CN107216473A - 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法 - Google Patents

基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法 Download PDF

Info

Publication number
CN107216473A
CN107216473A CN201710420672.1A CN201710420672A CN107216473A CN 107216473 A CN107216473 A CN 107216473A CN 201710420672 A CN201710420672 A CN 201710420672A CN 107216473 A CN107216473 A CN 107216473A
Authority
CN
China
Prior art keywords
liquid
dopamine
carbon fibre
solution
fibre reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710420672.1A
Other languages
English (en)
Other versions
CN107216473B (zh
Inventor
温福山
刘�东
王浩
丁若男
李白
张亚东
贾元东
于冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710420672.1A priority Critical patent/CN107216473B/zh
Publication of CN107216473A publication Critical patent/CN107216473A/zh
Application granted granted Critical
Publication of CN107216473B publication Critical patent/CN107216473B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/104Pretreatment of other substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明属于材料表面处理及涂装技术领域,涉及一种表面自由能较低的碳纤维增强树脂基复合材料,通过该方法可显著提高涂料在材料表面的附着能力。技术方案包括以下步骤:(1)脂肪醇聚氧乙烯醚AEO‑12,0.1‑2份,JFC,0.1‑3份,30wt%的H2O2溶液,0.01‑0.5份,余量为H2O,组成A液。(2)用硼砂和硼酸配制pH值为8.0‑8.5的缓冲溶液,将盐酸多巴胺溶于缓冲溶液,配制浓度为0.4‑0.6g/L的盐酸多巴胺溶液,得到B液。(3)将A液与B液等体积混合均匀,刷涂或喷涂至经过打磨处理后的碳纤维增强树脂基复合材料表面上,待干燥后进行涂料的涂装。本发明可显著提高涂料在碳纤维增强树脂基复合材料表面的附着力。

Description

基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法
技术领域
本发明属于碳纤维复合材料表面处理及涂装技术领域,提供了一种基于多巴胺的提高碳纤维增强复合材料(CFRP)和涂料附着力的方法。
背景技术
碳纤维是一种含碳量在95%以上的,具有高强度、高模量的新型纤维材料。碳纤维是由片状石墨微晶沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维具有轴向强度和模量高,密度低,耐疲劳性和耐腐蚀性好,热膨胀系数小,且具有各向异性的特点,在国防军工和民用方面都具有重要的研究和应用价值。同传统的玻璃纤维和凯夫拉纤维相比,碳纤维具有更高的杨氏模量,同时,其在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。碳纤维不仅具有碳材料的固有本征特性,同时还具有纺织纤维的柔软可加工性,是新一代增强纤维(沈真,碳纤维复合材料在飞机结构中的应用,高科技纤维与应用,2010,35(4):1-4+24.)。
碳纤维的主要用途之一是与树脂、金属、陶瓷等基体复合,制备具有优异性能的碳纤维增强复合材料(CFRP)。CFRP具有质量轻、强度高、耐冲击、耐腐蚀的优点,可广泛应用于发动机罩、翼子板、车顶、行李箱盖、门板和底盘等零部件。CFRP由于受成形技术(固化时间长)和碳纤维价格昂贵等因素制约,多用于航空航天领域和少量高级轿车或跑车上。随着其技术进步和应用规模不断扩大,使用成本逐步下降,目前国外已经开始在量产车型上有所应用。
碳纤维增强复合材料本身为黑色,为了装饰和美观,需要在其表面进行相应的涂装。CFRP具有很低的表面能,给其表面涂装带来了困难,如何提高涂料在其表面的附着力显得尤为重要。可以通过对碳纤维增强复合材料基材进行表面处理来增加其表面的附着力,从而提高涂装性能。已经报道过的表面处理方法有:机械法、氧化液法、等离子体法、火焰处理法、紫外照射法等,上述各种方法都能在一定程度上提高碳纤维增强复合材料表面与涂料的黏附能力,但同时也存在一定的缺点。如,机械法是较为常用的方法,但处理力度难以掌握,若轻度打磨会造成表面的脱模剂未完全脱落,影响涂料的附着性能。打磨过度则会破坏复合材料内的碳纤维丝而降低碳纤维增强复合材料基材的力学性能,从而影响其使用功能。氧化液法用到Cr6+,因而存在一定的污染问题,等离子体法、火焰处理法、紫外照射法适合实验室或小零件的处理加工,难以实现工业化。因此,开发一种简单、环保而又能适合工业化生产的方法来提高碳纤维增强复合材料表面与涂料的黏附能力的方法非常必要。
据文献报道,海洋贻贝类生物可以分泌出黏附蛋白,在潮湿的环境下展现出了超强的黏附能力(Lee Haeshin,Dellatore Shara M.,Miller William M.,MessersmithPhilip B.,Mussel-inspired surface chemistry for multifunctional coatings,Science,2007,318:426-430.)。海洋贻贝黏附蛋白所具有的高强度,高韧性,防水性以及特殊的黏附性能,是目前其他黏合剂所无法比拟的。目前,通过模仿黏附蛋白分子结构和性能,开发和应用新型功能材料,是仿生领域研究的热点之一。
贻贝可以通过自身分泌出的粘液,将自己牢固的黏附在金属、玻璃、聚合物等材料表面,甚至在极难黏附的聚四氟乙烯表面均能达到牢固的黏附(Xi ZhenYu,Xu YouYi,ZhuLiPing,Wang Yue,Zhu BaoKu,A facile method of surface modification forhydrophobic polymer membranes based on the adhesive behavior of poly(DOPA)andpoly(dopamine),Journal of Membrane Science,2009,327:244-253.)
研究表明,贻贝分泌出的具有邻苯二酚基团的化合物,该种类型化合物与有机基材的表面相互作用,是通过不可逆的共价键来实现的,因此使其具有超乎寻常的黏附能力(Dalsin Jeffrey L.,Hu BiHuang,Lee Bruce P.,Messersmith Philip B.,Musseladhesive protein mimetic polymers for the prepartion of nonfouling surfaces,Journal of American Chemical Society,2003,125:4253-4258.)。
上述文献报道,虽然研究了多巴胺类化合物在有机、无机材料表面的附着情况,但未涉及碳纤维增强复合材料表面处理领域,而更多的是在生物领域和分离膜处理领域。
本发明通过简单易行的方法在CFRP与涂料底漆之间加入多巴胺类过渡层,该过渡层增强了碳纤维复合材料基材及底漆之间有较强粘合力,且具有低成本、低污染、易涂装等优点。
发明内容
本发明主要解决现有CFRP涂层附着力差、成本高,污染大、难以实现工业化等问题。在其基材表面引入多巴胺类过渡层,用于修饰碳纤维增强复合材料的表面结构,增加表面的极性,增大CFRP基材与涂料之间附着力,从而提高涂料与CFRP之间的附着性能。
本发明为实现上述目的采取以下技术方案:(1)脂肪醇聚氧乙烯醚AEO-12,0.1-2份,JFC,0.1-3份,30wt%的H2O2溶液0.01-0.5份,余量为H2O,组成A液。(2)用硼砂和硼酸配制pH值为8.0-8.5的缓冲溶液,将盐酸多巴胺溶于缓冲溶液,配制浓度为0.4-0.6g/L的盐酸多巴胺溶液,得到B液。(3)将A液与B液等体积混合均匀,刷涂或喷涂至经过打磨处理后的碳纤维增强复合材料表面上,待干燥后进行涂料的涂装。
其中所述(1)中的A液,AEO-12,0.1-2份,JFC,0.1-3份,30wt%的H2O2溶液0.01-0.5份,余量为H2O。(2)中的B液,首先用硼砂和硼酸配制成pH值为8.0-8.5的缓冲溶液,然后将盐酸多巴胺溶于该缓冲溶液,盐酸多巴胺的浓度为0.4-0.6mol/L。(3)预先将碳纤维增强复合材料表面进行打磨处理,使用前,A液与B液等体积混合,施工方式为刷涂或喷涂。
本发明中,所述步骤(1)中采用的AEO-12与JFC可以增加盐酸多巴胺溶液在打磨处理后的碳纤维增强复合材料表面的润湿性,H2O2的加入可以加速多巴胺的氧化聚合。步骤(2)中pH值为8.0-8.5的硼砂和硼酸缓冲溶液,可以为碳纤维增强复合材料表面的盐酸多巴胺的氧化聚合提供有利的反应条件。步骤(3)中,使用前,A液与B液混合,可以充分保持两种溶液的稳定性。
本发明与已有制备方法相比有益效果是:
(1)本发明中采用的原料盐酸多巴胺对环境不存在污染。
(2)本发明采用刷涂或喷涂法代替了原先的浸渍法,方法简单易行,利于工业化推广及应用,适用于大部件大规模的涂装。
(3)本发明有效地弥补了其他碳纤维增强复合材料涂装方法的缺陷,提高了CFRP基材与涂料之间的粘合力。
具体实施方式
下面结合实施例进一步叙述本发明所研制的复合过渡层对CFRP基材和涂料粘合力的大小。
实施例1:
取0.50g的AEO-12,0.8g的JFC,0.03g的30wt%的H2O2溶液,98.67g的H2O混合均匀得到A溶液。
取1.91g的硼砂,1.24g的硼酸,96.85g的H2O,配成pH值为8.0左右的缓冲溶液,向其中加入0.43g的盐酸多巴胺,得到B溶液。
将2.5mm厚的CFRP基材用300目的砂纸打磨至表面变为亲水后用蒸馏水冲洗,然后电吹风吹干。将上述A溶液与B溶液混合均匀后,刷涂至CFRP基材表面上,待其完全干燥后依次进行环氧底漆的正常涂装。待涂层完全干燥后对漆膜进行拉开法附着力测试。环氧底漆与碳纤维复合材料基材的附着力达到8.35MPa。作为对比样,未引入多巴胺过渡层,碳纤维复合材料基材同样打磨后直接刷涂涂料,测得环氧底漆与碳纤维复合材料基材的附着力为3.17MPa。
实施例2:
取0.41g的AEO-12,0.82g的JFC,0.07g的30wt%的H2O2溶液,98.70g的H2O混合均匀得到A溶液。
取0.98g的硼砂,0.62g的硼酸,98.40g的H2O,配成pH值为8.1左右的缓冲溶液,向其中加入0.47g的盐酸多巴胺,得到B溶液。
将2.5mm厚的CFRP基材用300目的砂纸打磨至表面变为亲水后用蒸馏水冲洗,然后电吹风吹干。将上述A溶液与B溶液混合均匀后,刷涂至CFRP基材表面上,待其完全干燥后依次进行环氧底漆的正常涂装。待涂层完全干燥后对漆膜进行拉开法附着力测试。环氧底漆与碳纤维复合材料基材的附着力达到9.15MPa。作为对比样,未引入多巴胺过渡层,碳纤维复合材料基材同样打磨后直接刷涂涂料,测得环氧底漆与碳纤维复合材料基材的附着力为3.17MPa。
实施例3:
取1.22g的AEO-12,0.63g的JFC,0.05g的30wt%的H2O2溶液,98.10g的H2O混合均匀得到A溶液。
取2.87g的硼砂,1.86g的硼酸,95.31g的H2O,配成pH值为8.0左右的缓冲溶液,向其中加入0.38g的盐酸多巴胺,得到B溶液。
将2.5mm厚的CFRP基材用300目的砂纸打磨至表面变为亲水后用蒸馏水冲洗,然后电吹风吹干。将上述A溶液与B溶液混合均匀后,刷涂至CFRP基材表面上,待其完全干燥后依次进行环氧底漆的正常涂装。待涂层完全干燥后对漆膜进行拉开法附着力测试。环氧底漆与碳纤维复合材料基材的附着力达到7.15MPa。作为对比样,未引入多巴胺过渡层,碳纤维复合材料基材同样打磨后直接刷涂涂料,测得环氧底漆与碳纤维复合材料基材的附着力为3.17MPa。
实施例4:
取0.83g的AEO-12,1.27g的JFC,0.09g的30wt%的H2O2溶液,97.81g的H2O混合均匀得到A溶液。
取0.76g的硼砂,0.47g的硼酸,98.77g的H2O,配成pH值为8.3左右的缓冲溶液,向其中加入0.51g的盐酸多巴胺,得到B溶液。
将2.5mm厚的CFRP基材用300目的砂纸打磨至表面变为亲水后用蒸馏水冲洗,然后电吹风吹干。将上述A溶液与B溶液混合均匀后,刷涂至CFRP基材表面上,待其完全干燥后依次进行环氧底漆的正常涂装。待涂层完全干燥后对漆膜进行拉开法附着力测试。环氧底漆与碳纤维复合材料基材的附着力达到9.65MPa。作为对比样,未引入多巴胺过渡层,碳纤维复合材料基材同样打磨后直接刷涂涂料,测得环氧底漆与碳纤维复合材料基材的附着力为3.17MPa。

Claims (5)

1.基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法,可显著提高涂料在碳纤维增强树脂基复合材料表面之间的附着力,其特征在于包含以下步骤:(1)脂肪醇聚氧乙烯醚AEO-12,0.1-2份,JFC,0.1-3份,30wt%的H2O2溶液,0.01-0.5份,余量为H2O,组成A液;(2)用硼砂和硼酸配制pH值为8.0-8.5的缓冲溶液,将盐酸多巴胺溶于缓冲溶液,配制浓度为0.4-0.6g/L的盐酸多巴胺溶液,得到B液;(3)将A液与B液等体积混合均匀,刷涂或喷涂至经过打磨处理后的碳纤维增强复合材料表面上,待干燥后进行涂料的涂装。
2.根据权利要求1所述的基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法,其特征在于:适用的基材为碳纤维增强树脂复合材料,基材表面需预先进行打磨处理。
3.根据权利要求1所述的基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法,其特征在于:步骤(1)中采用了脂肪醇聚氧乙烯醚AEO-12及JFC为增加表面润湿性的表面活性剂,利于后面的多巴胺溶液在碳纤维增强树脂复合材料表面的分散,采用的H2O2溶液增加了碳纤维增强树脂复合材料表面的多巴胺溶液的氧化聚合速度,缩短反应时间。
4.根据权利要求1所述的基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法,其特征在于:处理步骤(2)用硼砂和硼酸配制pH值为8.0-8.5的缓冲溶液,将盐酸多巴胺溶于缓冲溶液,盐酸多巴胺的浓度为0.4-0.6g/L。
5.根据权利要求1所述的基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法,其特征在于:处理步骤(3)中,施工前,将A液与B液等体积混合,采用的施工工艺为刷涂或喷涂。
CN201710420672.1A 2017-06-07 2017-06-07 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法 Expired - Fee Related CN107216473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710420672.1A CN107216473B (zh) 2017-06-07 2017-06-07 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710420672.1A CN107216473B (zh) 2017-06-07 2017-06-07 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法

Publications (2)

Publication Number Publication Date
CN107216473A true CN107216473A (zh) 2017-09-29
CN107216473B CN107216473B (zh) 2020-08-11

Family

ID=59948300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710420672.1A Expired - Fee Related CN107216473B (zh) 2017-06-07 2017-06-07 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法

Country Status (1)

Country Link
CN (1) CN107216473B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610628A (zh) * 2018-04-27 2018-10-02 华南理工大学 一种改性碳纤维/纳米芳纶纤维的复合材料及其制备方法
CN109517274A (zh) * 2018-11-21 2019-03-26 福建和动力智能科技有限公司 一种汽车保险杆壳体防脱漆料及其制备方法
CN110540662A (zh) * 2019-10-14 2019-12-06 陕西科技大学 一种聚多巴胺改性碳纤维/莫来石晶须增强树脂基摩擦材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121019A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소섬유강화플라스틱 복합재 및 이의 제조방법
CN104498935A (zh) * 2014-12-09 2015-04-08 浙江大学 碳纳米管复合涂层的制备方法
CN104927302A (zh) * 2014-03-20 2015-09-23 江南大学 一种由石墨烯增韧的环氧树脂复合材料及其制备方法
CN106317442A (zh) * 2016-08-17 2017-01-11 大连理工大学 一种多巴胺及其衍生物的聚合和高分子材料表面改性工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121019A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소섬유강화플라스틱 복합재 및 이의 제조방법
CN104927302A (zh) * 2014-03-20 2015-09-23 江南大学 一种由石墨烯增韧的环氧树脂复合材料及其制备方法
CN104498935A (zh) * 2014-12-09 2015-04-08 浙江大学 碳纳米管复合涂层的制备方法
CN106317442A (zh) * 2016-08-17 2017-01-11 大连理工大学 一种多巴胺及其衍生物的聚合和高分子材料表面改性工艺

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YUAN LIU: "Bio-inspired polydopamine functionalization of", 《RSC ADVANCES》 *
侯海云编: "《表面活性剂物理化学基础》", 31 August 2014, 西安交通大学出版社 *
冯立明等编: "《涂装工艺与设备》", 31 July 2004, 化学工业出版社 *
王纳新,廖大政,张馨月,李博雅: "环氧基碳纤维增强复合材料车身外覆盖件", 《汽车工艺与材料》 *
简明生物实验手册编写组编: "《简明生物实验手册》", 31 July 1987, 山东教育出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610628A (zh) * 2018-04-27 2018-10-02 华南理工大学 一种改性碳纤维/纳米芳纶纤维的复合材料及其制备方法
CN108610628B (zh) * 2018-04-27 2020-05-22 华南理工大学 一种改性碳纤维/纳米芳纶纤维的复合材料及其制备方法
CN109517274A (zh) * 2018-11-21 2019-03-26 福建和动力智能科技有限公司 一种汽车保险杆壳体防脱漆料及其制备方法
CN110540662A (zh) * 2019-10-14 2019-12-06 陕西科技大学 一种聚多巴胺改性碳纤维/莫来石晶须增强树脂基摩擦材料的制备方法

Also Published As

Publication number Publication date
CN107216473B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Sun et al. Multi-scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites
Fu et al. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting
Wu et al. Synergistic strengthening and toughening the interphase of composites by constructing alternating “rigid‐and‐soft” structure on carbon fiber surface
Vincent et al. Strength characterization of caryota urens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC-toughened epoxy structural composite
Chen et al. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites
Liu et al. Raspberry-like superhydrophobic silica coatings with self-cleaning properties
CN101501114B (zh) 预浸料坯和碳纤维强化复合材料
Semitekolos et al. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation
CN107216473A (zh) 基于多巴胺提高碳纤维增强复合材料表面涂装性能的方法
Nasser et al. Aramid nanofiber interlayer for improved interlaminar properties of carbon fiber/epoxy composites
Zhang et al. Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites
Guo et al. Three‐dimensional structured MXene/SiO2 for improving the interfacial properties of composites by self‐assembly strategy
TW201418337A (zh) 碳纖維強化樹脂組成物、碳纖維強化樹脂組成物之製造方法、成形材料、成形材料之製造方法及碳纖維強化樹脂成形品
Simovich et al. Hierarchically rough, mechanically durable and superhydrophobic epoxy coatings through rapid evaporation spray method
Munoz-Velez et al. Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite.
Li et al. Recent development and emerging applications of robust biomimetic superhydrophobic wood
Li et al. Interfacial self-healing performance of carbon fiber/epoxy based on postsynthetic modification of metal-organic frameworks
Kotrotsos An innovative synergy between solution electrospinning process technique and self‐healing of materials. A critical review
CN106637923A (zh) 一种在导电纤维表面快速连续沉积石墨烯的方法
Wang et al. Superstrong, lightweight, and exceptional environmentally stable SiO2@ GO/bamboo composites
Yuan et al. Nanoscale toughening of carbon fiber‐reinforced epoxy composites through different surface treatments
Xu et al. Dramatically improving the interfacial adhesion of CF/epoxy composite through synergistic deposition of silver nanoparticles and polydopamine
De et al. Effects of fiber surface grafting by functionalized carbon nanotubes on the interfacial durability during cryogenic testing and conditioning of CFRP composites
Wu et al. Two-dimensional polydopamine nano-protrusion-modified graphene oxide encapsulation of cylindrical carbon fiber by vacuum filtration to strengthen the interphase of epoxy composites
Wu et al. New strategy for enhancing interfacial adhesion between carbon fiber and epoxy by using mussel-inspired polydopamine-Fe complex nanospheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811