CN107229933B - 自适应体散射模型的freeman/特征值分解方法 - Google Patents

自适应体散射模型的freeman/特征值分解方法 Download PDF

Info

Publication number
CN107229933B
CN107229933B CN201710328382.4A CN201710328382A CN107229933B CN 107229933 B CN107229933 B CN 107229933B CN 201710328382 A CN201710328382 A CN 201710328382A CN 107229933 B CN107229933 B CN 107229933B
Authority
CN
China
Prior art keywords
polarization
phase difference
npd
azimuth angle
scattering model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710328382.4A
Other languages
English (en)
Other versions
CN107229933A (zh
Inventor
侯彪
焦李成
郑伟伟
王爽
马晶晶
马文萍
冯婕
张小华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710328382.4A priority Critical patent/CN107229933B/zh
Publication of CN107229933A publication Critical patent/CN107229933A/zh
Application granted granted Critical
Publication of CN107229933B publication Critical patent/CN107229933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9076Polarimetric features in SAR
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种自适应体散射模型的freeman/特征值分解方法。解决了极化SAR图像分解中的体散射分量过估计和产生负功率像素点的技术问题。分解过程为:输入极化SAR图像数据矩阵;精致Lee滤波,消除斑点噪声;计算极化方位角θ,得出交叉极化散射模型,并进行方位角补偿;通过极化方位角得到新相位差NPD,依NPD判断目标处在城市区域还是自然区域;构建改进的自适应散射模型;确定新相位差NPD阈值,判断目标所处的区域;用Pd,Pv,Ps三种散射功率分布合成RGB图像输出。本发明采用的自适应体散射模型,能够适应不同的地物特征,尤其在城市区域,分解结果更准确,可应用于极化SAR目标的识别与分类。

Description

自适应体散射模型的freeman/特征值分解方法
技术领域
本发明属于图像处理技术领域,主要是针对极化SAR数据分解,具体地说是一种自适应体散射模型的freeman/特征值分解方法,可应用于极化SAR目标的识别与分类。
背景技术
极化合成孔径雷达(极化SAR)是建立在传统SAR系统上的新体制SAR系统,它通过不同极化方式的组合对物体进行全极化测量,记录物体的物质组成、几何特征、方位指向等信息,实现对物体更为全面的描述,能够针对不同的应用场景提供所需的具体信息。
极化目标分解是极化SAR图像极化特征提取的主要实现方法,用切合实际的物理约束来解译目标的散射机制,将极化数据分解为若干具有实际物理意义的参数,以方便分析目标复杂的散射过程。极化目标分解理论,首先由Huynen提出,此后,多种分解方法相继被提出,目前,将极化目标分解方法分为用于描述纯目标的相干目标分解和用于描述分散式目标的非相干目标分解两大类。
相干极化目标分解方法,主要基于散射矩阵的分解,是用于描述纯目标的分解方法,通常要求目标的散射矩阵是稳定的。相干目标分解方法主要包括,Pauli分解、SDH分解等。然而对于自然界中大量存在的复杂目标(非确定性目标)而言,该类分解方法有诸多局限性,近年来的发展并不多。
非相干极化目标分解方法,主要基于散射矩阵的二阶极化描述子,即极化协方差矩阵<[C3]>、极化相干矩阵<[T3]>。非相干目标分解是将<[C3]>或<[T3]>矩阵分解为几种典型地物目标的散射模型的线性组合,近年来得到了迅速发展和广泛应用,这些方法包括基于散射模型的非相干目标分解,基于特征值分解的非相干目标分解等。Cloude在Polarisation:Applications in Remote Sensing.2009书中提出了一种混合freeman/eigenvalue分解方法,将基于散射模型的目标分解和特征值分解联系起来。但是该分解方法采用固定体散射模型,不能适应不同地物特征,出现体散射分量过估计问题和存在负功率的问题。
2013年,针对Polarisation:Applications in Remote Sensing.2009书中的原始混合freeman/eigenvalue分解方法里的体散射过估计问题和负功率的问题,GulabSingh提出了扩展体散射模型,根据参数的不同,采用不同的固定体散射模型。相比于原始的混合freeman/eigenvalue分解方法,使用这种方法改善了体散射过估计问题和减少了负功率比例,但是其采用固定体散射模型,依然存在体散射过估计问题和负功率问题。
发明内容
本发明目的在于克服上述现有技术的不足,提出一种改善了体散射分量过估计和能自适应不同的地物特征的自适应体散射模型的freeman/特征值分解方法。
本发明是一种自适应体散射模型的freeman/特征值分解方法,其特征在于,包括有如下步骤:
(1)输入极化SAR图像数据矩阵(T或C):
载入极化SAR协方差矩阵C或者极化SAR相干矩阵T作为输入,当输入数据为相干矩阵T时,T中包含六个矩阵T11,T12,T13,T22,T23,T33,代表极化SAR图像中每个像素点的极化信息;当输入数据为协方差矩阵C时,C中包含六个矩阵C11,C12,C13,C22,C23,C33,代表极化SAR图像中每个像素点的极化信息;
(2)精致Lee滤波:
采用精致Lee滤波方法,将极化合成孔径雷达SAR图像进行滤波,去除斑点噪声的影响,得到滤波后的极化合成孔径雷达SAR图像中每个像素点的相干矩阵T;
(3)计算极化方位角θ:
根据极化相干矩阵T,通过极化方位角计算公式得到极化方位角θ;极化方位角θ用于极化方向补偿,减少目标极化方位角的随机性;
(4)通过极化方位角θ得到新相位差NPD:
对极化方位角θ进行判断,当极化方位角小于等于一定值θch时,新相位差
NPD
等于共极化相位差CPD;当极化方位角大于一定值θch时,新相位差NPD等于交叉极化相位差XPD;用于判断的一定值选为π/8;
(5)构建改进的自适应体散射模型:
通过极化方位角θ和方位角分布函数建模得到表征城市区域的方位二面角反射体的交叉散射模型<[T]>cross;通过对自然区域中能产生体散射分量的散射体进行建模得到自适应的广义体散射模型
Figure GDA0002369948280000031
(6)确定新相位差NPD的阈值,判断目标所处的区域并使用相应的模型:
当新相位差NPD大于一定值时,目标像素点处于城市等人造区域,使用方位二面角反射体的交叉散射模型来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得人造区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv;当新相位差NPD小于一定值时,目标像素点处于自然区域,使用自适应的广义体散射模型
Figure GDA0002369948280000032
来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得自然区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv
(7)用红色R、绿色G、蓝色B三个颜色分量作为三基色,分别表示输入极化SAR图像中的Pd,Pv,Ps三种散射功率分布灰度图像,并合成RGB图像输出。
本发明采用了含有广义体散射模型的技术方案使得体散射模型更具普遍性,抑制了体散射过估计问题,而且加入的交叉极化分量模型,能够更好区分城市区域和森林区域,分解得到的参数可以更好地应用于后续极化SAR图像目标检测和分类。
本发明与现有技术相比具有以下优点:
第一,本发明使用的改进体散射模型,相比于采用固定体散射模型的算法,根据目标所处区域采用不同的表征体散射分量的模型,当目标处于城市区域时,使用表征二面角反射体的交叉散射模型;当目标处于自然区域时,使用广义体散射模型,这两种模型随着目标像素点的不同而自适应调整,能够有效地应对各种地物的特征,可以有效地抑制体散射过估计问题的同时,增大各区域主导散射机制的比例。
第二,相比于原始的混合freeman/eigenvalue分解,本发明使用改进体散射模型,使得各个散射区域分解结果更符合对应的地物特征,大大降低了产生负功率的像素点的比例。
附图说明
图1是本发明的流程图;
图2是Flevoland_smallPicture地区PauliRGB原图,标有区域A,区域A表示城市区域;
图3是本发明与现有技术方法对Flevoland_smallPicture地区分解RGB效果对比图;其中图3(a)为原始混合freeman/eigenvalue分解结果,图3(b)为基于扩展体散射模型的混合freeman/eigenvalue分解结果,图3(c)为本发明分解结果图。
具体实施方式
下面结合附图和具体实施例对本发明详细说明。
现有技术是采用固定体散射模型,不能具体地表征各种地物的体散射分量,体散射分量会过度估计,产生负功率的问题。针对这些技术问题本发明开展了研究与创新,提出了一种自适应体散射模型的freeman/特征值分解方法。
实施例1
本发明是一种自适应体散射模型的freeman/特征值分解方法,参见图1,包括有如下步骤:
(1)输入极化SAR图像数据矩阵:
直接输入极化SAR图像相干矩阵T或协方差矩阵C,当输入数据为相干矩阵T时,T中包含六个矩阵T11,T12,T13,T22,T23,T33,代表极化SAR图像中每个像素点的极化信息;当输入数据为协方差矩阵C时,C中包含六个矩阵C11,C12,C13,C22,C23,C33,代表极化SAR图像中每个像素点的极化信息;协方差矩阵C和相干矩阵T可以相互转换。本例使用极化相干矩阵T作为输入。
(2)精致Lee滤波:
采用精致Lee滤波方法,将极化合成孔径雷达SAR图像进行滤波,去除斑点噪声的影响,得到滤波后的极化合成孔径雷达SAR图像中每个像素点的相干矩阵T;也就是对极化SAR图像矩阵的预处理。极化SAR图像还可以使用Simga滤波、极化白化滤波等,但是精致Lee滤波算法简单有效,去噪效果明显,本例采用精致Lee滤波。
(3)计算极化方位角θ:
根据极化SAR图像的极化相干矩阵T,通过极化方位角计算公式得到极化方位角θ;计算极化方位角θ是为了用于极化方位角补偿,减少目标极化方位角的随机性,最大限度地减少方位角对分解结果产生的影响。
(4)通过极化方位角θ得到新相位差NPD:
极化SAR分解图像中包含地球表面各种地物种类,为了更好地进行分解,将各种地物首先分成人造区域和自然区域两大类,城市区域属于人造区域。通过共极化相位差CPD和交叉极化相位差XPD,利用其在不同区域,所表现出的不同值来确定出新相位差NPD,以便在极化SAR图像中区分城市区域和自然区域。本发明经过大量的实验分析,对极化方位角进行如下判断,当极化方位角小于等于一定值θch时,城市区域和自然区域用共极化相位角CPD来判断。当极化方位角大于一定值θch时,城市区域和自然区域用交叉极化相位角XPD来判断,更为合理。本例中用于判断的一定值等于π/8。
在本发明中,定义一个参数新相位差NPD,当极化方位角小于等于一定值时,新相位差NPD等于CPD,当极化方位角大于一定值时,新相位差NPD等于XPD,用新相位差NPD进行区分极化SAR图像中城市区域和自然区域相比于原始混合freeman/eigenvalue分解中的判断城市区域和自然区域的条件更符合极化SAR图像的城市区域和自然区域的划分。
(5)构建改进的自适应体散射模型:
通过极化方位角θ和方位角分布函数建模得到表征城市区域的方位二面角反射体的交叉散射模型<[T]>cross,相比在城市区域使用的固定方位二面角散射模型,本发明使用的交叉散射模型能够随着目标像素点的极化方位角来调整模型的结构,使得在分解城市区域时,得到的各散射分量更加符合城市区域的特征。本发明为了解决体散射模型选用困难的问题,在分析森林中散射体不完全满足方位角对称性的特点基础上,通过对自然区域中森林冠层等典型的能产生体散射分量的散射体进行建模得到自适应的广义体散射模型
Figure GDA0002369948280000051
相比用于自然区域的固定体散射模型,本发明使用的广义体散射模型能够根据参数自适应调整模型的结构,可以适应自然区域不同的地物特征。
(6)确定阈值,根据上述求得的新相位差NPD判断目标所处的区域:
用于判断的阈值是根据极化SAR图像的波段、搭载平台和天气的变化来确定,确定后用于城市区域和自然区域;根据极化SAR图像的特点,在城市区域的新相位差NPD相对于自然区域的新相位差NPD较大。
当新相位差NPD>阈值时,目标像素点处于城市等人造区域,使用二面角反射体的交叉散射模型<[T]>cross来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得城市区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv;相比用于城市区域的方位二面角的固定散射模型,本发明使用的交叉散射模型根据目标像素点的极化方位角自适应调整,更加符合城市区域每个像素点的散射特征,可以有效地减少城市区域的体散射分量,增大城市区域主导散射分量,即偶次散射分量。当新相位差NPD<阈值时,目标像素点处于自然区域,使用本发明提出的自适应的广义体散射模型
Figure GDA0002369948280000061
来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得自然区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv;相比用于自然区域的Hajnsek体散射模型,本发明使用的广义体散射模型不仅能减少各区域的体散射分量,增大自然区域各主导散射分量,而且其能够根据参数模型自适应调整,更具有普遍性。本例中用于判断的阈值等于
Figure GDA0002369948280000062
(7)用红色R、绿色G、蓝色B三个颜色分量作为三基色,分别表示输入极化SAR图像中的Pd,Pv,Ps三种散射功率分布灰度图像,并合成RGB图像输出,完成了对输入极化SAR图像的自适应体散射模型的freeman/eigenvalue分解。
本发明使用的自适应体散射模型,相比于采用固定体散射模型的算法,根据目标所处区域采用不同的表征体散射分量的模型,当目标处于城市区域时,使用表征二面角反射体的交叉散射模型;当目标处于自然区域时,使用广义体散射模型,这两种模型随着目标像素点的不同而自适应调整,能够有效地应对各种地物的特征,可以有效地抑制体散射过估计问题的同时,增大各区域主导散射机制的比例。
实施例2
自适应体散射模型的freeman/特征值分解方法同实施例1,步骤(4)中通过极化方位角θ得到新相位差NPD,包括有如下步骤:
4a)计算共极化相位差CPD:
Figure GDA0002369948280000071
上式左边表示复数的指数形式,共极化相位差CPD等于
Figure GDA0002369948280000072
ρHHVV表示共极化相关系数。上式中间表示输入极化SAR图像协方差矩阵C相关元素项的一般形式,其中:
Figure GDA0002369948280000073
Figure GDA0002369948280000074
Figure GDA0002369948280000075
C11,C33,C13为协方差矩阵C的相关项。
4b)计算交叉极化相位差XPD:
Figure GDA0002369948280000076
上式左边表示复数的指数形式,交叉极化相位差XPD等于
Figure GDA0002369948280000077
ρHHHV表示交叉极化相关系数。上式中间表示输入极化SAR图像协方差矩阵C相关元素项的一般形式,其中:
Figure GDA0002369948280000078
Figure GDA0002369948280000079
Figure GDA00023699482800000710
C11,C22,C12为协方差矩阵C的相关项。
根据复数求辐角函数angle求得CPD和XPD:
Figure GDA0002369948280000081
Figure GDA0002369948280000082
上式中C11,C22,C33,C12,C13分别表示输入极化SAR图像协方差矩阵C的元素项。当输入极化SAR图像确定后,其协方差矩阵元素项值是确定的。
4c)求得新相位差NPD:
当极化方位角θ小于等于一定值θch时,用共极化相位差CPD来界定城市区域和自然区域;当极化方位角θ大于一定值θch时,用交叉极化相位差XPD来界定城市区域和自然区域,为此定义一个参数新相位差NPD:
Figure GDA0002369948280000083
用于判断的一定值θch会根据极化SAR运载平台和对于目标区域的飞行方向变化而调整,本例中用于判断的一定值θch等于π/8。
实施例3
自适应体散射模型的freeman/特征值分解方法同实施例1-2,本发明步骤(6)中的确定用于判断的新相位差NPD的阈值,判断目标所处的区域,并进行相应的分解。
现有技术中的原始的混合freeman/eigenvalue分解算法形式:
Figure GDA0002369948280000084
α表示散射角,Ps表示表面散射功率,Pd表示偶次散射功率,Pv表示体散射功率。
根据原始的混合freeman/eigenvalue分解可得:
Figure GDA0002369948280000091
Figure GDA0002369948280000092
上面的tab,a,b∈(1,2,3)表示极化SAR图像的相干矩阵T的对应项。由上式分别可得每个像素点的体散射功率Pv、表面散射功率Ps、偶次散射功率Pd
原始的混合freeman/eigenvalue分解体散射模型的一般形式如下:
Figure GDA0002369948280000093
本发明对上述原始混合freeman/eigenvalue分解方法提出改进方案:当新相位差NPD>阈值时,目标处于城市区域,用二面角反射体的交叉散射模型代替原始的固定体散射模型;当新相位差NPD<阈值时,目标处于自然区域,用广义提散射模型来代替原始的固定提散射模型。
本发明通过新相位角NPD的阈值,判断目标所处的区域,并进行相应的分解,包括如下步骤:
6a)当新相位差NPD>阈值时,目标像素点处在城市区域:
使用方位二面角反射体的交叉散射模型〈[T]〉cross来代替原始混合freeman/eigenvalue分解方法中的体散射模型,此时:
Figure GDA0002369948280000094
Fs=0,
Figure GDA0002369948280000095
Fsd=Fds=0
本发明使用的用于城市区域分解的交叉散射模型中的Fd,Fv对应项,根据目标像素点的极化方位角的变化而调整,相对于原始混合freeman/eigenvalue分解方法中使用固定体散射模型,能自适应城市区域的地区特征。
6b)当新相位差NPD<阈值时,目标像素点处在自然区域:
使用广义体散射模型
Figure GDA0002369948280000101
来代替原始混合freeman/eigenvalue分解中的体散射模型,此时:
Figure GDA0002369948280000102
Figure GDA0002369948280000103
其中
Figure GDA0002369948280000104
表示水平极化分量与垂直极化分量之间的比值。
本发明使用的用于自然区域的广义体散射模型中Fs,Fd,Fv,Fsd,Fds对应项,根据目标像素点的水平极化分量与垂直极化分量之间的比值而自适应调整,相比于原始的混合freeman/eigenvalue分解方法中的固定体散射模型,本发明使用的广义散射模型能够适应不同自然区域的地物特征。
用于判断的阈值是根据极化SAR图像的波段、搭载平台和天气的变化确定,本发明经过实验验证阈值在范围
Figure GDA0002369948280000105
内浮动。
阈值会在
Figure GDA0002369948280000106
区间略微调整,确定后的阈值用于区分城市区域和自然区域。本例中用于判断的阈值等于
Figure GDA0002369948280000107
本发明首先利用极化方位角θ和方位角分布函数求得二面角散射体的交叉散射模型〈[T]〉cross,用于表征城市区域的体散射分量;并且提出了能随着水平分量与垂直分量之间比值变化的广义体散射模型
Figure GDA0002369948280000111
用于表征自然区域的体散射分量。
下面给出一个完成的例子,对本发明做进一步说明。
实施例4
自适应体散射模型的freeman/特征值分解方法同实施例1-3,参照图1本发明具体步骤如下:
步骤1:输入极化SAR数据矩阵:
即极化协方差矩阵C或极化相干矩阵T。
Figure GDA0002369948280000112
C11,C22,C33,C12,C13表示协方差矩阵的元素项,
Figure GDA0002369948280000113
分别表示C12,C13,C23的共轭转置;T11,T22,T33,T12,T13表示协方差矩阵的元素项,
Figure GDA0002369948280000114
分别表示T12,T13,T23的共轭转置。
T与C矩阵可以相互转化,转化系数为A:
Figure GDA0002369948280000115
其中,C=inv(A)*T*inv(AT),T=A*C*AT,inv表示矩阵的逆,矩阵上标T表示矩阵的转置运算。
本例中使用极化相干矩阵T作为输入。
步骤2:精致Lee滤波:
采用精致Lee滤波方法,对极化合成孔径雷达SAR图像进行滤波,去除斑点噪声对极化分解产生的影响,得到滤波后的极化合成孔径雷达SAR图像的相干矩阵T。
步骤3:计算极化方位角θ:
根据极化方位角计算公式可得:
Figure GDA0002369948280000121
tan-1表示反正切函数,T23,T22,T33表示相干矩阵的元素项,Re{T23}表示相干矩阵T23项的实部。
利用极化方位角θ,通过公式T(θ)=[R(θ)]T[R(θ)]*将输入的相干矩阵T进行方位角补偿,减少目标极化方位角的随机性对分解结果带来的影响,方位角补偿矩阵:
Figure GDA0002369948280000122
其中T是极化相干矩阵,T(θ)是方位角补偿后的相干矩阵,上标*表示矩阵的共轭转置。
步骤4:计算共极化相位差CPD、交叉极化相位差XPD和NPD:
4a)计算共极化相位差CPD:
Figure GDA0002369948280000123
上式左边表示复数的指数形式,共极化相位差CPD等于
Figure GDA0002369948280000124
ρHHVV表示共极化相关系数。
4b)计算交叉极化相位差XPD:
Figure GDA0002369948280000125
上式左边表示复数的指数形式,交叉极化相位差XPD等于
Figure GDA0002369948280000126
ρHHHV表示交叉极化相关系数。
在matlab中根据负数求辐角函数angle求得CPD和XPD:
Figure GDA0002369948280000127
Figure GDA0002369948280000131
上式中C11,C22,C33,C12,C13分别表示输入极化SAR图像协方差矩阵C的元素项。
4c)求得新相位差NPD:
当极化方位角θ小于等于一定值θch时,用共极化相位差CPD来界定城市区域和自然区域;当极化方位角θ大于一定值θch时,用交叉极化相位差XPD来界定城市区域和自然区域,为此定义一个参数,新相位差NPD:
Figure GDA0002369948280000132
本例中用于判断的一定值θch等于π/8
步骤5:构建改进的自适应体散射模型:
5a)当新相位差NPD>阈值时,目标处在城市区域,使用二面角反射体的交叉散射模型〈[T]〉cross来代替体散射模型;
交叉散射模型如下:
Figure GDA0002369948280000133
其中θ表示极化方位角,Td(θ)表示二面角反射体的相干矩阵,P(θ)表示方位角分布函数。
5b)当新相位差NPD<阈值时,目标位于自然区域,使用广义体散射模型来代替原始混合freeman/eigenvalue分解方法中的体散射模型。
广义体散射模型如下:
Figure GDA0002369948280000141
其中
Figure GDA0002369948280000142
表示水平极化分量与垂直极化分量之间的比值。
Gulab Singh提出使用扩展体散射模型来改进混合freeman/eigenvalue分解方法中,当目标像素点处于自然区域时,使用Hajnsek体散射模型。
当R>2时:
Figure GDA0002369948280000143
当R<-2时:
Figure GDA0002369948280000144
当-2≤R≤2时:
Figure GDA0002369948280000145
其中R表示垂直极化分量与水平极化分量比值取对数,
Figure GDA0002369948280000146
C11,C33表示协方差矩阵的相应项。
当R>2时,对应的体散射模型是γ=3/8时的广义体散射模型;当R<-2时,对应的体散射模型是γ=8/3时的广义体散射模型;当-2≤R≤2时,对应的体散射模型是γ=1时的广义体散射模型。广义体散射模型取不同的γ值,涵盖了Hajnsek提出的根据参数采用的不同的固定体散射模型。广义体散射模型还能够随着γ值的变化,在Hajnsek三种体散射模型之间连续变化,所以广义体散射模型根据不同像素点γ值能够进行自适应调整,能适应不同的地物特征。
步骤6:确定用于判断的新相位差NPD的阈值,判断目标所处的区域,并进行相应的分解:
6a)当新相位差NPD>阈值时,像素点处在城市区域:
Figure GDA0002369948280000151
根据原始的混合freeman/eigenvalue分解可得:
Figure GDA0002369948280000152
Figure GDA0002369948280000153
Figure GDA0002369948280000154
上面的tab a,b∈(1,2,3)表示极化相干矩阵T的对应项。
由上三式分别可得极化图像中每个像素点的体散射功率值Pv、表面散射功率值Ps、偶次散射功率值Pd,合成RGB图像输出。
6b)当新相位差NPD<阈值时,像素点处在自然区域:
Figure GDA0002369948280000161
α表示散射角,Ps表示表面散射功率,Pd表示偶次散射功率,Pv表示体散射功率。
根据原始的混合freeman/eigenvalue分解可得:
Figure GDA0002369948280000162
Figure GDA0002369948280000163
Figure GDA0002369948280000164
上面的tab a,b∈(1,2,3)表示极化相干矩阵T的对应项,如t11为矩阵T第一行第一列的对应项。
由上三式分别可得每个像素点的体散射功率值Pv、表面散射功率值Ps、偶次散射功率值Pd,合成RGB图像输出。
根据极化SAR图像的特点,在城市区域的新相位差NPD相对于自然区域的新相位差NPD较大,本例中用于判断的阈值经过实验验证等于
Figure GDA0002369948280000165
比较合理。
下面通过仿真实验对本发明的技术效果进行验证和说明。
实施例5
自适应体散射模型的freeman/特征值分解方法同实施例1-4,下面结合仿真对本发明的效果做进一步说明。
仿真实验条件:
本发明的硬件测试平台是:处理器为Inter Core i3-550TM CPU,主频为3.2GHz,内存4GB,软件平台为:Windows7旗舰版64位操作系统和Matlab R2015b。本发明输入为2375x1635的Flevoland_SmallPicture地区的极化SAR图像的极化相干矩阵T。
仿真内容:
在仿真中用到的两个与本发明进行效果对比的现有技术方法,如下:
a)S.R.Cloude等人在出版学术书“Polarisation:Applications in RemoteSensing.London,U.K.:Oxford Univ.Press,2009.”中提出的原始混合freeman/eigenvalue分解方法。
b)Gulab Singh等人在文献“Hybrid Freeman/Eigenvalue DecompositionMethodWith Extended Volume Scattering Model IEEE Geoscience And RemoteSensing Letters,Vol.10,No.1,January 2013”中提出的基于扩展体散射模型的混合freeman/eigenvalue分解方法。
c)本发明方法。
仿真实验结果:
表格1是仿真内容中的三种方法得到的负功率像素点在整个Flevoland_SmallPicture地区所占的百分比。根据表格1可知,原始的混合freeman/eigenvalue分解方法,体散射过估计问题比较严重,导致极化SAR图像中,产生许多的负散射功率,占了47.29%,由于在极化SAR图像不会出现负功率,所以原始的混合freeman/eigenvalue分解方法所得到的分解结果与图像不一致问题非常严重。基于扩展体散射模型的混合freeman/eigenvalue分解方法可以有效地改善负功率问题,降低了Flevoland_SmallPicture地区的极化SAR图像中的负功率像素点所占比例至6.09%;而采用本发明,针对同一极化SAR图像进行极化分解,不仅扩展了体散射的普遍性,更能适应不同的地物特征,而且进一步降低了Flevoland_SmallPicture地区的极化SAR图像中的负功率像素点所占的比例至0.0175%。负功率像素点所占比例大为减少,分解结果基本符合图像的地物特征。
表格1三种方法负功率百分比
方法 负功率百分比
原始混合分解方法 47.29%
基于扩展体散射模型的混合分解方法 6.09%
本发明方法 0.0175%
表格2是仿真内容中的三种方法得到的各散射功率在区域A占总散射功率的百分比。根据表格2可知,在城市区域A,原始的混合freeman/eigenvalue分解方法,体散射依然占据相当一部分比例,为14.90%;由于体散射模型主要反映的是枝繁叶茂的森林地区,所以体散射在城市区域A中所占比例非常小。基于扩展体散射模型的混合freeman/eigenvalue分解方法中,在城市区域时,使用了方位二面角散射模型来代替体散射模型,能降低了体散射在城区中所占的比例至7.12%,使得更符合实际的地物特征。而采用本发明,针对同一极化SAR图像进行极化分解,不仅引入新的相位差NPD,使得区分城区和自然区域更加合理,而且,引入了二面角散射体的交叉散射模型用于城市区域的分解,本发明使用的二面角散射体的交叉散射模型随着极化SAR图像中不同像素点的极化方位角θ来进行调整,能够自适应城市的不同区域。本发明分解得到的结果,在城市区域A体散射功率比例进一步降低至6.04%,上述两种方法都未达到的。本发明在城区中偶次散射功率所占的比例为56.10%,增大了城市区域的主导散射分量的比例。表格2中的数据表明,在城市区域,本发明方法相比现有技术体散射分量减少的同时,增大了偶次散射分量的比例。
表格2三种方法分解得到的各散射功率在区域A所占百分比
方法 表面散射功率 偶次散射功率 体散射功率
原始混合分解方法 33.56% 51.54% 14.90%
基于扩展体散射模型的混合分解方法 37.40% 55.47% 7.12%
本发明方法 37.86% 56.10% 6.04%
实施例6
自适应体散射模型的freeman/特征值分解方法同实施例1-4,仿真条件和仿真内容同实施例5,图2是Flevoland_SmallPicture地区的原始PauliRGB图像,图中主要有海洋、城区、森林、农田等典型的地物目标,图中红色区域即用矩形方框标注的区域A表示城区,绿色区域即城市周边的区域表示森林区域,蓝色区域即矩形块为单元连接成的区域表示农田区域,图2左上方深蓝色区域表示海洋;图2中区域A的正上方是一片城市与田野交错的区域。图3(a)为原始混合freeman/eigenvalue分解结果RGB合成图,在图3(a)中可以看出原始的混合freeman/eigenvalue分解方法在城市区域只能分解出大致轮廓,在标记区域A的正上方的城市区域体散射分量过大,导致许多像素点表现为绿色,不符合城市区域的地物特征;图3(b)为基于扩展体散射模型的混合freeman/eigenvalue分解结果RGB合成图,相比于图3(a),在标记区域A的正上方的城市区域的体散射分量得到部分抑制,在图中表现为减少了该区域中绿色的区域;图3(c)为本发明分解结果RGB合成图,相比于图3(a)和图3(b),本发明在标记A的正上方的城市区域的体散射分量得到进一步抑制,表现为图中该部分城市区域的绿色部分大幅度减少,更准确地反映该区域的地物特征。
综上所述,本发明是一种自适应体散射模型的freeman/特征值分解方法,解决了极化SAR图像分解出现的体散射分量过估计和产生负功率像素点的技术问题。本发明的体散射模型可以根据参数自适应调整,相比于现有技术方法,本发明的交叉散射模型和广义体散射模型能够适应不同的地物特征。其具体的分解过程为:输入极化SAR图像的数据矩阵,本发明使用极化相干矩阵T;精致Lee滤波,消除斑点噪声对极化分解结果产生的影响;计算极化方位角θ,进行方位角补偿;通过极化方位角θ得到新相位差NPD,计算共极化相位差CPD、交叉极化相位差XPD,根据NPD判断目标处在城市区域还是自然区域;构建改进的自适应体散射模型,在城市区域的体散射分量二面角散射体的交叉散射模型,在自然区域的广义体散射模型;确定用于判断的新相位差NPD的阈值,判断目标所处的区域,用对应的模型代替原始混合freeman/eigenvalue分解方法中的体散射分量模型;用红色R、绿色G、蓝色B三个颜色分量作为三基色,分别表示Pd,Pv,Ps三种散射功率分布,并合成RGB图像输出。本发明采用的自适应体散射模型,在极化目标分解领域,能够适应不同的地物特征,尤其在城市等人造区域,分解结果更准确,可应用于极化SAR目标的识别与分类。

Claims (3)

1.一种自适应体散射模型的freeman/特征值分解方法,其特征在于,包括有如下步骤:
(1)输入极化SAR图像数据矩阵:
载入极化SAR协方差矩阵C或者极化SAR相干矩阵T作为输入,当输入数据为相干矩阵T时,T中包含六个矩阵T11,T12,T13,T22,T23,T33,代表极化SAR图像中每个像素点的极化信息;当输入数据为协方差矩阵C时,C中包含六个矩阵C11,C12,C13,C22,C23,C33,代表极化SAR图像中每个像素点的极化信息;
(2)精致Lee滤波:
采用精致Lee滤波方法,将极化合成孔径雷达SAR图像进行滤波,去除斑点噪声的影响,得到滤波后的极化合成孔径雷达SAR图像中每个像素点的相干矩阵T;
(3)计算极化方位角θ:
根据极化相干矩阵T,通过极化方位角计算公式得到极化方位角θ;极化方位角θ可应用于极化方向补偿,减少目标极化方位角的随机性;
(4)通过极化方位角θ得到新相位差NPD:
对极化方位角θ进行判断,当极化方位角小于等于一定值θch时,新相位差NPD等于共极化相位差CPD;当极化方位角大于一定值θch时,新相位差NPD等于交叉极化相位差XPD;用于判断的一定值θch选为π/8;
(5)构建改进的自适应散射模型:
通过极化方位角θ和方位角分布函数得到表征城市区域的方位二面角反射体的交叉散射模型<[T]>cross;通过对自然区域中能产生体散射分量的散射体进行建模得到自适应的广义体散射模型
Figure FDA0002517781310000011
(6)确定用于判断的新相位差NPD的阈值,判断目标所处的区域:
当新相位差NPD大于阈值时,目标像素点处于城市区域,使用方位二面角反射体的交叉散射模型来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得城市区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv;当新相位差NPD小于阈值时,目标像素点处于自然区域,使用自适应的广义体散射模型
Figure FDA0002517781310000021
来代替原始混合freeman/eigenvalue分解方法中的体散射模型来进行极化SAR图像分解,获得自然区域的表面散射功率Ps,偶次散射功率Pd,体散射功率Pv
(7)用红色R、绿色G、蓝色B三个颜色分量作为三基色,分别表示输入极化SAR图像中的Pd,Pv,Ps三种散射功率分布灰度图像,并合成RGB图像输出。
2.根据权利要求1所述的自适应体散射模型的freeman/特征值分解方法,其特征在于步骤(4)所述的通过极化方位角θ得到新相位差NPD,按如下步骤进行:
4a)计算共极化相位差CPD:
Figure FDA0002517781310000022
上式左边表示复数的指数形式,共极化相位差CPD等于
Figure FDA0002517781310000023
ρHHVV表示共极化相关系数;
4b)计算交叉极化相位差XPD:
Figure FDA0002517781310000024
上式左边表示复数的指数形式,交叉极化相位差XPD等于
Figure FDA0002517781310000025
ρHHHV表示交叉极化相关系数;
根据极化协方差矩阵C可求得上两式的值,在matlab中根据负数求辐角函数angle可求得CPD和XPD;
4c)求得新相位差NPD:
当极化方位角θ小于等于一定值θch时,用共极化相位差CPD来界定城市区域和自然区域;当极化方位角θ大于一定值θch时,用交叉极化相位差XPD来界定城市区域和自然区域,为此定义一个参数,新相位差NPD:
Figure FDA0002517781310000031
用于判断的一定值θch会根据极化SAR运载平台和对于目标区域的飞行方向变化而调整。
3.根据权利要求1所述的自适应体散射模型的freeman/特征值分解方法,其特征在于,步骤(6)所述的确定用于判断的新相位差NPD的阈值,判断目标所处的区域,并进行相应的分解,包括有如下步骤:
阈值在范围
Figure FDA0002517781310000032
内浮动;
原始的混合freeman/eigenvalue分解体散射模型的一般形式如下:
Figure FDA0002517781310000033
6a)当新相位差NPD>阈值时,目标像素点处在城市区域:
使用方位二面角反射体的交叉散射模型<[T]>cross来代替原始混合freeman/eigenvalue分解方法中的体散射模型,此时:
Figure FDA0002517781310000034
Fs=0,
Figure FDA0002517781310000035
Fsd=Fds=0
6b)当新相位差NPD小于阈值时,目标像素点处在自然区域:
使用广义体散射模型
Figure FDA0002517781310000036
来代替原始混合freeman/eigenvalue分解中的体散射模型,此时:
Figure FDA0002517781310000041
Figure FDA0002517781310000042
其中
Figure FDA0002517781310000043
表示水平极化分量与垂直极化分量之间的比值。
CN201710328382.4A 2017-05-11 2017-05-11 自适应体散射模型的freeman/特征值分解方法 Active CN107229933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710328382.4A CN107229933B (zh) 2017-05-11 2017-05-11 自适应体散射模型的freeman/特征值分解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710328382.4A CN107229933B (zh) 2017-05-11 2017-05-11 自适应体散射模型的freeman/特征值分解方法

Publications (2)

Publication Number Publication Date
CN107229933A CN107229933A (zh) 2017-10-03
CN107229933B true CN107229933B (zh) 2020-08-04

Family

ID=59934386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710328382.4A Active CN107229933B (zh) 2017-05-11 2017-05-11 自适应体散射模型的freeman/特征值分解方法

Country Status (1)

Country Link
CN (1) CN107229933B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761397B (zh) * 2018-05-30 2022-05-27 中南大学 基于电磁散射模拟的极化sar模型分解评价方法
CN108872987A (zh) * 2018-06-29 2018-11-23 中国科学院电子学研究所 基于极化圆迹sar数据的具有圆柱体结构的目标提取方法
CN109740109B (zh) * 2018-12-25 2023-05-16 中国科学院国家空间科学中心 一种基于酉变换的PolSAR图像广义目标分解方法
CN109977964B (zh) * 2019-02-25 2021-07-27 南京航空航天大学 一种基于深度生成模型的sar图像方位角特征提取方法
CN110400272B (zh) * 2019-07-11 2021-06-18 Oppo广东移动通信有限公司 深度数据的滤波方法、装置、电子设备和可读存储介质
CN110646795B (zh) * 2019-09-16 2021-09-24 武汉大学 一种简缩极化sar的海洋溢油检测方法和系统
CN111125622A (zh) * 2019-11-25 2020-05-08 内蒙古工业大学 一种改进的混合Freeman/Eigenvalue分解方法
CN110929795B (zh) * 2019-11-28 2022-09-13 桂林电子科技大学 高速焊线机焊点快速识别与定位方法
CN111007497B (zh) * 2019-11-29 2022-03-08 北京理工大学 一种基于特征相位的平行和垂直昆虫辨别方法
CN111007500B (zh) * 2019-12-04 2021-11-26 北京理工大学 一种基于Radon变换的昆虫上升下降率快速测量方法
CN111123268B (zh) * 2020-01-02 2022-02-18 中国人民解放军国防科技大学 一种基于精细散射模型的极化目标分解方法
CN112950492B (zh) * 2021-01-28 2022-04-29 中国石油大学(华东) 基于自适应各向异性扩散的全极化sar图像去噪方法
CN114565694B (zh) * 2022-03-03 2024-09-03 西北工业大学 一种星载ctlr模式简缩极化sar重构方法
CN115166741B (zh) * 2022-09-08 2022-11-29 中国科学院空天信息创新研究院 一种基于简化模型的双相位中心极化层析分解方法
CN117908023B (zh) * 2024-03-19 2024-05-14 中国科学院空天信息创新研究院 一种自适应四分量极化干涉合成孔径雷达分解方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698447A (zh) * 2015-03-13 2015-06-10 中国科学院空间科学与应用研究中心 自适应选择酉变换的全极化合成孔径雷达目标分解方法
CN105302980A (zh) * 2015-11-10 2016-02-03 中国科学院遥感与数字地球研究所 一种基于sar数据的城区空气动力学粗糙度反演方法
CN106405547A (zh) * 2016-08-19 2017-02-15 西安空间无线电技术研究所 一种多极化sar简缩极化模式定标方法
CN106529385A (zh) * 2016-08-12 2017-03-22 上海卫星工程研究所 基于相干谱参数的极化干涉sar图像非监督分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698447A (zh) * 2015-03-13 2015-06-10 中国科学院空间科学与应用研究中心 自适应选择酉变换的全极化合成孔径雷达目标分解方法
CN105302980A (zh) * 2015-11-10 2016-02-03 中国科学院遥感与数字地球研究所 一种基于sar数据的城区空气动力学粗糙度反演方法
CN106529385A (zh) * 2016-08-12 2017-03-22 上海卫星工程研究所 基于相干谱参数的极化干涉sar图像非监督分类方法
CN106405547A (zh) * 2016-08-19 2017-02-15 西安空间无线电技术研究所 一种多极化sar简缩极化模式定标方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Adaptive Two-Component Model-Based Decomposition for Polarimetric SAR Data Without Assumption of Reflection Symmetry";Li H;《IEEE Transactions on Geoscience and Remote Sensing》;20151231;第1-10页 *
"Hybrid Freeman/Eigenvalue Decomposition Method With Extended Volume Scattering Model";Gulab Singh;《IEEE Geoscience and Remote Sensing Letters》;20130131;第81-85页 *
"基于极化干涉相似性参数的四元素分解";许丽颖;《电子与信息学报》;20140430;第908-914页 *

Also Published As

Publication number Publication date
CN107229933A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN107229933B (zh) 自适应体散射模型的freeman/特征值分解方法
Han et al. Underwater image processing and object detection based on deep CNN method
Meng et al. Efficient image dehazing with boundary constraint and contextual regularization
CN103247059B (zh) 一种基于整数小波与视觉特征的遥感图像感兴趣区检测方法
CN103839073B (zh) 一种基于极化特征和近邻传播聚类的极化sar图像分类方法
CN108564115A (zh) 基于全卷积gan的半监督极化sar地物分类方法
CN107527023B (zh) 基于超像素和主题模型的极化sar图像分类方法
CN109375189A (zh) 基于交叉散射模型的极化雷达遥感图像城区目标分解方法
CN102999761B (zh) 基于Cloude分解和K-wishart分布的极化SAR图像分类方法
CN104680184B (zh) 基于深度rpca的极化sar地物分类方法
CN107239757B (zh) 一种基于深度阶梯网的极化sar影像目标检测方法
CN110032974A (zh) 一种雷达遥感图像场景特征描述和分类方法
CN104700379A (zh) 一种基于多尺度形态成分分析的遥感图像融合方法
Xie et al. A modified general polarimetric model-based decomposition method with the simplified Neumann volume scattering model
CN106157269A (zh) 基于方向多尺度群低秩分解的全色图像锐化方法
CN117115669B (zh) 双条件质量约束的对象级地物样本自适应生成方法及系统
CN113421198B (zh) 一种基于子空间的非局部低秩张量分解的高光谱图像去噪方法
CN104376539A (zh) 一种极化sar目标散射成分的分解方法和装置
CN104123563A (zh) 一种基于Cloude分解的极化SAR图像分类方法
CN114462486A (zh) 图像处理模型的训练方法、图像处理方法及相关装置
Zabala et al. Effects of JPEG and JPEG2000 lossy compression on remote sensing image classification for mapping crops and forest areas
Wang et al. A multi-level wavelet-based underwater image enhancement network with color compensation prior
CN105721863B (zh) 视频质量评价方法
CN116879860A (zh) 基于特征值分解的极化sar数据多元散射能量分解方法
Liu et al. Fusion technique for SAR and gray visible image based on hidden Markov model in non-subsample shearlet transform domain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant