CN107196606A - 一种振荡器 - Google Patents

一种振荡器 Download PDF

Info

Publication number
CN107196606A
CN107196606A CN201710646722.8A CN201710646722A CN107196606A CN 107196606 A CN107196606 A CN 107196606A CN 201710646722 A CN201710646722 A CN 201710646722A CN 107196606 A CN107196606 A CN 107196606A
Authority
CN
China
Prior art keywords
oxide
semiconductor
metal
mrow
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710646722.8A
Other languages
English (en)
Other versions
CN107196606B (zh
Inventor
陆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Can Core Technology Co Ltd
Original Assignee
Hefei Can Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Can Core Technology Co Ltd filed Critical Hefei Can Core Technology Co Ltd
Priority to CN201710646722.8A priority Critical patent/CN107196606B/zh
Publication of CN107196606A publication Critical patent/CN107196606A/zh
Application granted granted Critical
Publication of CN107196606B publication Critical patent/CN107196606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明提供一种振荡器,其包括:参考电压/电流产生电路和振荡器电路。参考电压/电流产生电路中,第一电阻连接于电压源和第一MOS管一端之间,第一MOS管另一端接地,第一MOS管栅极与第一MOS管一端相连;第二MOS管栅极与第一MOS管栅极相连,第二MOS管另一端接地;第三MOS管栅极与第一MOS管栅极相连,第三MOS管另一接地,第一MOS管栅极电压为参考电压,第二MOS管一端的电流为第一参考电流,第三MOS管一端的电流为第二参考电流。振荡器电路中,第一电容一端与电压源相连,第一比较电路的两个输入端分别与第一电容另一端和参考电压相连;第二电容一端与电压源相连,第二比较电路的两个输入端分别与第二电容另一端和参考电压相连。与现有技术相比,本发明占用的芯片面积和功耗大幅减小。

Description

一种振荡器
【技术领域】
本发明涉及电路设计技术领域,特别涉及一种频率不随电源电压变化的振荡器。
【背景技术】
集成电路里面一般都会包含同步数字电路,同步数字电路都需要一个精准的时钟来做同步。如果这个时钟我们用内建振荡器来实现的话,为了保证时钟的精准度,我们会要求时钟频率不随电源电压的变化而变化。
传统的频率不随电源电压的变化而变化的振荡器电路如图1所示,我们可以发现里面除了振荡器(OSC)本身之外,还需要一个带隙基准产生器bandgap用来产生参考电压VBG,另外,还需要一个偏置电路BIAS用来产生两路相等的参考电流IREF1和IREF2。
由带隙基准的原理可知,VBG是个不随电源电压变化而变化的电压。而从BIAS电路可得公式
其中,M是MP2(MP3)与MP1的比值,而RSET是电阻,从而可见IREF1和IREF2的数值也不会随电源电压变化而变化。
从OSC电路可得公式
其中Freq是输出时钟CLK的频率。由于IREF1,C1,VBG都不随电源电压变化而变化,所以Freq也不随电源电压变化而变化。
上述这种做法虽然得到了不随电源电压变化而变化的频率,但是付出的代价比较大,需要搭配一个带隙基准Bandgap和一个BIAS电路,从而导致面积和功耗都会增加,最终导致产品竞争力的下降。
【发明内容】
本发明的目的在于提供一种频率不随电源电压变化的振荡器,其占用的芯片面积和功耗会大幅减小。
为了解决上述问题,本发明提供一种振荡器,其包括:参考电压/电流产生电路,以及振荡器电路。所述参考电压/电流产生电路包括第一MOS管、第二MOS管、第三MOS管和第一电阻,第一电阻连接于电压源和第一MOS管的第一连接端之间,第一MOS管的第二连接端接地,第一MOS管的控制端与第一MOS管的第一连接端相连;第二MOS管的控制端与第一MOS管的控制端相连,第二MOS管的第二连接端接地;第三MOS管的控制端与第一MOS管的控制端相连,第三MOS管的第二连接端接地,其中,第一MOS管的控制端的电压为参考电压,第二MOS管的第一连接端的电流为第一参考电流,第三MOS管的第一连接端的电流为第二参考电流。所述振荡器电路包括第一振荡单元和第二振荡单元,所述第一振荡单元包括第一比较电路、第一充/放电控制电路和第一电容,所述第一电容的一端与电压源相连,所述第一电容的另一端与第一比较电路的第一输入端相连,所述第一比较电路的第二输入端与所述参考电压相连;所述第二振荡单元包括第二比较电路、第二充/放电控制电路和第二电容,所述第二电容的一端与电压源相连,所述第二电容的另一端与第二比较电路的第一输入端相连,所述第二比较电路的第二输入端与所述参考电压相连。基于所述第一参考电流对第一振荡单元中的第一电容进行充电,第一比较电路在第一电容另一端的电压小于或等于所述参考电压时,通知第一充/放电控制电路开始放电和第二充/放电控制电路开始充电;基于所述第二参考电流IREF2对第二振荡单元的第二电容进行充电,第二比较电路在第二电容另一端的电压小于或等于所述参考电压时,通知第二充/放电控制电路开始放电和第一充/放电控制电路开始充电。
进一步的,所述第一MOS管、第二MOS管和第三MOS管均为NMOS晶体管,所述第一MOS管、第二MOS管和第三MOS管的第一连接端为NMOS晶体管的漏极,所述第一MOS管、第二MOS管和第三MOS管的第二连接端为NMOS晶体管的源极,所述第一MOS管、第二MOS管和第三MOS的控制端为NMOS晶体管的栅极。
进一步的,所述第一参考电流和第二参考电流相等。
进一步的,所述第一充/放电控制电路包括第四MOS管和第五MOS管,其中,第四MOS管的第一连接端与电压源相连,其第二连接端与第五MOS管的第一连接端相连,第五MOS管的第二连接端与所述第一参考电流相连,第四MOS管和第五MOS管之间的连接节点与所述第一电容的另一端相连,当所述第一充/放电控制电路被通知放电时,第四MOS管导通且第五MOS管关断;当所述第一充/放电控制电路被通知充电时,第四MOS管关断且第五MOS管导通,此时第一参考电流通过第五MOS管对第一电容充电。所述第二充/放电控制电路包括第六MOS管和第七MOS管,其中,第六MOS管的第一连接端与电压源相连,其第二连接端与第七MOS管的第一连接端相连,第七MOS管的第二连接端与所述第二参考电流相连,第六MOS管和第七MOS管之间的连接节点与所述第二电容的另一端相连,当所述第二充/放电控制电路被通知放电时,第六MOS管导通且第七MOS管关断;当所述第二充/放电控制电路被通知充电时,第六MOS管关断且第七MOS管导通,此时,第二参考电流通过第七MOS管给第二电容充电。
进一步的,所述第四MOS管和第六MOS管为PMOS晶体管,所述第四MOS管和第六MOS管的第一连接端为PMOS晶体管的源极,所述第四MOS管和第六MOS管的第二连接端为PMOS晶体管的漏极;所述第五MOS管和第七MOS管为NMOS晶体管,所述第五MOS管和第七MOS管的第一连接端为NMOS晶体管的漏极,所述第五MOS管和第七MOS管的第二连接端为NMOS晶体管的源极。
进一步的,第一比较电路的第一输入端和第二输入端分别为第一比较电路的正向输入端和反向输入端;第二比较电路的第一输入端和第二输入端分别为第二比较电路的正向输入端和反向输入端,所述第一振荡单元和第二振荡单元共享一逻辑电路,所述逻辑电路包括第一反相器、第二反相器、第一或非门和第二或非门,其中,第一反相器的输入端与第一比较电路的输出端相连,第一反相器的输出端与第一或非门的一输入端相连,第一或非门的另一输入端与第二或非门的输出端相连,第一或非门的输出端与第四MOS管和第五MOS管的栅极相连;第二反相器的输入端与第二比较电路的输出端相连,第二反相器的输出端与第二或非门的一输入端相连,第二或非门的另一输入端与第一或非门的输出端相连,第二或非门的输出端与第六MOS管MP2和第七MOS管的栅极相连。
进一步的,由所述参考电压/电流产生电路得到以下关系式:
其中,IREF1为第一参考电流的电流值,IREF2为第二参考电流的电流值,VDD为电压源的电压值,RSET为第一电阻的电阻值,M是第二MOS管与第一MOS管的比值,或M为第三MOS管与第一MOS管的比值。由于VDD上升速度大于VBN上升速度,所以随着VDD的上升,第一参考电流和第二参考电流也会增加。
进一步的,由所述振荡器电路得到以下公式:
其中,Freq为所述振荡器电路的输出频率,C1为第一电容的电容值,IREF1为第一参考电流的电流值,IREF2为第二参考电流的电流值,VDD为电压源的电压值,RSET为第一电阻的电阻值,M是第二MOS管与第一MOS管的比值,M也是第三MOS管与第一MOS管的比值,可见,输出频率Freq与M,C1和RSET有关,而与VDD无关。
与现有技术相比,本发明不需要用到Bandgap和BIAS电路,其采用包括一个电阻和三个晶体管的参考电压/电流产生电路,就可以产生参考电压VBN、参考电流IREF1和IREF2,从而以比较小的面积和功耗实现频率不随电源电压变化而变化的振荡器。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为一种传统的频率不随电源电压的变化而变化的振荡器的电路示意图;
图2为本发明在一个实施例中的频率不随电源电压的变化而变化的振荡器的电路示意图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。除非特别说明,本文中的连接、相连、相接的表示电性连接的词均表示直接或间接电性相连。
图2为本发明在一个实施例中的频率不随电源电压的变化而变化的振荡器的电路示意图。所述振荡器包括参考电压/电流产生电路210,以及振荡器电路220。
所述参考电压/电流产生电路210用于产生参考电压VBN、第一参考电流IREF1和第二参考电流IREF2。所述参考电压/电流产生电路210包括第一MOS管MN1、第二MOS管MN2、第三MOS管MN3和第一电阻RSET。第一电阻RSET连接于电压源VDD和第一MOS管MN1的第一连接端之间,第一MOS管MN1的第二连接端接地,第一MOS管MN1的控制端与第一MOS管MN1的第一连接端相连;第二MOS管MN2的控制端与第一MOS管MN1的控制端相连,第二MOS管MN2的第二连接端接地;第三MOS管MN3的控制端与第一MOS管MN1的控制端相连,第三MOS管MN3的第二连接端接地。其中,第一MOS管MN1控制端的电压为所述参考电压VBN,第二MOS管MN2的第一连接端的电流为所述第一参考电流IREF1,第三MOS管MN3的第一连接端的电流为所述第二参考电流IREF2。
在图2所示的具体实施例中,所述第一MOS管MN1、第二MOS管MN2和第三MOS管MN3均为NMOS晶体管,所述第一MOS管MN1、第二MOS管MN2和第三MOS管MN3的第一连接端为NMOS晶体管的漏极,所述第一MOS管MN1、第二MOS管MN2和第三MOS管MN3的第二连接端为NMOS晶体管的源极,所述第一MOS管、第二MOS管和第三MOS的控制端为NMOS晶体管的栅极;所述第一参考电流IREF1和第二参考电流IREF1相等。
所述振荡器电路220包括第一振荡单元和第二振荡单元(未标识),所述第一振荡单元包括第一比较电路CMP1、第一充/放电控制电路222和产生比较电压的第一电容C1,所述第一电容C1的一端与电压源VDD相连,所述第一电容C1的另一端与第一比较电路CMP1的第一输入端相连,所述第一比较电路CMP1的第二输入端与参考电压VBN相连;所述第二振荡单元包括第二比较电路CMP2、第二充/放电控制电路224和产生比较电压的第二电容C2,所述第二电容C2的一端与电压源VDD相连,所述第二电容C2的另一端与第二比较电路CMP2的第一输入端相连,所述第二比较电路CMP2的第二输入端与参考电压VBN相连。基于所述参考电压/电流产生单元210提供的第一参考电流IREF1对第一振荡单元中的第一电容C1进行充电,第一比较电路CMP1在第一电容C1另一端的电压(即比较电压)小于或等于所述参考电压VBN时,通知第一充/放电控制电路222开始放电和第二充/放电控制电路224开始充电;基于所述参考电压/电流产生单元210提供的第二参考电流IREF2对第二振荡单元的第二电容C2进行充电,第二比较电路CMP2在第二电容C2另一端的电压(即比较电压)小于或等于所述参考电压VBN时,通知第二充/放电控制电路224开始放电和第一充/放电控制电路222开始充电。
在图2所示的实施例中,所述第一充/放电控制电路222包括第四MOS管MP1和第五MOS管MN4,其中,第四MOS管MP1的第一连接端与电压源VDD相连,其第二连接端与第五MOS管MN4的第一连接端相连,第五MOS管MN4的第二连接端与所述第一参考电流IREF1相连,第四MOS管MP1和第五MOS管MN4之间的连接节点与所述第一电容C1的另一端相连。当所述第一充/放电控制电路222被通知放电时,第四MOS管MP1导通且第五MOS管MN4关断,此时,第一电容C1的一端与另一端相连,从而使第一电容C1放电;当所述第一充/放电控制电路222被通知开始充电时,第四MOS管MP1关断且第五MOS管MN4导通,此时,中断第一电容C1的一端与另一端连接,且第一参考电流IREF1通过第五MOS管MN4与第一电容C1的另一端相连,从而由第一参考电流IREF1对所述第一电容C1充电。所述第二充/放电控制电路224包括第六MOS管MP2和第七MOS管MN5,其中,第六MOS管MP2的第一连接端与电压源VDD相连,其第二连接端与第七MOS管MN5的第一连接端相连,第七MOS管MN5的第二连接端与所述第二参考电流IREF2相连,第六MOS管MP2和第七MOS管MN5之间的连接节点与所述第二电容C2的另一端相连。当所述第二充/放电控制电路224被通知放电时,第六MOS管MP2导通且第七MOS管MN5关断,此时,第二电容C2的一端与另一端相连,从而使第二电容C2放电;当所述第二充/放电控制电路224被通知开始充电时,第六MOS管MP2关断且第七MOS管MN5导通,此时,中断第二电容C2的一端与另一端连接,且第二参考电流IREF2通过第七MOS管MN5与第二电容C2的另一端相连,从而由第二参考电流IREF2对所述第二电容C2充电。
在图2所示的具体实施例中,所述第四MOS管MP1和第六MOS管MP2为PMOS晶体管,所述第四MOS管MP1和第六MOS管MP2的第一连接端为PMOS晶体管的源极,所述第四MOS管MP1和第六MOS管MP2的第二连接端为PMOS晶体管的漏极;所述第五MOS管MN4和第七MOS管MN5为NMOS晶体管,所述第五MOS管MN4和第七MOS管MN5的第一连接端为NMOS晶体管的漏极,所述第五MOS管MN4和第七MOS管MN5的第二连接端为NMOS晶体管的源极。
在图2所示的具体实施例中,第一比较电路CMP1的第一输入端和第二输入端分别为第一比较电路CMP1的正向输入端和反向输入端;第二比较电路CMP2的第一输入端和第二输入端分别为第二比较电路CMP2的正向输入端和反向输入端。所述第一振荡单元和第二振荡单元共享一逻辑电路226,所述逻辑电路226包括第一反相器INV1、第二反相器INV2、第一或非门NOR1和第二或非门NOR2,其中,第一反相器INV1的输入端与第一比较电路CMP1的输出端相连,第一反相器INV1的输出端与第一或非门NOR1的一输入端相连,第一或非门NOR1的另一输入端与第二或非门NOR2的输出端相连,第一或非门NOR1的输出端与第四MOS管MP1和第五MOS管MN4的栅极相连,第一或非门NOR1的输出端作为与所述逻辑电路226的第一输出端O1;第二反相器INV2的输入端与第二比较电路CMP2的输出端相连,第二反相器INV2的输出端与第二或非门NOR2的一输入端相连,第二或非门NOR2的另一输入端与第一或非门NOR1的输出端相连,第二或非门NOR2的输出端与第六MOS管MP2和第七MOS管MN5的栅极相连,第二或非门NOR2的输出端作为所述逻辑电路226的第二输出端O2。第一或非门NOR1的输出信号经延时器后得到频率信号(或时钟信号)CLK。
本领域技术普通技术人员,基于图2中的振荡器电路220各个元件的连接关系即可明确振荡器电路220的工作过程,因此这里就不再详述。
需要特别说明的是,本发明与传统振荡器相比,不需要用到Bandgap和BIAS电路,仅用所述参考电压/电流产生电路210(其包括一个电阻RSET和三个晶体管MN1,MN2和MN3)就产生了参考电压VBN、参考电流IREF1和IREF2。从图2所示的参考电压/电流产生电路210不难得出,随着电压源VDD的上升,MOS管MN1的电流会增加,从而参考电压VBN的电压也会增加。从图2所示的参考电压/电流产生电路210还可得到以下关系式:
其中,IREF1为第一参考电流IREF1的电流值,IREF2为第二参考电流IREF1的电流值,VDD为电压源VDD的电压值,RSET为第一电阻RSET的电阻值,M是MOS管MN2(或MN3)与MN1的比值。由于VDD上升速度大于VBN上升速度,所以随着VDD的上升,IREF1也会增加。可见,VBN和IREF1会随着电源电压VDD的变化而变化,那么输出频率Freq呢?
从图2所示的振荡器电路220可得以下公式:
可见,输出频率Freq(即时钟信号CLK的频率)只与M,C1和RSET有关,而与VDD无关,由于M,C1,RSET都不随电源电压VDD变化而变化,所以输出频率Freq也不随电源电压VDD的变化而变化。由此我们实现了用比较小的面积和功耗实现频率不随电源电压变化而变化的振荡器的想法。这样,本发明中的不随电源电压变化而变化的振荡器更具有竞争优势。
在本发明中,“连接”、相连、“连”、“接”等表示电性相连的词语,如无特别说明,则表示直接或间接的电性连接。
需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (8)

1.一种振荡器,其特征在于,其包括:参考电压/电流产生电路,以及振荡器电路,
所述参考电压/电流产生电路包括第一MOS管、第二MOS管、第三MOS管和第一电阻,第一电阻连接于电压源和第一MOS管的第一连接端之间,第一MOS管的第二连接端接地,第一MOS管的控制端与第一MOS管的第一连接端相连;第二MOS管的控制端与第一MOS管的控制端相连,第二MOS管的第二连接端接地;第三MOS管的控制端与第一MOS管的控制端相连,第三MOS管的第二连接端接地,其中,第一MOS管的控制端的电压为参考电压,第二MOS管的第一连接端的电流为第一参考电流,第三MOS管的第一连接端的电流为第二参考电流,
所述振荡器电路包括第一振荡单元和第二振荡单元,所述第一振荡单元包括第一比较电路、第一充/放电控制电路和第一电容,所述第一电容的一端与电压源相连,所述第一电容的另一端与第一比较电路的第一输入端相连,所述第一比较电路的第二输入端与所述参考电压相连;所述第二振荡单元包括第二比较电路、第二充/放电控制电路和第二电容,所述第二电容的一端与电压源相连,所述第二电容的另一端与第二比较电路的第一输入端相连,所述第二比较电路的第二输入端与所述参考电压相连,
基于所述第一参考电流对第一振荡单元中的第一电容进行充电,第一比较电路在第一电容另一端的电压小于或等于所述参考电压时,通知第一充/放电控制电路开始放电和第二充/放电控制电路开始充电;基于所述第二参考电流IREF2对第二振荡单元的第二电容进行充电,第二比较电路在第二电容另一端的电压小于或等于所述参考电压时,通知第二充/放电控制电路开始放电和第一充/放电控制电路开始充电。
2.根据权利要求1所述的振荡器,其特征在于,
所述第一MOS管、第二MOS管和第三MOS管均为NMOS晶体管,所述第一MOS管、第二MOS管和第三MOS管的第一连接端为NMOS晶体管的漏极,所述第一MOS管、第二MOS管和第三MOS管的第二连接端为NMOS晶体管的源极,所述第一MOS管、第二MOS管和第三MOS的控制端为NMOS晶体管的栅极。
3.根据权利要求2所述的振荡器,其特征在于,
所述第一参考电流和第二参考电流相等。
4.根据权利要求1所述的振荡器,其特征在于,
所述第一充/放电控制电路包括第四MOS管和第五MOS管,其中,第四MOS管的第一连接端与电压源相连,其第二连接端与第五MOS管的第一连接端相连,第五MOS管的第二连接端与所述第一参考电流相连,第四MOS管和第五MOS管之间的连接节点与所述第一电容的另一端相连,当所述第一充/放电控制电路被通知放电时,第四MOS管导通且第五MOS管关断;当所述第一充/放电控制电路被通知充电时,第四MOS管关断且第五MOS管导通,此时第一参考电流通过第五MOS管对第一电容充电,
所述第二充/放电控制电路包括第六MOS管和第七MOS管,其中,第六MOS管的第一连接端与电压源相连,其第二连接端与第七MOS管的第一连接端相连,第七MOS管的第二连接端与所述第二参考电流相连,第六MOS管和第七MOS管之间的连接节点与所述第二电容的另一端相连,当所述第二充/放电控制电路被通知放电时,第六MOS管导通且第七MOS管关断;当所述第二充/放电控制电路被通知充电时,第六MOS管关断且第七MOS管导通,此时,第二参考电流通过第七MOS管给第二电容充电。
5.根据权利要求4振荡器,其特征在于,
所述第四MOS管和第六MOS管为PMOS晶体管,所述第四MOS管和第六MOS管的第一连接端为PMOS晶体管的源极,所述第四MOS管和第六MOS管的第二连接端为PMOS晶体管的漏极;
所述第五MOS管和第七MOS管为NMOS晶体管,所述第五MOS管和第七MOS管的第一连接端为NMOS晶体管的漏极,所述第五MOS管和第七MOS管的第二连接端为NMOS晶体管的源极。
6.根据权利要求5振荡器,其特征在于,
第一比较电路的第一输入端和第二输入端分别为第一比较电路的正向输入端和反向输入端;第二比较电路的第一输入端和第二输入端分别为第二比较电路的正向输入端和反向输入端,
所述第一振荡单元和第二振荡单元共享一逻辑电路,所述逻辑电路包括第一反相器、第二反相器、第一或非门和第二或非门,其中,第一反相器的输入端与第一比较电路的输出端相连,第一反相器的输出端与第一或非门的一输入端相连,第一或非门的另一输入端与第二或非门的输出端相连,第一或非门的输出端与第四MOS管和第五MOS管的栅极相连;第二反相器的输入端与第二比较电路的输出端相连,第二反相器的输出端与第二或非门的一输入端相连,第二或非门的另一输入端与第一或非门的输出端相连,第二或非门的输出端与第六MOS管MP2和第七MOS管的栅极相连。
7.根据权利要求2所述的振荡器,其特征在于,
由所述参考电压/电流产生电路得到以下关系式:
<mrow> <mi>I</mi> <mi>R</mi> <mi>E</mi> <mi>F</mi> <mn>1</mn> <mo>=</mo> <mi>I</mi> <mi>R</mi> <mi>E</mi> <mi>F</mi> <mn>2</mn> <mo>=</mo> <mi>M</mi> <mo>&amp;times;</mo> <mfrac> <mrow> <mi>V</mi> <mi>D</mi> <mi>D</mi> <mo>-</mo> <mi>V</mi> <mi>B</mi> <mi>N</mi> </mrow> <mrow> <mi>R</mi> <mi>S</mi> <mi>E</mi> <mi>T</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,IREF1为第一参考电流的电流值,IREF2为第二参考电流的电流值,VDD为电压源的电压值,RSET为第一电阻的电阻值,M是第二MOS管与第一MOS管的比值,或M为第三MOS管与第一MOS管的比值,
由于VDD上升速度大于VBN上升速度,所以随着VDD的上升,第一参考电流和第二参考电流也会增加。
8.根据权利要求7所述的振荡器,其特征在于,
由所述振荡器电路得到以下公式:
<mrow> <mi>F</mi> <mi>r</mi> <mi>e</mi> <mi>q</mi> <mo>=</mo> <mfrac> <mrow> <mi>I</mi> <mi>R</mi> <mi>E</mi> <mi>F</mi> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mn>1</mn> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mi>D</mi> <mi>D</mi> <mo>-</mo> <mi>V</mi> <mi>B</mi> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>M</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mi>D</mi> <mi>D</mi> <mo>-</mo> <mi>V</mi> <mi>B</mi> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>C</mi> <mn>1</mn> <mo>&amp;times;</mo> <mi>R</mi> <mi>S</mi> <mi>E</mi> <mi>T</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mi>D</mi> <mi>D</mi> <mo>-</mo> <mi>V</mi> <mi>B</mi> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>M</mi> <mrow> <mi>C</mi> <mn>1</mn> <mo>&amp;times;</mo> <mi>R</mi> <mi>S</mi> <mi>E</mi> <mi>T</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,Freq为所述振荡器电路的输出频率,C1为第一电容的电容值,IREF1为第一参考电流的电流值,IREF2为第二参考电流的电流值,VDD为电压源的电压值,RSET为第一电阻的电阻值,M是第二MOS管与第一MOS管的比值,M也是第三MOS管与第一MOS管的比值,
可见,输出频率Freq与M,C1和RSET有关,而与VDD无关。
CN201710646722.8A 2017-08-01 2017-08-01 一种振荡器 Active CN107196606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710646722.8A CN107196606B (zh) 2017-08-01 2017-08-01 一种振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710646722.8A CN107196606B (zh) 2017-08-01 2017-08-01 一种振荡器

Publications (2)

Publication Number Publication Date
CN107196606A true CN107196606A (zh) 2017-09-22
CN107196606B CN107196606B (zh) 2023-06-02

Family

ID=59884824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710646722.8A Active CN107196606B (zh) 2017-08-01 2017-08-01 一种振荡器

Country Status (1)

Country Link
CN (1) CN107196606B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123683A (zh) * 2017-12-08 2018-06-05 上海玮舟微电子科技有限公司 一种晶振电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051009A1 (fr) * 2000-12-21 2002-06-27 Asahi Kasei Microsystems Co.,Ltd. Circuit de commutation de courant a grande vitesse
JP2005198199A (ja) * 2004-01-09 2005-07-21 Nec Electronics Corp 発振回路及びその動作方法
CN101295927A (zh) * 2008-06-19 2008-10-29 北京中星微电子有限公司 改进型振荡器及使用该振荡器的降压电源转换器
CN102386659A (zh) * 2011-12-01 2012-03-21 无锡中星微电子有限公司 充电管理电路
CN102394607A (zh) * 2011-08-30 2012-03-28 无锡中星微电子有限公司 高精度振荡器
CN103633939A (zh) * 2011-08-26 2014-03-12 无锡中星微电子有限公司 一种振荡器
CN207053470U (zh) * 2017-08-01 2018-02-27 合肥灿芯科技有限公司 一种振荡器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051009A1 (fr) * 2000-12-21 2002-06-27 Asahi Kasei Microsystems Co.,Ltd. Circuit de commutation de courant a grande vitesse
JP2005198199A (ja) * 2004-01-09 2005-07-21 Nec Electronics Corp 発振回路及びその動作方法
CN101295927A (zh) * 2008-06-19 2008-10-29 北京中星微电子有限公司 改进型振荡器及使用该振荡器的降压电源转换器
CN103633939A (zh) * 2011-08-26 2014-03-12 无锡中星微电子有限公司 一种振荡器
CN102394607A (zh) * 2011-08-30 2012-03-28 无锡中星微电子有限公司 高精度振荡器
CN102386659A (zh) * 2011-12-01 2012-03-21 无锡中星微电子有限公司 充电管理电路
CN207053470U (zh) * 2017-08-01 2018-02-27 合肥灿芯科技有限公司 一种振荡器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
袁涛;王华;方健;李肇基;: "一种CMOS电流控制振荡器的分析与设计" *
陈国安;夏晓娟;: "一款用于LED驱动芯片的CMOS振荡器" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123683A (zh) * 2017-12-08 2018-06-05 上海玮舟微电子科技有限公司 一种晶振电路
CN108123683B (zh) * 2017-12-08 2021-08-10 张家港康得新光电材料有限公司 一种晶振电路

Also Published As

Publication number Publication date
CN107196606B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN101286733B (zh) 一种低压低功耗振荡器
Grozing et al. CMOS ring oscillator with quadrature outputs and 100 MHz to 3.5 GHz tuning range
CN106374881B (zh) 一种快启动低功耗时钟振荡器
CN102045041B (zh) Rc振荡器及其实现方法
CN201887731U (zh) 可修调的高精度rc振荡电路
CN102377412B (zh) 低耗电的弛张型振荡器
CN103401544B (zh) 用于充电管理芯片外部高压nmos管的驱动电路
CN104506165B (zh) Rc振荡器
CN110518896A (zh) 一种提供任意频率及占空比的时钟发生电路与芯片
CN106774575A (zh) 一种低压差线性稳压器
CN105720946B (zh) 松弛振荡器
CN207053470U (zh) 一种振荡器
CN103580651B (zh) 低相位抖动的振荡器
CN108055021B (zh) 振荡器
CN107196606A (zh) 一种振荡器
CN112583355B (zh) 高精度张弛振荡器
CN103475338B (zh) 一种高精度低压振荡器
CN103138744B (zh) 半导体装置
CN101764596B (zh) 内置皮法级电容间歇式微电流秒级时延电路
US10879882B1 (en) Low-power fast-setting delay circuit
CN110445467B (zh) 一种振荡器电路
US20130328636A1 (en) VDD-Independent Oscillator Insensitive to Process Variation
CN103825555B (zh) 一种振荡电路
CN104579245A (zh) Rc振荡器
CN107317580B (zh) 一种高稳定性振荡器电路及其实现方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant