CN107216871B - 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法 - Google Patents

一种多糖修饰的水溶性稀土上转换纳米材料的制备方法 Download PDF

Info

Publication number
CN107216871B
CN107216871B CN201710489965.5A CN201710489965A CN107216871B CN 107216871 B CN107216871 B CN 107216871B CN 201710489965 A CN201710489965 A CN 201710489965A CN 107216871 B CN107216871 B CN 107216871B
Authority
CN
China
Prior art keywords
solution
nano material
rare earth
nay
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710489965.5A
Other languages
English (en)
Other versions
CN107216871A (zh
Inventor
张秀娟
查纯婷
李晨龙
李文娟
贺高红
南德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201710489965.5A priority Critical patent/CN107216871B/zh
Publication of CN107216871A publication Critical patent/CN107216871A/zh
Application granted granted Critical
Publication of CN107216871B publication Critical patent/CN107216871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种多糖修饰的水溶性稀土上转换纳米材料制备方法,属于纳米材料领域。所述的纳米材料制备方法包括如下步骤:首先采用溶剂热法合成以四氟钇钠为基质的稀土上转换纳米颗粒,然后采用普鲁兰多糖处理UCNPs,与其表面的油酸分子发生酯化反应,进而得到一种普鲁兰多糖修饰的水溶性稀土上转换纳米材料。本发明制备的掺杂了30%摩尔比Mn2+的水溶性NaY(Mn)F4:Yb,Er稀土上转换纳米材料,由于其良好的水溶性、红色单色带发光强度高、表面含具有pH响应的酯基功能基团,并且普鲁兰多糖可作肝癌靶向载体材料,因此,其在荧光标记、生物成像、光热治疗、药物载体等方面具有潜在的应用前景。

Description

一种多糖修饰的水溶性稀土上转换纳米材料的制备方法
技术领域
本发明属于纳米材料技术领域,涉及一种多糖修饰的水溶性稀土上转换纳米材料的制备方法。
背景技术
稀土上转换发光纳米颗粒(UCNPs)是一种通过稀土离子的掺杂能够在近红外光波长激发下通过多光子机制连续吸收两个或两个以上长波长低能量的光子,而发射出一个短波长高能量的光子,即发出可见光的荧光纳米材料。这种现象属于反斯托克斯发光位移现象。近年来发展迅速的镧系金属离子掺杂的稀土纳米粒子由于其独特的上转换发光性质克服了有机染料、荧光蛋白、量子点在生物医学领域上存在的缺陷,显示了独特的优势,如:①无机基质材料,化学稳定性好且毒性低;②不易光解和光漂白;③激发光源为980nm的近红外光,可有效避免生物样品自发荧光和散射光的干扰;④激发光能量较低,对生物体组织的几乎无损伤且具有很深的穿透力,适于体外或活体成像分析;⑤通过调节所掺杂稀土元素的种类、浓度和基质材料,可在同一激发光下,实现多色上转换发光,可用于多目标同时标记。这些无法替代的优势为稀土上转换发光纳米材料在生物医学领域的应用提供了不可限量的应用前景。G.Tian等人采用溶剂热法合成了掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料,此材料的发射波长在660nm处,只发射出红色光带,恰巧处于生物组织的光学窗口,具有更深的组织穿透力和更高的检测灵敏度,并且Mn2+的存在使其具有荧光成像和磁共振成像的双模式成像方式,为生物标记提供了潜在的应用价值。
然而,通过传统方法(例如:高温热分解法、沉淀法、水/溶剂热法、溶胶-凝胶法等方法)合成的稀土上转换发光纳米粒子由于需要使用油酸作为稳定剂,故所合成纳米颗粒的表面都是疏水性的。近年来,科研工作者虽然已采用多种方法制备出不同形貌、粒径均一、尺寸可控的稀土上转换纳米材料,但仍难以获得良好的水溶性和生物相容性,限制了其在生物医学领域的应用,故需要在合成纳米颗粒之后对其表面进行修饰。然而,通过表面修饰转换成亲水性所使用的修饰试剂在改性材料表面后却易出现降低材料的发光效率、有毒、易团聚等缺点,因此,选择合适的表面修饰试剂对于稀土上转换发光纳米粒子表面功能化修饰和应用具有重要意义。普鲁兰多糖(Pullulan)是一种以-1,6糖苷键结合麦芽糖构成同型多糖为主的水溶性的直链天然性多糖。其具有价格低廉、安全、无毒、无免疫原性和致癌性、良好的水溶性和生物相容性并且生物体内可降解,可作为药物载体应用于生物医药领域。最终我们选择了掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料作为研究对象,采用普鲁兰多糖处理稀土上转换纳米材料,与其表面的油酸分子发生酯化反应,合成含亲水性表面功能基团的稀土上转换纳米材料。掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料的制备可参考下述公开文献:GanTian,ZhanjunGu,Liangjun Zhou,etal.Mn2+Dopant-Controlled Synthesis of NaYF4:Yb/ErUpconversion Nanoparticlesfor in vivo Imaging and Drug Delivery.[J].Adv.Mater.2012,24,1226–1231.
普鲁兰多糖与UCNPs表面的油酸发生酯化反应条件可参考下述公开文献:Sallustio,S.;Galantini,L.;Gente,G.;Masci,G.;Mesa,C.L.J.Phys.Chem.B 2004,108,18876.王静云,宋丹丹和包永明.普鲁兰多糖的硬脂酸修饰及其作为纳米药物载体的研究.[J].化学学报.2012,10,1193-1200.
发明内容
本发明解决的技术问题是针对上述现有技术所存在的不足,提供一种多糖修饰的水溶性稀土上转换纳米材料及其制备方法。
本发明的技术方案:
一种多糖修饰的水溶性稀土上转换纳米材料的制备方法,采用普鲁兰多糖处理NaY(Mn)F4:Yb,Er稀土上转换纳米材料,与其表面的油酸分子发生酯化反应,合成含亲水性表面功能基团的稀土上转换纳米材料;
步骤如下:
(1)溶剂热法制备NaY(Mn)F4:Yb,Er稀土上转换纳米材料:
将含有Y、Mn、Yb和Er的盐溶液依次加入到含有NaOH、去离子水、油酸和乙醇的混合溶液a中,通过NaOH控制混合溶液a的pH为7~9,搅拌,得到混合溶液b;其中,Y、Mn、Yb和Er的摩尔比为Y:Mn:Yb:Er=50:30:18:2;去离子水、油酸和无水乙醇的体积比为3:10:20;在混合溶液b中,含Mn的盐溶液的浓度为0.015mol/L;再将NaF水溶液逐滴加入到混合溶液b中,室温下,搅拌至形成凝胶溶液;其中,Y和NaF的摩尔比为5:2;然后将凝胶溶液在180-240℃下加热反应7-24h,整个反应系统自然冷却至室温;离心,再用无水乙醇洗涤,干燥,获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料;
(2)普鲁兰多糖与NaY(Mn)F4:Yb,Er稀土上转换纳米材料表面的油酸进行酯化反应:将表面含油酸的NaY(Mn)F4:Yb,Er稀土上转换纳米材料OA-UCNPs、1-(3-二甲氨基丙基)-3-乙基碳化二亚胺盐酸盐EDC和4-二甲氨基吡啶DMAP溶于的二甲基亚砜DMSO溶液中,即为混合溶液c;室温下搅拌活化1~3小时,活化后的混合溶液c逐滴滴加到DMSO中的多糖溶液中,混合溶液c与DMSO中的多糖溶液等体积混合,二者中的DMSO的用量相同;其中,OA-UCNPs:普鲁兰多糖:EDC:DMAP:DMSO的质量比为1:2:3.5:3:89;室温下搅拌反应48-120h,待反应结束后,将反应液滴加到无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋中,置于去离子水中透析,透析多次,待有机溶剂透析干净后,冷冻干燥,即获得亲水性的UCNPs,置于冰箱中冷冻保存备用。
所述的含有Y、Mn、Yb和Er的盐溶液分别为MnCl2溶液、Y(NO3)3溶液、Yb(NO3)3溶液和Er(NO3)3溶液。
所述的步骤(1)中的离心后用无水乙醇洗涤2次。
本发明的有益效果:采用普鲁兰多糖修饰稀土上转换纳米材料,最终所获得的材料具有良好的分散性和水溶性、pH响应性、一定的肝癌靶向性和较高的载药性能。
附图说明
图1为掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料的扫描透射电子显微镜图(SEM)。由图可知,所制备材料为立方相,尺寸在20-45nm范围,粒径均匀,尺寸小。
图2为掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料表面改性前(表面含油酸)后(表面为油酸与普鲁兰多糖聚合物)的红外光谱图。
图3为普鲁兰多糖亲水改性前后NaY(Mn)F4:Yb,Er稀土上转换纳米材料后溶于水溶液的数码图,左图为改性后表面含油酸与普鲁兰多糖聚合物的NaY(Mn)F4:Yb,Er UCNPs分散于水中,右图为表面含油酸的NaY(Mn)F4:Yb,Er UCNPs分散于无水乙醇中,分散密度均为2mg/mL。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1:
(1)制备掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料:量取1.2mL的0.5mol/L的MnCl2溶液,2mL的0.5mol/L的Y(NO3)3溶液,1.8mL的0.2mol/L的Yb(NO3)3溶液和0.2mL的0.2mol/L的Er(NO3)3溶液依次加入到含有0.6g NaOH固体、3mL去离子水、10mL油酸和20mL乙醇的混合溶液中,并处于磁力搅拌中,然后将包含有8mmolNaF的4mL去离子水逐滴加入到上述混合液中。室温下磁力搅拌15min后,将所形成的凝胶溶液转移到75mL的聚四氟乙烯反应釜中,密封,在200℃下加热8h后,整个反应系统自然冷却至室温。最终产品在高速离心机中9000rpm下离心10min,并用无水乙醇洗涤2次以除去产品中可能含有的残余物,之后将产品置于真空干燥箱中在70℃下烘干,最终获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料。
(2)普鲁兰多糖与NaY(Mn)F4:Yb,Er UCNPs表面的油酸进行酯化反应:称取0.1230g的表面含油酸的稀土上转换纳米材料(OA-UCNPs)、0.0430g的1-(3-二甲氨基丙基)-3-乙基碳化二亚胺盐酸盐(EDC)和0.0358g的4-二甲氨基吡啶(DMAP)溶于10mL的二甲基亚砜(DMSO)溶液中,室温下搅拌活化1h,活化后的反应液逐滴滴加到预先溶于10mL DMSO中的0.2460g的普鲁兰多糖溶液中,室温下磁力搅拌反应72h,待反应结束后,将反应液滴加到500mL的无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋(MWCO=8000)中,置于1L的去离子水中透析,开始间隔1h换一次水,换6次后间隔6h换一次水,总共透析72h,待有机溶剂透析干净后,冷冻干燥,既可以获得亲水性的UCNPs,置于冰箱中4℃保存备用。表征结果见附图1~3。
实施例2:
(1)制备掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料:量取1.2mL的0.5mol/L的MnCl2溶液,2mL的0.5mol/L的Y(NO3)3溶液,1.8mL的0.2mol/L的Yb(NO3)3溶液和0.2mL的0.2mol/L的Er(NO3)3溶液依次加入到含有0.6g NaOH固体、3mL去离子水、10mL油酸和20mL乙醇的混合溶液中,并处于磁力搅拌中,然后将包含有8mmolNaF的4mL去离子水逐滴加入到上述混合液中。室温下磁力搅拌15min后,将所形成的凝胶溶液转移到75mL的聚四氟乙烯反应釜中,密封,在200℃下加热8h后,整个反应系统自然冷却至室温。最终产品在高速离心机中7000rpm下离心10min,先用无水乙醇洗涤3次,再用去离子水洗涤2次以除去产品中可能含有的残余物,之后将产品置于真空干燥箱中在60℃下烘8h,最终获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料。
(2)普鲁兰多糖与NaY(Mn)F4:Yb,ErUCNPs表面的油酸进行酯化反应:称取0.1230g的OA-UCNPs、0.0870g的EDC和0.0725g的DMAP溶于10mL的二甲基亚砜(DMSO)溶液中,室温下搅拌活化1h,活化后的反应液逐滴滴加到预先溶于10mL DMSO中的0.2460g的普鲁兰多糖溶液中,室温下磁力搅拌反应48h,待反应结束后,将反应液滴加到500mL的无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋(MWCO=10000)中,置于1L的去离子水中透析,开始间隔1h换一次水,换6次后间隔6h换一次水,总共透析48h,待有机溶剂透析干净后,冷冻干燥,既可以获得亲水性的UCNPs,置于冰箱中4℃保存备用。表征结果证明实验效果不佳。
实施例3:
(1)制备掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料:量取1.2mL的0.5mol/L的MnCl2溶液,2mL的0.5mol/L的Y(NO3)3溶液,1.8mL的0.2mol/L的Yb(NO3)3溶液和0.2mL的0.2mol/L的Er(NO3)3溶液依次加入到含有0.6g NaOH固体、3mL去离子水、10mL油酸和20mL乙醇的混合溶液中,并处于磁力搅拌中,然后将包含有8mmolNaF的4mL去离子水逐滴加入到上述混合液中。室温下磁力搅拌15min后,将所形成的凝胶溶液转移到75mL的聚四氟乙烯反应釜中,密封,在230℃下加热12h后,整个反应系统自然冷却至室温。最终产品在高速离心机中7000rpm下离心10min,用无水乙醇洗涤2次以除去产品中可能含有的残余物,之后将产品置于真空干燥箱中在70℃下烘10h,最终获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料。
(2)普鲁兰多糖与NaY(Mn)F4:Yb,ErUCNPs表面的油酸进行酯化反应:称取0.2460g的OA-UCNPs、0.0870g的EDC和0.0725g的DMAP溶于10mL的二甲基亚砜(DMSO)溶液中,室温下搅拌活化1h,活化后的反应液逐滴滴加到预先溶于10mL DMSO中的0.4920g的普鲁兰多糖溶液中,室温下磁力搅拌反应48h,待反应结束后,将反应液滴加到500mL的无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋(MWCO=3500)中,置于1L的去离子水中透析,开始间隔1h换一次水,换6次后间隔6h换一次水,总共透析96h,待有机溶剂透析干净后,冷冻干燥,既可以获得亲水性的UCNPs,置于冰箱中4℃保存备用。表征结果证明实验效果不佳。
实施例4:
(1)溶剂热法制备掺杂30%摩尔比Mn2+的NaY(Mn)F4:Yb,Er稀土上转换纳米材料:量取1.2mL的0.5mol/L的MnCl2溶液,2mL的0.5mol/L的Y(NO3)3溶液,1.8mL的0.2mol/L的Yb(NO3)3溶液和0.2mL的0.2mol/L的Er(NO3)3溶液依次加入到含有0.6g NaOH固体、3mL去离子水、10mL油酸和20mL乙醇的混合溶液中,并处于磁力搅拌中,然后将包含有8mmolNaF的4mL去离子水逐滴加入到上述混合液中。室温下磁力搅拌15min后,将所形成的凝胶溶液转移到75mL的聚四氟乙烯反应釜中,密封,在210℃下加热10h后,整个反应系统自然冷却至室温。最终产品在高速离心机中9000rpm下离心10min,用无水乙醇洗涤2次以除去产品中可能含有的残余物,之后将产品置于真空干燥箱中在60℃下烘8h,最终获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料。
(2)普鲁兰多糖与NaY(Mn)F4:Yb,Er稀土上转换纳米材料(UCNPs)表面的油酸进行酯化反应:称取0.2460g的OA-UCNPs、0.0430g的EDC和0.0358g的DMAP溶于10mL的二甲基亚砜(DMSO)溶液中,室温下搅拌活化1h,活化后的反应液逐滴滴加到预先溶于10mL DMSO中的0.4920g的普鲁兰多糖溶液中,室温下磁力搅拌反应48h,待反应结束后,将反应液滴加到500mL的无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋(MWCO=8000)中,置于1L的去离子水中透析,开始间隔1h换一次水,换6次后间隔6h换一次水,总共透析120h,待有机溶剂透析干净后,冷冻干燥,既可以获得亲水性的UCNPs,置于冰箱中4℃保存备用。表征结果证明与实施例1相近。
显然,本发明所列举的上述实施例在此仅仅是为了更加清楚地说明本发明所做的技术方案,而并非是对本发明的实施方式的限制。对于所属领域的一般技术人员来说,在上述说明的基础上还可以做出不同形式的变动。在此本发明不可能将所有实施方式一一列举。但凡是属于本发明所作的技术方案能延展的一些明显的变化将仍然处于本发明的保护范围之中。

Claims (2)

1.一种多糖修饰的水溶性稀土上转换纳米材料的制备方法,其特征在于,采用普鲁兰多糖处理NaY(Mn)F4:Yb,Er稀土上转换纳米材料,与其表面的油酸分子发生酯化反应,合成含亲水性表面功能基团的稀土上转换纳米材料;
步骤如下:
(1)溶剂热法制备NaY(Mn)F4:Yb,Er稀土上转换纳米材料:
将含有Y、Mn、Yb和Er的盐溶液依次加入到含有NaOH、去离子水、油酸和乙醇的混合溶液a中,通过NaOH控制混合溶液a的pH为7~9,搅拌,得到混合溶液b;其中,Y、Mn、Yb和Er的摩尔比为Y:Mn:Yb:Er=50:30:18:2;去离子水、油酸和无水乙醇的体积比为3:10:20;在混合溶液b中,含Mn的盐溶液的浓度为0.015mol/L;再将NaF水溶液逐滴加入到混合溶液b中,室温下,搅拌至形成凝胶溶液;其中,Y和NaF的摩尔比为5:2;然后将凝胶溶液在180-240℃下加热反应7-24h,整个反应系统自然冷却至室温;离心,再用无水乙醇洗涤,干燥,获得干燥的NaY(Mn)F4:Yb,Er稀土上转换纳米材料;
(2)普鲁兰多糖与NaY(Mn)F4:Yb,Er稀土上转换纳米材料表面的油酸进行酯化反应:将表面含油酸的NaY(Mn)F4:Yb,Er稀土上转换纳米材料OA-UCNPs、1-(3-二甲氨基丙基)-3-乙基碳化二亚胺盐酸盐EDC和4-二甲氨基吡啶DMAP溶于二甲基亚砜DMSO溶液中,即混合溶液c;室温下搅拌活化1~3小时,活化后的混合溶液c逐滴滴加到DMSO中的多糖溶液中,混合溶液c与DMSO中的多糖溶液等体积混合,二者中的DMSO的用量相同;其中,OA-UCNPs:普鲁兰多糖:EDC:DMAP:DMSO的质量比为1:2:3.5:3:89;室温下搅拌反应48-120h,待反应结束后,将反应液滴加到无水乙醇中离心收集白色沉淀,将沉淀溶于去离子水中并转移至透析袋中,置于去离子水中透析,透析多次,待有机溶剂透析干净后,冷冻干燥,即获得亲水性的UCNPs,置于冰箱中冷冻保存备用。
2.根据权利要求1所述的制备方法,其特征在于,所述的含有Y、Mn、Yb和Er的盐溶液分别为MnCl2溶液、Y(NO3)3溶液、Yb(NO3)3溶液和Er(NO3)3溶液。
CN201710489965.5A 2017-06-26 2017-06-26 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法 Active CN107216871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710489965.5A CN107216871B (zh) 2017-06-26 2017-06-26 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710489965.5A CN107216871B (zh) 2017-06-26 2017-06-26 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN107216871A CN107216871A (zh) 2017-09-29
CN107216871B true CN107216871B (zh) 2019-07-12

Family

ID=59950983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710489965.5A Active CN107216871B (zh) 2017-06-26 2017-06-26 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN107216871B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709081B (zh) * 2018-11-12 2021-03-26 上海大学 一种利用荧光检测的纳米生物传感器及其制备方法、应用
CN110144214A (zh) * 2019-06-21 2019-08-20 南京工业大学 一种通过反应温度调控过渡金属Mn2+的上转换发光的方法
CN114806542B (zh) * 2022-03-16 2024-09-10 徐州工业职业技术学院 一种基于稀土掺杂上转换纳米材料荧光探针的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320263A1 (en) * 2012-05-29 2013-12-05 Rutgers, The State University Of New Jersey Surfactant effects on efficiency enhancement of luminescent particles
US20150064107A1 (en) * 2013-09-04 2015-03-05 King's College London Imaging agent

Also Published As

Publication number Publication date
CN107216871A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Yao et al. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy
US20220001032A1 (en) Coated up-conversion nanoparticles
Jalani et al. Seeing, targeting and delivering with upconverting nanoparticles
Chatterjee et al. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals
Wang et al. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application
Wang et al. One-pot synthesis of chitosan/LaF3: Eu3+ nanocrystals for bio-applications
Wang et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence
Mi et al. Novel microwave-assisted solvothermal synthesis of NaYF4: Yb, Er upconversion nanoparticles and their application in cancer cell imaging
US8709383B2 (en) Persistent luminescence nanoparticles used in the form of a diagnosis agent for in vivo optical imaging
Yang et al. A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles
Wang et al. Upconversion nanoparticles in biological labeling, imaging, and therapy
Xia et al. An upconversion nanoparticle–zinc phthalocyanine based nanophotosensitizer for photodynamic therapy
Chen et al. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications
Wang et al. NIR-responsive silica-coated NaYbF4: Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells
Abdukayum et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging
Pfister et al. Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium
Naccache et al. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles
Xu et al. NaYF 4: Yb, Tm nanocrystals and TiO 2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin
CN107216871B (zh) 一种多糖修饰的水溶性稀土上转换纳米材料的制备方法
CN108130069B (zh) 稀土上转换纳米诊疗剂及其制备方法
CN103589432B (zh) 稀土掺杂氟化镥锂纳米材料及其制备与应用
Zhang et al. Fluorescence resonance energy transfer between NaYF4: Yb, Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin
CN104083771A (zh) 基于荧光共振能量转移的肿瘤成像和治疗靶向体系及其构建方法
Wang et al. Lipid coated upconverting nanoparticles as NIR remote controlled transducer for simultaneous photodynamic therapy and cell imaging
CN108853497B (zh) 基于上转换纳米颗粒和超薄二氧化硅层构建靶向光动力纳米探针

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant