CN107236978A - The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore - Google Patents

The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore Download PDF

Info

Publication number
CN107236978A
CN107236978A CN201710491610.XA CN201710491610A CN107236978A CN 107236978 A CN107236978 A CN 107236978A CN 201710491610 A CN201710491610 A CN 201710491610A CN 107236978 A CN107236978 A CN 107236978A
Authority
CN
China
Prior art keywords
sealer
workpiece
acid
film
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710491610.XA
Other languages
Chinese (zh)
Inventor
郭向阳
李力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mei Yi Metallic Article Co Ltd Of Pingdingshan City
Original Assignee
Mei Yi Metallic Article Co Ltd Of Pingdingshan City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mei Yi Metallic Article Co Ltd Of Pingdingshan City filed Critical Mei Yi Metallic Article Co Ltd Of Pingdingshan City
Publication of CN107236978A publication Critical patent/CN107236978A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

The invention discloses the enclosure method of the packing material and pore of closing oxidation rear substrate surface pore, packing material, including the use of the sealer of dilution dilution agent, sealer is used:Fluorine carbon materials matter;Organosilicon and inorganic silicon material;Inorganic molybdenum disulfide material;Unsaturated hydrocarbons, unrighted acid, palmitic acid, stearic acid, the triglyceride compound material of the glyceric acid ester type compound of unrighted acid or palmitic, stearic;Enclosure method, comprises the following steps:Configure sealer;Filling perforation, Gu film, high temperature curve sintering is carried out to the workpiece after filling perforation, forms a tunic;Polishing or sanding.Advantages of the present invention:Embedded sealing of hole agent molecule in the surface pore of base material workpiece after oxidation, having workpiece, non-stick, coefficient of friction be low, antirust ability is strong, by the basal body structure that oxide-film is firm, with reference to the sealing material, so that workpiece is wear-resisting durable so that product can be widely used in industry and life.

Description

The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore
Technical field
The present invention relates to the enclosure method of the packing material and pore of closing oxidation rear substrate surface pore.
Background technology
Metal works easily get rusty, to prevent from getting rusty, at present typically can be using metal works are carried out oxidation processes, at this stage The surface of workpiece particularly aoxidized in high precision through peroxidating seems very smooth, smooth, but aobvious workpiece is placed on Under micro mirror, still can see during microscopic observation the surface of these workpiece has some loose holes, due to depositing for this some holes The use of workpiece is had some limitations, as the casting iron pan of cooker be difficult when in use do not glue with good and Antirust anti-wear performance, and to service life, there is also certain influence.
The content of the invention
The invention aims to solve problems of the prior art, and the oxidation rear substrate surface pore proposed Inlay packing material and technology.
To achieve these goals, present invention employs following technical scheme:
The packing material of closing oxidation rear substrate surface pore, it is characterised in that:Closing including the use of dilution dilution agent Agent, sealer uses any one or more mixing in following four material:
A, fluorine carbon materials matter;B, organosilicon and inorganic silicon material;C, inorganic molybdenum disulfide material;D, unsaturated hydrocarbons, insatiable hunger With the acid of glycerine three of aliphatic acid, palmitic acid, stearic acid, the glyceric acid ester type compound of unrighted acid or palmitic, stearic Compound material.
Preferably, the diluent includes following two:A, water are the aqueous diluent of solvent;B, with it is single one or more The oiliness diluent of polarity or nonpolar organic solvent compounding.
Preferably, the diluent includes alcohol reagent, ketone reagent, phenyl ring class reagent or heterocyclic reagent.
Preferably, the concentration of the sealer is 5% -80%.
The enclosure method of oxidation rear substrate surface pore, it is characterised in that comprise the following steps:
Step 1: configuration sealer;
Step 2: filling perforation, is sprayed onto sealer in the hole that the base material workpiece surface after oxidation fills substrate surface, this Some holes gap is sealed,
Step 3: solid film, carries out high temperature curve sintering so that the material in sealer is inlayed completely to the workpiece after filling perforation Hole and the surface of workpiece are sealed in, a tunic is formed;
Step 4: polishing or sanding, the workpiece after solid film is mechanically polished or sanding method by the loose of surface and After unwanted layers are removed, above-mentioned sealer just combines together completely with oxidation membrane pores.
Preferably, the material that the thickness of solid film rear oxidation film is more than or equal in 15um, the sealer in the step 3 Absorption is sealed at the film layer of 2/3 thickness of oxide-film ecto-entad.
Preferably, the fluorine carbon materials matter sealer spraying application baking temperature is 360 DEG C-430 DEG C, and the time is 5-8 points Clock;
The spraying application time of the organosilicon sealer is 15-20 minutes, and baking temperature is 220 DEG C-280 DEG C;
The spraying application time of the molybdenum disulfide sealer is 20-30 minutes, and baking temperature is 200 DEG C-300 DEG C;
The spraying application temperature of the stearic acid sealer is 90 DEG C-110 DEG C, and baking time is 5-10 minutes.
The advantage of the invention is that:Oxidation rear substrate surface provided by the present invention pore inlays packing material and technology, Embedded sealing of hole agent molecule, obtained finish surface in the surface pore of base material workpiece after oxidation, make workpiece have non-stick, The advantage that coefficient of friction is low, antirust ability is strong, by the basal body structure that oxide-film is firm, with reference to the sealing material so that work Part is more wear-resisting durable so that product can be widely used in various industry and life.
Brief description of the drawings
Fig. 1 is that the closing agent material of the present invention is embedded in the microstate schematic diagram on oxidation rear substrate surface.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, it is right below in conjunction with drawings and Examples The present invention is further elaborated.
The packing material for the closing oxidation rear substrate surface pore that the present invention is provided, the closing including the use of dilution dilution agent Agent, sealer uses any one or more mixing in following four material:
A, fluorine carbon materials matter;B, organosilicon and inorganic silicon material;C, inorganic molybdenum disulfide material;D, unsaturated hydrocarbons, insatiable hunger With the acid of glycerine three of aliphatic acid, palmitic acid, stearic acid, the glyceric acid ester type compound of unrighted acid or palmitic, stearic Compound material.
The diluent includes following two:A, water are the aqueous diluent of solvent;B, with it is single one or more polarity or The oiliness diluent of nonpolar organic solvent compounding.Diluent includes alcohol reagent, such as ethanol;Lipid reagent, such as second Acetoacetic ester;Ketone reagent, such as acetone;Phenyl ring class reagent, such as dimethylbenzene;Heterocyclic reagent, such as pyrrolidones.
In construction according to specific construction parameter temperature, humidity and viscosity, the concentration of the sealer for 5%- 80%, it includes:
The aqueous dispersion of a, the fluorine carbon materials matter using poly- four ethene as representative.
B, the organosilicon are the oleaginous systems using dimethyl siloxane as representative.
C, the inorganic silicon are that, using the film layer of silica as representative, its solvent is using water as dispersion.
D, the inorganic molybdenum disulfide are the lysates using dimethylformamide to represent solvent.
E, the stearic acid are the sealer main bodys using pyrrolidones as solvent.
The enclosure method of oxidation rear substrate surface pore, comprises the following steps:
Step 1: the sealer needed for configuring as needed.
Step 2: filling perforation, is sprayed onto sealer in the hole that the base material workpiece surface after oxidation fills substrate surface, it is described Workpiece refers to relatively loose porous, the more coarse steel substrate in surface, and these holes are sealed.
Step 3: solid film, carries out high temperature curve sintering so that the material in sealer is inlayed completely to the workpiece after filling perforation It is sealed in the hole of workpiece surface, forms a tunic.Gu the material that the thickness of film rear oxidation film is more than or equal in 15um, sealer Material absorption is sealed at the film layer of 2/3 thickness of oxide-film ecto-entad.
Ptfe emulsion class spraying application baking temperature in the fluorine carbon materials matter sealer is 360 DEG C -430 DEG C, Time is 5-8 minutes.
The diformazan type siloxane spraying application time in the organosilicon sealer is 15-20 minutes, and baking temperature is 220℃—280℃。
The dimethyl formamide solution spraying application time in the molybdenum disulfide sealer is 20-30 minutes, baking temperature Spend for 200 DEG C -300 DEG C.
Pyrrolidinone solvent spraying application temperature in the stearic acid sealer is 90 DEG C -110 DEG C, and baking time is 5-10 minutes.
Step 4: polishing or sanding, the workpiece after solid film is mechanically polished or sanding method by the loose of surface and After unwanted layers are removed, above-mentioned sealer just combines together completely with oxide-film and hole.Because material is not in the sealer It is sticky workpiece to be caused more outstanding and relatively more resistant to abrasive wear durable by the firm basal body structure of oxide-film with low coefficient of friction, The finish surface obtained using such a closing mode, is that, to aoxidize membrane structure as main body, insertion is above-mentioned in substrate work-piece hole The uncoated body surface of sealing of hole agent molecule, with fabulous feature, can adapt to a variety of industrial and life Using.
Gu membrane process is prior art, Gu film refers to:Above-mentioned material and diluent are uniformly mixed into after liquid solvent, spray The surface of workpiece substrate after to oxidation, because curing agent is liquid, therefore it can be flowed into the hole of workpiece surface, then in height Bred during warm curve sintering so that curing agent liquid and substrate surface and hole strong bonded after oxidation, form one Layer diaphragm, after then the loose and unwanted layers on surface are removed using the method for mechanical polishing, sanding, sealer and oxide-film And hole just combines together completely, it is allowed to be formed the oxide-film of many premium properties, its performance includes non-adhesion behavior, low rubbed Wipe coefficient.More outstanding and relatively more resistant to abrasive wear durable, such a closing mode for being allowed to embody by the firm basal body structure of oxide-film The finish surface for finally obtaining us is to be embedded in above-mentioned hole sealing agent in substrate work-piece hole as main body to aoxidize membrane structure The uncoated body surface of molecule so that product can be widely used in industry and life.
Material described in this programme has good non-stick in itself, but is difficult to fix with substrate work-piece, and this programme leads to Cross and these materials are uniformly mixed with diluent respectively, the diluent is prior art, every kind of material has corresponding thereto Diluent, the curing agent formed after mixing be liquid, curing agent is then sprayed on porose base material workpiece surface, curing agent handle The hole of workpiece surface, which is filled up completely with, inlays, the state diagram after filling as shown in figure 1, in figure 1 be workpiece surface hole, 2 be above-mentioned Any of which material molecule or its any combination in " a ", " b ", " c " or " d " four kinds of materials.
Embodiment described above can make those skilled in the art be more fully understood the present invention, but not to appoint Where formula limitation is of the invention.Therefore, it will be appreciated by those skilled in the art that still can be modified to the present invention or equivalent Replace;And technical scheme and its improvement of all spirit and technical spirit that do not depart from the present invention, it all should cover in the present invention Among the protection domain of patent.

Claims (7)

1. the packing material of closing oxidation rear substrate surface pore, it is characterised in that:Including the use of the sealer of dilution dilution agent, Sealer uses any one or more mixing in following four material:
A, fluorine carbon materials matter;B, organosilicon and inorganic silicon material;C, inorganic molybdenum disulfide material;D, unsaturated hydrocarbons, unsaturated lipid Fat acid, palmitic acid, stearic acid, the glyceric acid ester type compound or the triglyceride of palmitic, stearic of unrighted acid Compound material.
2. packing material according to claim 1, it is characterised in that the diluent includes following two:A, water are molten The aqueous diluent of agent;B, the oiliness diluent with the singly polarity of one or more or nonpolar organic solvent compounding.
3. packing material according to claim 1 or 2, it is characterised in that:The diluent, which includes alcohol reagent, ketone, to be tried Agent, phenyl ring class reagent or heterocyclic reagent.
4. packing material according to claim 1, it is characterised in that the concentration of the sealer is 5% -80%.
5. the enclosure method of rear substrate surface pore is aoxidized described in claim 1, it is characterised in that comprise the following steps:
Step 1: configuration sealer;
Step 2: filling perforation, is sprayed onto sealer in the hole that the base material workpiece surface after oxidation fills substrate surface, this some holes Gap is sealed,
Step 3: solid film, carries out high temperature curve sintering so that the material in sealer inlays sealing completely to the workpiece after filling perforation Hole and surface in workpiece, form a tunic;
Step 4: polishing or sanding, the workpiece after solid film is mechanically polished or sanding method by the loose and unnecessary of surface After layer is removed, above-mentioned sealer just combines together completely with oxidation membrane pores.
6. enclosure method according to claim 5, it is characterised in that:The thickness of solid film rear oxidation film is big in the step 3 In equal to 15um, the material absorption in the sealer is sealed at the film layer of 2/3 thickness of oxide-film ecto-entad.
7. enclosure method according to claim 5, it is characterised in that:
The fluorine carbon materials matter sealer spraying application baking temperature is 360 DEG C-430 DEG C, and the time is 5-8 minutes;
The spraying application time of the organosilicon sealer is 15-20 minutes, and baking temperature is 220 DEG C-280 DEG C;
The spraying application time of the molybdenum disulfide sealer is 20-30 minutes, and baking temperature is 200 DEG C-300 DEG C;
The spraying application temperature of the stearic acid sealer is 90 DEG C-110 DEG C, and baking time is 5-10 minutes.
CN201710491610.XA 2016-07-09 2017-06-26 The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore Pending CN107236978A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016105395196 2016-07-09
CN201610539519.6A CN106191964A (en) 2016-07-09 2016-07-09 Oxidation rear substrate surface pore inlays packing material and technology

Publications (1)

Publication Number Publication Date
CN107236978A true CN107236978A (en) 2017-10-10

Family

ID=57473794

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610539519.6A Pending CN106191964A (en) 2016-07-09 2016-07-09 Oxidation rear substrate surface pore inlays packing material and technology
CN201710491610.XA Pending CN107236978A (en) 2016-07-09 2017-06-26 The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610539519.6A Pending CN106191964A (en) 2016-07-09 2016-07-09 Oxidation rear substrate surface pore inlays packing material and technology

Country Status (1)

Country Link
CN (2) CN106191964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111809214A (en) * 2019-04-12 2020-10-23 平顶山市美伊金属制品有限公司 Method for sealing pores on surface of oxidized substrate

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045996A (en) * 2006-03-28 2007-10-03 北京化工大学 Process of clossing anode coating of aluminium or aluminium alloy with Ce-Mo salt
CN101240440A (en) * 2007-11-16 2008-08-13 苏州有色金属研究院有限公司 Technique for preparing high-hardness large-aperture thick film by mixed acid anode oxidation
CN101314865A (en) * 2007-12-28 2008-12-03 中国兵器工业第五二研究所 Production method for hard lubricant film layer of aluminum alloy
CN101338446A (en) * 2008-08-14 2009-01-07 苏州有色金属研究院有限公司 Heat treatment process for aluminum alloy self-lubricating surface composite material
CN101423966A (en) * 2007-11-03 2009-05-06 梅茨霍伊泽威兹拉有限及两合公司 Protection layer
CN101481814A (en) * 2008-12-09 2009-07-15 陈世楠 Surface treating method for aluminum product
CN101665970A (en) * 2008-09-03 2010-03-10 中国科学院宁波材料技术与工程研究所 Normal-temperature sealer for anodic oxide film of aluminum and aluminum alloy and sealing method thereof
CN101736385A (en) * 2008-11-19 2010-06-16 苏州有色金属研究院有限公司 Treatment process of self-lubricating surface of aluminium alloy
CN102011166A (en) * 2010-10-20 2011-04-13 安泰科技股份有限公司 Aluminum-based composite material with ultra-low friction coefficient and preparation method thereof
CN102021629A (en) * 2010-12-30 2011-04-20 南昌航空大学 Method for preparing titanium-alloy surface micro-arc oxidation antifriction compound film layer
CN102021632A (en) * 2010-12-15 2011-04-20 中国铝业股份有限公司 Method for preparing protective film on copper alloy surface
CN102348754A (en) * 2009-03-31 2012-02-08 日本华尔卡工业株式会社 Filled fluororesin sheet, process for producing same, and gasket
CN103147104A (en) * 2013-03-27 2013-06-12 江苏增钬云表面处理有限公司 Corrosion-resistant coating sealing agent
CN103451700A (en) * 2013-08-21 2013-12-18 南京浩穰环保科技有限公司 Sealing agent for micro-arc oxidation film
CN104059501A (en) * 2013-05-03 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Anti-rust sealing agent and preparation method and use thereof, and hot-dip plated metal material
CN105273469A (en) * 2014-07-02 2016-01-27 浙江艾默樱零部件有限公司 Copper alloy surface treatment sealing agent and surface treatment method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045996A (en) * 2006-03-28 2007-10-03 北京化工大学 Process of clossing anode coating of aluminium or aluminium alloy with Ce-Mo salt
CN101423966A (en) * 2007-11-03 2009-05-06 梅茨霍伊泽威兹拉有限及两合公司 Protection layer
CN101240440A (en) * 2007-11-16 2008-08-13 苏州有色金属研究院有限公司 Technique for preparing high-hardness large-aperture thick film by mixed acid anode oxidation
CN101314865A (en) * 2007-12-28 2008-12-03 中国兵器工业第五二研究所 Production method for hard lubricant film layer of aluminum alloy
CN101338446A (en) * 2008-08-14 2009-01-07 苏州有色金属研究院有限公司 Heat treatment process for aluminum alloy self-lubricating surface composite material
CN101665970A (en) * 2008-09-03 2010-03-10 中国科学院宁波材料技术与工程研究所 Normal-temperature sealer for anodic oxide film of aluminum and aluminum alloy and sealing method thereof
CN101736385A (en) * 2008-11-19 2010-06-16 苏州有色金属研究院有限公司 Treatment process of self-lubricating surface of aluminium alloy
CN101481814A (en) * 2008-12-09 2009-07-15 陈世楠 Surface treating method for aluminum product
CN102348754A (en) * 2009-03-31 2012-02-08 日本华尔卡工业株式会社 Filled fluororesin sheet, process for producing same, and gasket
CN102011166A (en) * 2010-10-20 2011-04-13 安泰科技股份有限公司 Aluminum-based composite material with ultra-low friction coefficient and preparation method thereof
CN102021632A (en) * 2010-12-15 2011-04-20 中国铝业股份有限公司 Method for preparing protective film on copper alloy surface
CN102021629A (en) * 2010-12-30 2011-04-20 南昌航空大学 Method for preparing titanium-alloy surface micro-arc oxidation antifriction compound film layer
CN103147104A (en) * 2013-03-27 2013-06-12 江苏增钬云表面处理有限公司 Corrosion-resistant coating sealing agent
CN104059501A (en) * 2013-05-03 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Anti-rust sealing agent and preparation method and use thereof, and hot-dip plated metal material
CN103451700A (en) * 2013-08-21 2013-12-18 南京浩穰环保科技有限公司 Sealing agent for micro-arc oxidation film
CN105273469A (en) * 2014-07-02 2016-01-27 浙江艾默樱零部件有限公司 Copper alloy surface treatment sealing agent and surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111809214A (en) * 2019-04-12 2020-10-23 平顶山市美伊金属制品有限公司 Method for sealing pores on surface of oxidized substrate
CN111809214B (en) * 2019-04-12 2022-03-22 平顶山市美伊金属制品有限公司 Method for sealing pores on surface of oxidized substrate

Also Published As

Publication number Publication date
CN106191964A (en) 2016-12-07

Similar Documents

Publication Publication Date Title
Yong et al. Nepenthes inspired design of self‐repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing
Dong et al. Superoleophobic slippery lubricant‐infused surfaces: combining two extremes in the same surface
Solomon et al. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow
EP2565243A1 (en) Self-lubricating surface coating composition for low friction or soft substrate applications
US20170225403A1 (en) Additive layer manufacturing
CN107236978A (en) The enclosure method of the packing material and pore of closing oxidation rear substrate surface pore
Yoo et al. Minimum lubrication technique using silicone oil for friction reduction of stainless steel
CN105729929A (en) Silica gel TPU composite material and preparation method
JP2009068390A (en) Sliding member coating composition, sliding member, and piston for internal combustion engine
TW200907045A (en) Silicone grease composition for heat radiation
CN106245011B (en) A kind of lyophoby superslide interface and preparation method thereof
ATE477879T1 (en) METHOD FOR PRODUCING A CONNECTING ROD
TWI383966B (en) Conservatives for cement structures
JP2012115841A (en) Coating composition for forming lubricating mold-release surface layer, method for forming the lubricating mold-release surface layer, and mold
US10151349B2 (en) Rolling bearing, machine element, and solid-film formation method
WO2019072940A1 (en) Surface coating
CN105647363B (en) A kind of low-surface-energy composition and its application
KR20160034625A (en) Coating Material For Solid Lubrication
CN108463523A (en) Smears, surface covering elastomer and surface cover rubber metal stack
DK2198071T3 (en) Process for Partially Coating Catalytically Active Components on Complex Construction Parts
JP6448834B2 (en) Mitigation based on redox pairs of electrochemical surface degradation driven by fluid flow
KR101917355B1 (en) Manufacturing method of eco-friendly releasing agent
TW201823037A (en) Corrosion-resistant member
CN110229596A (en) A kind of corrosion-resistant protective coating of bearing and preparation method thereof
CN111809214B (en) Method for sealing pores on surface of oxidized substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010

RJ01 Rejection of invention patent application after publication