CN107206690A - 设置用于增材制造方法的三维物体打印属性的方法 - Google Patents

设置用于增材制造方法的三维物体打印属性的方法 Download PDF

Info

Publication number
CN107206690A
CN107206690A CN201580074424.5A CN201580074424A CN107206690A CN 107206690 A CN107206690 A CN 107206690A CN 201580074424 A CN201580074424 A CN 201580074424A CN 107206690 A CN107206690 A CN 107206690A
Authority
CN
China
Prior art keywords
volume
dimensional body
data
sub
location components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580074424.5A
Other languages
English (en)
Other versions
CN107206690B (zh
Inventor
贾恩·莫罗维奇
彼得·莫罗维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN107206690A publication Critical patent/CN107206690A/zh
Application granted granted Critical
Publication of CN107206690B publication Critical patent/CN107206690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/351343-D cad-cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder

Abstract

一种用于在增材制造方法(例如,3D‑打印)中设置三维物体的属性的方法,其中获取表示待打印的三维物体的数据。所述数据包括表示所述三维物体的子体积。通过位置分量,即定位深度和取向角度,来识别所述三维物体中的所述子体积的位置。由用户识别或设置所述待打印的三维物体的特征。基于所识别的特征和位置分量,针对用于打印所述三维物体的个体子体积设置属性数据。所述属性数据包括材料属性数据、结构属性数据和打印属性数据。

Description

设置用于增材制造方法的三维物体打印属性的方法
背景技术
通过增材制造方法生成的三维物体可以以逐层方式形成。在增材制造的一个示例中,通过在装置中使构造材料的层的部分固化来生成物体。在示例中,构造材料可以是粉末、流体或片材的形式。可以通过将试剂打印到构造材料的层上来获得预期的固化和/或物理属性。可以向层施加能量,并且其上已经施加了试剂的构造材料可以一经冷却就聚结并且固化。在其他示例中,可以使用化学粘结剂,该化学粘结剂可以不需要施加能量来固化。例如,可以通过使用挤出的塑料或喷涂材料作为构造材料来生成三维物体,该构造材料固化形成物体。
附图说明
为了更全面的理解,现在下文将参考附图来描述各个实施例,在附图中:
图1是利用本公开的示例装置的框图;
图2是根据本公开的可以采用的方法的示例的流程图;以及
图3是根据本公开的三维物体的示例位置分量的图示说明。
具体实施方式
本文描述的一些实施例提供一种用于设置可以用来生产三维物体的三维物体的属性的装置和方法。一些实施例允许处理并且使用具有各种指定的物体属性的任意三维内容来生成三维物体。这些物体属性可以包括外观属性和/或机械属性,如颜色、透明度、光泽度、强度、传导性、密度、多孔性等。
在本文的一些实施例中,用子体积来表征三维空间。子体积可以是“体素”形式,即三维像素,其中每个体素占据离散的体积。然而,将理解的是,子体积可以是可以采取任何形状(例如,立方体、长方体、四面体或任何其他形状)的任何有体积的实体。在对三维物体进行数据建模时,给定位置处的子体积可以具有至少一个属性。例如,它可以是空的,它可以具有特定的颜色,它可以表示特定材料,它可以表示特定结构属性,等等。
在一些实施例中,对表示三维物体的数据进行处理,以设置用于生成该物体的属性。
在一些实施例中,材料体积覆盖表示定义打印材料数据,例如,细化打印材料(如沉积到构造材料层上的一种或多种试剂,或者在一些实施例中,构造材料本身)及其组合(如果适用的话)的量。在一些实施例中,这可以被指定为比例体积覆盖(例如,构造材料层的X%的区域应该具有施加到其上的试剂Y)。此类打印材料可以被涉及或者被选择来提供物体属性如,例如,颜色、透明度、柔性、弹性、硬度、表面粗糙度、多孔性、传导性、夹层强度、密度等。
可以使用半色调技术来确定每个打印材料(例如,一滴试剂)应该施加的实际位置。
例如,物体模型数据内的子体积的集合可以具有相关联的材料体积覆盖(Mvoc)矢量的集合。在简单的实例中,这种矢量可以指示三维空间的X%的给定区域应该具有施加到其上的特定试剂,其中(100-X)%应该没有施加到其上的试剂。然后材料体积覆盖表示可以提供用于半色调过程的输入,以生成可以供增材制造系统使用来生产三维物体的控制数据。例如,可以确定的是,为了产生指定的物体属性,25%的构造材料层(或层的一部分)应该具有施加到其上的试剂。例如,通过将每个位置与在半色调阈值矩阵中提供的阈值进行比较,半色调过程确定试剂滴应该在何处沉积,以便提供25%的覆盖。在另一个实例中,可以有两种试剂,并且可以直接确定它们中的每种的体积覆盖、它们的组合的体积覆盖以及剩余没有试剂的体积的体积覆盖。
情况可能是这样的,在构建3D数据模型的时候,用来打印物体的打印装置至少就其功能来说是未指定的。
参考图1、2和3进一步描述本主题。应该注意到,说明书和附图仅说明本主题的原理。因此要理解的是,可以策划体现本主题的原理的各种布置(尽管本文没有明确描述或者示出)。此外,本文叙述本主题的原理和示例的所有陈述,及其具体实施例,都旨在涵盖其等同物。
图1是根据本主题的实施例的装置100。装置100包括:获取模块102,以获取表示三维物体的数据103;识别模块104,以识别数据;处理器106,以处理数据;以及机器可读存储器108,以存储数据。机器可读存储器108可以存储用于通过由处理器106执行的应用程序存取的数据,并且可以包括含有用于供应用程序使用的信息的数据结构。机器可读存储器108可以是存储可执行指令的任何电子、磁性、光学或其他物理存储装置。因此,机器可读存储器108可以是,例如,随机存取存储器(RAM)、电可擦除可编程只读存储器(EEPROM)、存储驱动、光盘等。机器可读存储器108可以用可执行指令来编码。
图2是根据本公开可以采用的方法的示例的流程图,现在还将参考图1进行描述该方法。
在框200处,获取模块102获取表示待打印的三维物体的数据。该数据可以包括以表示或构成三维物体的子体积形式的、待打印的三维模型的几何信息。子体积可以是阵列的形式,其中每个子体积位于三维物体内唯一的三维位置。
在框202处,识别模块104识别或获取待打印的三维物体的特征。在一个实施例中,可以从在用户界面(未示出)处接收的用户输入来识别待打印的三维物体的所识别的特征。用户输入可以指示或指定特征。所识别的特征可以包括关于一旦三维物体已被生产或打印它即具有的属性的信息。例如,三维物体的所识别的特征可以包括关于弹性、重量、不透明度、延展性、柔性、颜色、传导性、硬度、表面粗糙度、多孔性、强度和/或任何其他特征的信息或值。在一个实施例中,识别模块104可以识别三维物体的重量的特定值,以及三维物体的弹性的特定值。识别模块104可以识别三维物体的不同部分或部分体积的不同特征。例如,识别模块104可以识别三维物体的内部的一个特征或特征的集合,以及三维物体的外部或表面的另一个特征或另一个特征的集合,等。
在框202处,识别模块104还识别三维物体内的子体积的位置分量。该位置分量可以是子体积在三维物体内定位的深度。该深度可以定义为子体积定位处距三维物体的表面的距离。可替换地或另外,位置分量可以是子体积在三维物体内取向的角度。例如,子体积取向的角度可以是子体积的表面法线和打印方向之间的角度。
图3提供位置分量的示例图示说明。在图3中,位置分量是子体积处的物体表面法线和打印方向或打印切片法线(即,针对三维物体打印层的方向)之间的角度θ。
尽管上文提供了一些位置分量的实施例,但是将理解的是,位置分量可以是任何其他的位置分量或位置分量的任意组合。
在框204处,基于所识别的特征和位置分量,处理器106针对用于打印三维物体的子体积设置属性数据。属性数据可以包括材料属性数据、结构属性数据和/或打印属性数据。将理解的是,属性数据还可以包括其他类型的数据。
材料属性数据可以包括,例如,有关材料(如构造材料和/或待沉积到构造材料上的试剂)使用的信息。例如,材料属性数据可以包括指示材料数量、材料重量、材料密度、材料分布、材料组合(例如,构造材料和试剂的组合、构造材料本身的组合等)、材料体积覆盖(Movc)信息或矢量(如之前描述的)、颜色信息的数据和/或任何其他材料属性数据。结构属性数据可以包括,例如,有关材料分布的信息。例如,结构属性数据可以包括指示结构尺寸、结构形状、半色调信息(如算法的选择、资源的选择等)的数据和/或任何其他结构属性数据。打印属性数据可以包括,例如,有关用于打印系统的设置的信息。例如,打印属性数据可以包括指示打印方法、打印技术、打印速度、定影温度、设置不同的材料属性数据和/或结构属性数据的指令(例如,取决于所支持的材料和/或结构的可用性)的数据和/或任何其他打印属性数据。
根据本公开,由识别模块104识别的特征和位置分量是属性数据的函数。例如,处理器106可以将由识别模块104识别的特征和位置分量映射到属性数据。实施例是特征可以是特征矢量的形式。特征矢量可以具有如独立特征那样多的维度。例如,识别模块104可以识别指示传导性C和弹性E的特征。在该实施例中,子体积v可以关联于二维特征矢量Pv=(Cv,Ev)。位置分量可以以同样的方式被映射到属性数据。
根据本公开,属性数据可以取决于子体积的位置分量来改变,以便提供所识别的特征。例如,子体积的集合可以具有相同的规格,并且因此处理器106可以基于那些子体积的位置分量,通过适当地改变在该子体积中的属性数据(例如,材料体积覆盖Movc)来提供所识别的特征。处理器106可以改变与用于打印三维物体的三维打印机的书写系统相关,或者与正在打印的三维物体相关的属性数据。将理解的是,其他实施例也是可能的。
在一个实施例中,识别模块104可以将位置分量识别为子体积的取向角度θ。所识别的取向角度θ可以是,例如,子体积处的物体表面法线相对于打印平面法线(即,之后的层沿其打印的轴线)之间的角度。这被图示说明在图3中。在同一实施例中,识别模块104可以将特征识别为RGB数据形式的颜色信息。在该实施例中,在处理方面,所识别的位置分量和特征可以表示成[θ,RGB]。
处理器106可以将属性函数(例如,材料体积覆盖Mvoc数据)设置为RGB颜色数据和取向角度θ两者的函数。处理器106可以首先识别取向角度θ的数目n,需要针对其确定自定义特征到属性数据(在该实施例中,自定义RGB颜色到材料体积覆盖Mvoc数据)的映射。
处理器106可以从大于预期数目的角度(针对该角度打印材料体积覆盖Movc并且测量它们的颜色)开始。然后处理器106可以分析角度-颜色关系,以获取需要直接表征的最小数目的角度,以使能够从那些角度准确预测中间角度的角度-颜色关系,并且可以在它们之间进行适合的插值。换言之,处理器106可以从处理器106已直接表征角度-颜色关系的那些角度插值中间角度。
插值可以是线性插值,或者某种形式的非线性插值。例如,处理器106可以使用分段线性插值(即,最近的较小的和较大的角度之间的线性插值),或者可以使用任何其他插值技术(如三次样条)。处理器106可以确定使用哪种插值技术作为识别上文提到的最小数目的角度的部分。处理器106可以基于预确定水平的精确度来进行该确定,因为对角度和插值技术的选择将会提供给定水平的精确度。
插值可以得到建立端点和函数关系的情况。例如,端点和模拟取向角度θ和颜色(RGB)数据的γ函数。在一个实施例中,情况可能是,可以使用极端角度(例如,0和180度的角度)。在该实施例中,处理器106可以应用用于在角度之间插值的非线性函数。γ函数可以被计算来最小化相对于颜色测量的误差。
对于每个所识别的取向角度θ,处理器106可以确定单独的特征到属性数据的映射(在该实施例中,单独的RGB颜色到材料体积覆盖Mvoc数据映射)。处理器106可以经由查找表(LUT)确定映射,将会在后文中对该查找表(LUT)进行更详细地描述。处理器106可以将n个三维(RGB)索引LUT组合到单个四维(θ-RGB)索引LUT中。
识别模块104可以识别多于一个位置分量。例如,除了子体积的取向角度θ之外,识别模块104可以识别三维物体内的子体积的深度。在识别模块104将特征识别为RGB数据形式的颜色信息的实施例中,在处理方面,所识别的位置分量和特征可以表示成[θ,深度,RGB]。
处理器106可以处理任意组合的任何数目的所识别的位置分量和特征。在一个实施例中,处理器106可以处理具有两个位置分量与六个特征组合(诸如[深度;θ;RGB;不透明度;延展性;柔性])的所识别的数据。然而,尽管本文已经提供了实施例,将理解的是,任何其他的位置分量和特征可以被识别,并且可以以各种不同的组合被识别。
根据本公开,处理器106可以以这样的方式设置属性数据,使得不论子体积在三维物体内的定位如何,子体积将具有一致的特征。
在一些实施例中,处理器106可以使目标特征集合关联于待打印的每个子体积(即,关联于每个打印子体积)。处理器106采用来以该方式设置特征的方法可以取决于特征是如何被指定的,例如,在用户界面处由用户指定。例如,处理器106可以先由输入子体积计算出目标子体积,将那些目标子体积的目标属性集合分配给它们,并且随后进一步再把目标子体积细分为打印子体积。然后处理器106可以识别那些打印子体积的位置分量。
处理器106可以针对每个打印子体积,基于该子体积的目标特征集合和位置分量来设置属性数据(包括材料属性数据、结构属性数据和打印属性数据)。在其他实施例中,处理器106可以针对预确定数目的打印子体积(例如,打印子体积的预确定的集合),基于那些子体积的目标特征集合和位置分量来设置属性数据。在该实施例中,处理器106可以用随机属性数据、默认属性数据分配其他子体积(例如,预确定的集合之外的那些子体积),或者可以使它们保留为空,等。
尽管一些属性数据在子体积水平上是可由处理器106控制的(并且因此可以设置的),但是可以存在处理器106需要针对子体积层建立的一些属性数据(例如,打印速度),以及处理器106需要全局控制的一些属性数据(例如,其上沉积试剂的粉末的选择,或者打印床维持的温度)。
在一些实施例中,取决于子体积的所识别的特征和位置分量,处理器106可以针对个体子体积设置针对邻近子体积不同的属性数据。例如,表示三维物体的子体积可以包括表示或定义三维物体的表面的表面子体积,以及表示或定义三维物体的内部体积的内部子体积。在该实施例中,处理器106可以对针对表面子体积和针对内部子体积区别地设置属性数据或设置不同的属性数据。例如,在三维物体的内部和外部部分的特征和/或子体积位置分量(如之前讨论的)是不同的情况中。
在一些实施例中,处理器106可以针对三维物体的部分体积中的子体积设置属性数据。例如,如之前讨论的,识别模块104可以识别三维物体的部分体积的特征(例如,部分体积可能在用户界面处已被指示),并且随后可以识别部分体积内的子体积的位置分量。然后处理器106可以针对该部分体积中的子体积设置属性数据。在一些实施例中,处理器106可以针对一个部分体积中的子体积与另一个部分体积中的子体积区别地设置属性数据或者设置不同的属性数据(取决于那些部分体积的所识别的特征和/或子体积位置分量)。
处理器106可以将属性数据编码为元组。例如,描述结构属性数据材料属性数据和打印属性数据的元组可以表示成
机器可读存储器108可以针对子体积将属性数据(如材料属性数据、结构属性数据和/或打印属性数据)存储为三维物体特征和子体积位置分量的函数。机器可读存储器108可以被预配置有该信息。可替换地或者另外,机器可读存储器108可以基于通过在一段时间内使用装置100所获取的信息来被动地获悉该信息。
处理器106可以针对最接近或准确地提供与具有所识别的位置分量的那些子体积相关联的目标特征集合的子体积从机器可读存储器108中读取属性数据。然后处理器108将用针对那些子体积读取的属性数据设置它们。以该方式,可以随后用具有该属性数据和所识别的位置分量的子体积生产或打印的三维物体将具有所识别的特征。
作为数据存储器的实施例,机器可读存储器108可以将属性数据(如材料属性数据、结构属性数据和/或打印属性数据)存储为查找表(LUT)形式的三维物体特征和子体积位置分量的函数。LUT可以将三维物体特征和子体积位置分量映射到属性数据。例如,LUT可以将三维物体特征和子体积位置分量映射到材料属性数据、结构属性数据和打印属性数据的各种组合。
在之前提到的矢量形式中,LUT可以将特征矢量映射到描述结构属性数据材料属性数据和打印属性数据的元组以数学形式,这可以表示成以类似的方式,LUT可以将所识别的子体积位置分量和特征矢量映射到属性数据。例如,在所识别的子体积位置分量是取向角度θ,特征矢量是RGB颜色数据,并且属性数据是材料体积覆盖Mvoc数据的情况中,则取向角度θ和RGB颜色数据可以被映射到材料体积覆盖Mvoc数据,这可以被表示成(θ,RGB)→Mvoc。以该方式,处理器106能够找寻用于存在于机器可读存储器108中的特征矢量和子体积位置分量的映射。
处理器106还可以具有用于找寻用于不存在于机器可读存储器108中的特征矢量和子体积位置分量的映射的机制。例如,处理器106可以针对材料的体积分布进行四面体插值,以确定用于不存在于机器可读存储器108中的特征矢量和子体积位置分量的映射。
一旦处理器106已经以上述方式中的任一种设置了子体积水平的属性,则处理器106具有将生产具有所识别的特征和子体积位置分量的三维物体的数据。例如,给定要打印的三维物体,处理器106可以,针对物体的每个子体积,使用子体积的所识别的位置分量和特征来获取和设置可以用于打印的物体属性数据。
在一个实施例中,给定要打印的三维物体,处理器106可以计算物体的表面法线。针对物体的每个子体积,处理器106可以使用表面法线的角度与针对该角度指定的打印切片法线和RGB颜色数据来从LUT计算材料体积覆盖Mvoc。对于子体积的给定的RGB和θ角度(针对其指定颜色),LUT可以允许Mvoc的插值(鉴于子体积相对于打印切片法线的位置,该插值得到该颜色)。然后处理器106可以进行半色调并且打印所得到的材料体积覆盖Mvoc。
处理器106可以指示装置100使用针对子体积设置的属性数据集合来生产或打印三维物体。处理器106可以指示装置100在设置属性数据之后自动生产或打印,或者可以接收指示应该开始生产或打印的用户输入。根据本公开,处理器106可以在过程的任何阶段时,接收指示开始生产或打印的用户输入。例如,根据本公开,一旦处理器106已经针对表示待打印的三维物体的子体积设置了属性数据,或者在过程期间的任何其他阶段时,处理器106可以接收指示开始生产或打印的用户输入。处理器106可以向用于物体生产或打印的另一个装置、设备或系统(未示出)提供数据。
本公开的实施例可以被提供为方法、系统或机器可读指令,如软件、硬件、固件等的任意组合。此类机器可读指令可以被包括在其中或其上具有机器可读程序编码的机器可读存储介质上(包括但不限于磁盘存储器、CD-ROM、光存储器等)。
参考根据本公开的实施例的方法、装置和系统的流程图和/或框图来描述本公开。尽管上文描述的流程图示出具体的执行顺序,但是执行顺序可以不同于所描绘的那种。关于一个流程图描述的框可以与另一个流程图的那些框组合。应当理解,流程图和/或框图中的每个流程和/或框,以及流程图和/或框图中的流程和/或框的组合,可以由机器可读指令实现。
机器可读指令可以,例如,由通用计算机、专用计算机、嵌入式处理器或其他可编程的数据处理设备的处理器执行,以实现说明书和附图中描述的功能。例如,处理装置或处理器(如处理器106)可以执行计算机可读指令。因此,装置和设备的功能模块可以由执行存储在存储器中的机器可读指令的处理器或者根据嵌入在逻辑电路中的指令进行操作的处理器来实现。术语“处理器”要被广泛地理解为包括处理单元、中央处理单元(CPU)、专用集成电路(ASIC)、逻辑单元、可编程门阵列等。方法和功能模块可以全部由单个处理器进行,或者在若干个处理器之间划分。
此类机器可读指令还可以存储在机器可读存储器(如机器可读存储器108)中,该机器可读存储器可以引导计算机或其他可编程数据处理设备以具体模式进行操作。
此类计算机可读指令还可以加载到计算机或其他可编程数据处理设备上,从而计算机或其他可编程数据处理设备进行一系列操作来产生计算机实现的处理,因此在计算机或其他可编程设备上执行的指令提供用于实现由在流程表中的一个或多个流程和/或框图中的一个或多个框指定的功能的手段。
另外,本文的教导可以以计算机软件产品的形式实现,该计算机软件产品被存储在存储介质中并且包括用于使计算机设备实现本公开的实施例中叙述的方法的多条指令。
尽管已经参考某些实施例描述了方法、装置和相关方面,但是在不背离本公开的精神和范围的情况下可以进行各种修改、变化、省略和替换。应该注意到,上文提到的实施例说明而非限制本文描述的内容,并且在不背离所附的权利要求书的范围的情况下,本领域技术人员将能够设计许多可替换的实施方案。例如,来自一个实施例的特征或框可以与另一个实施例的特征/框组合,或被其替换。
词语“包括(comprising)”不排除权利要求中列出的那些元素之外的元素的存在,“一(a)”或“一(an)”不排除复数,并且单个处理器或其他单元可以完成权利要求书中叙述的若干个单元的功能。
任何从属权利要求的特征可以与独立权利要求或其他从属权利要求中的任一项的特征组合。

Claims (15)

1.一种方法,包括:
获取表示待打印的三维物体的数据,所述数据包括表示所述三维物体的子体积;
识别所述待打印的三维物体的特征;
识别所述三维物体内的子体积的位置分量;以及
基于所识别的特征和位置分量,针对用于打印所述三维物体的所述子体积设置属性数据,其中所识别的特征和所识别的位置分量是所述属性数据的函数。
2.根据权利要求1所述的方法,其中,所述位置分量是所述子体积在所述三维物体内定位的深度。
3.根据权利要求1所述的方法,其中,所述位置分量是所述子体积在所述三维物体内取向的角度。
4.根据权利要求3所述的方法,其中,所述子体积取向的所述角度是所述子体积的表面法线和打印方向之间的角度。
5.根据权利要求1所述的方法,包括接收指示所述待打印的三维物体的所识别的特征的用户输入。
6.根据权利要求1所述的方法,其中,所述属性数据包括材料属性数据、结构属性数据和打印属性数据。
7.根据权利要求1所述的方法,包括针对子体积将属性数据存储为三维物体特征和位置分量的函数。
8.根据权利要求1所述的方法,包括使用针对所述子体积设置的所述属性数据打印所述三维物体。
9.根据权利要求6所述的方法,其中,所述材料属性数据包括指示材料数量、材料重量、材料密度、材料分布、材料组合和/或材料体积覆盖信息的数据。
10.根据权利要求6所述的方法,其中,所述结构属性数据包括指示结构尺寸、结构形状和/或半色调信息的数据。
11.根据权利要求6所述的方法,其中,所述打印属性数据包括指示打印方法、打印技术、打印速度、定影温度和/或设置不同的材料属性数据和/或结构属性数据的指令的数据。
12.根据权利要求1所述的方法,其中,所述待打印的三维物体的所识别的特征包括所述待打印的三维物体的弹性、重量、不透明度、延展性、柔性、颜色和/或传导性。
13.一种装置,包括:
获取模块,以获取表示待打印的三维物体的数据,所述数据包括表示所述三维物体的子体积;
识别模块,以识别所述待打印的三维物体的特征和所述三维物体内的子体积的位置分量;以及
处理器,以基于所识别的特征和位置分量,针对用于打印所述三维物体的所述子体积设置属性数据,其中所识别的特征和所识别的位置分量是所述属性数据的函数。
14.根据权利要求1所述的装置,包括:
存储器,以针对子体积将属性数据存储为三维物体特征和位置分量的函数。
15.一种用可由处理器执行的指令编码的非暂时性机器可读存储介质,所述机器可读存储介质包括:
获取表示待打印的三维物体的数据的指令,所述数据包括构成所述三维物体的子体积;
获取所述待打印的三维物体的特征和所述三维物体内的子体积的位置分量的指令;以及
基于所获取的特征和位置分量,针对用于打印所述三维物体的所述子体积设置属性数据的指令,其中所获取的特征和所获取的位置分量是所述属性数据的函数。
CN201580074424.5A 2015-04-24 2015-04-24 设置用于增材制造方法的三维物体打印属性的方法 Active CN107206690B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/058939 WO2016169620A1 (en) 2015-04-24 2015-04-24 Method for setting printing properties of a three-dimensional object for additive manufacturing process

Publications (2)

Publication Number Publication Date
CN107206690A true CN107206690A (zh) 2017-09-26
CN107206690B CN107206690B (zh) 2020-07-17

Family

ID=53055016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580074424.5A Active CN107206690B (zh) 2015-04-24 2015-04-24 设置用于增材制造方法的三维物体打印属性的方法

Country Status (4)

Country Link
US (1) US10688724B2 (zh)
EP (1) EP3230811A1 (zh)
CN (1) CN107206690B (zh)
WO (1) WO2016169620A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166025A (zh) * 2018-07-31 2021-01-01 惠普发展公司,有限责任合伙企业 三维物体生产
CN113165272A (zh) * 2019-04-29 2021-07-23 惠普发展公司,有限责任合伙企业 基于3d模型的表面取向的试剂配方确定

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074413A1 (en) * 2015-10-30 2017-05-04 Hewlett-Packard Development Company, L.P. Three-dimensional object generation parameter descriptions
EP3634725A4 (en) 2017-07-10 2021-03-31 Hewlett-Packard Development Company, L.P. ANTI-FUSION AGENTS WITH COLORS
JP7200605B2 (ja) * 2018-11-02 2023-01-10 富士フイルムビジネスイノベーション株式会社 三次元形状データの生成装置、三次元造形装置、及び三次元形状データの生成プログラム
CN110126255B (zh) * 2019-05-09 2024-04-16 珠海赛纳三维科技有限公司 彩色三维物体打印方法、三维打印系统及彩色三维物体
CN112036275B (zh) * 2020-08-19 2023-02-03 华东师范大学 一种基于渐进式功能增强网络的物理模型材料识别方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113372A1 (en) * 2012-01-31 2013-08-08 Hewlett-Packard Development Company, L.P. Techniques for three-dimensional printing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL157877A0 (en) 2003-09-11 2004-03-28 Imagine It S Happening Ltd Color edge based 3d scanner
US7910193B2 (en) 2008-11-10 2011-03-22 Mkp Structural Design Associates, Inc. Three-dimensional auxetic structures and applications thereof
CN101814188A (zh) 2009-06-16 2010-08-25 黑龙江工程学院 基于彩色分量交点的彩色条纹边缘亚像素检测方法
US20130053995A1 (en) 2011-08-25 2013-02-28 Konica Minolta Business Technologies, Inc. Three-dimensional object molding apparatus and control program
GB2502295B (en) 2012-05-22 2015-12-09 Mcor Technologies Ltd Colour 3-dimensional printing with 3D gamut mapping
US9886526B2 (en) 2012-10-11 2018-02-06 University Of Southern California 3D printing shrinkage compensation using radial and angular layer perimeter point information
GB201314421D0 (en) * 2013-08-12 2013-09-25 Materialise Nv Data Processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113372A1 (en) * 2012-01-31 2013-08-08 Hewlett-Packard Development Company, L.P. Techniques for three-dimensional printing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166025A (zh) * 2018-07-31 2021-01-01 惠普发展公司,有限责任合伙企业 三维物体生产
US11383447B2 (en) 2018-07-31 2022-07-12 Hewlett-Packard Development Company, L.P. Three-dimensional object production
CN112166025B (zh) * 2018-07-31 2023-06-16 惠普发展公司,有限责任合伙企业 三维物体生产
CN113165272A (zh) * 2019-04-29 2021-07-23 惠普发展公司,有限责任合伙企业 基于3d模型的表面取向的试剂配方确定

Also Published As

Publication number Publication date
US20180022030A1 (en) 2018-01-25
EP3230811A1 (en) 2017-10-18
CN107206690B (zh) 2020-07-17
WO2016169620A1 (en) 2016-10-27
US10688724B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
CN107206690A (zh) 设置用于增材制造方法的三维物体打印属性的方法
US20170368755A1 (en) Methods and Apparatus for 3D Printing of Point Cloud Data
ES2953536T3 (es) Asignación de material de GPU para impresión 3D usando campos de distancia 3D
CN109816704A (zh) 物体的三维信息获取方法和装置
CN107209499A (zh) 生成子物体的控制数据
US11335073B2 (en) 3D print selection based on voxel property association and conflict resolution
CN107206693A (zh) 处理用于储存的三维物体数据
CN107209500B (zh) 产生用于制作三维物体的控制数据的方法和装置
US20200356074A1 (en) Method for setting printing properties of a three-dimensional object for additive manufacturing process
CN108349164B (zh) 表示磨损指示器的数据
CN108145975B (zh) 一种三维运动物体的磁场正演系统和方法
CN107206692B (zh) 三维对象表示
CN112905831A (zh) 物体在虚拟场景中的坐标获取方法、系统及电子设备
CN106553345A (zh) 一种多材料3d物体的打印方法及打印控制装置
US20170329878A1 (en) Variable density modeling
US20220083712A1 (en) Object manufacturing simulation
US10380792B2 (en) Three-dimensional model generation
CN109887075A (zh) 用于三维模型构建的三维点云模型训练方法
CA2966299C (en) Method for immediate boolean operations using geometric facets
CN107209958A (zh) 三维对象表示
CN114202654B (zh) 一种实体目标的模型构建方法、存储介质和计算机设备
CN110612193A (zh) 将打印覆盖矩阵与对象属性矩阵相关
Ganitano et al. A hybrid metaheuristic and computer vision approach to closed-loop calibration of fused deposition modeling 3D printers
KR102641460B1 (ko) 그림자 투영법을 이용한 3d 프린팅의 지지체 예측방법
Galicia 3D printing speed optimization by minimizing void paths

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant