengthening and waterproofing mechanism for cellulose fiber paper
Zhou et al. Synthesis and properties of fluorine–silicon modified polyacrylate hybrid latex particles with core–shell structure obtained via emulsifier‐free emulsion polymerization
Khatti et al. Polypyrrole-coated polycaprolactone-gelatin conductive nanofibers: fabrication and characterization
Cheng et al. Structural evolution of fluorinated aramid fibers with fluorination degree and dominant factor for its adhesion property
Chen et al. Synthesis and characterization of polyhedral oligomeric silsesquioxane hybrid co‐crosslinked poly (N‐isopropylacrylamide‐co‐dimethylaminoethyl methacrylate) hydrogels
Miho et al. Modification of polyethylene using side-chain crystalline block copolymer and evaluation of hydrophilicity
Trexler et al. Synthesis and mechanical properties of para‐aramid nanofibers
Bao Hydrothermal aging behaviors of CMR/PLA biocomposites
Jung et al. Chemical and physical modification of layer-by-layer assembled nanofilms composed of block copolymer micelles and graphene oxide for controlled drug release
Trindade et al. Tuning surface wrinkles of Janus spheres in supercritical carbon dioxide
CN106676879A (zh) 超高分子量聚乙烯纤维表面改性溶液、制备方法、超高分子量聚乙烯改性纤维和改性方法
EP0024593B1 (de) Verfahren zur Herstellung eines zugfesten Lichtwellenleiters
Yang et al. Improved amine functionalization of carbon fiber surfaces by O2 plasma activation treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant